Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проницаемость концентрации раствора

    Действие релаксационных сил вызвано тем, что во время движения ионов впереди них создается новая ион- ная атмосфера, в то время как старая ионная атмосфера позади иона исчезает. Но эти изменения не могут происходить мгновенно. Представим себе картину исчезновения ионной атмосферы в том случае, когда центральный ион внезапно извлечен из раствора. Рассасывание, перестройка в расположении ионов от ориентированного к беспорядочному, хаотическому будет происходить не мгновенно, а в течение некоторого времени, точно так же, как и при внесении иона в раствор, создание вокруг него ионной атмосферы требует некоторого времени т. Это время называется временем релаксации. Оно может меняться в пределах 10 —10 сек в зависимости от температуры, диэлектрической проницаемости, концентрации раствора и других факторов. Ионная атмосфера рассасывается вследствие диффузии ионов, и поэтому величина т зависит также от коэффициента диффузии. Для бинарного электролита время релаксации приближенно определяется уравнением [c.113]


    I. Приготовить несколько разбавленных растворов полярного вещестьа в неполярном растворителе. 2. Измерить емкость конденсатора, заполненного растворителем и каждым из приготовленных растворов. 3. Рассчитать диэлектрическую проницаемость каждого из растворов, используя табличное значение диэлектрической проницаемости растворителя, взятое из справочника при той же температуре, при которой производились измерения емкости. 4. Измерить плотности растворов всех концентраций при той же температуре, при которой были измерены емкости. 5. Рассчитать по уравнению (И,22) поляризацию растворенного веш,ества. 6. Построить график зависимости поляризации растворенного вещества от концентрации раствора и экстраполировать завпсимость до предельного разбавления. 7. Определить показатель преломления растворенного вещества и вычис лить молярную рефракцию. 8. Рассчитать по уравнению (И, 17) ди польный момент растворенного вещества. [c.99]

    Увеличение проницаемости и селективности с ростом турбулизации объясняется уменьшением концентрации раствора в пограничном слое и приближении ее к концентрации в ядре потока, что вызывает снижение осмотического давления я и соответствующее увеличение движущей силы процесса. При недостаточной турбулизации раствора над мембраной величина Хз/Х] может достигать значений порядка 10 и более при толщине пограничного слоя бг=100—300 мкм [146]. [c.174]

    Для ультрафильтрации скорость процесса также вначале увеличивается с повышением рабочего давления, однако вскоре становится постоянной (рис. 1У-9 кривые 3 и 4 и У1-4). При достаточно высокой скорости перемешивания концентрация раствора в объеме неизменная. При этом толщина пограничного слоя и профиль концентраций в нем становятся практически постоянными. Если проницаемость за счет рабочего давления увеличивается до такого состояния, что на поверхности мембраны образуется гель, то концентрация растворенного вещества у мембранной поверхности становится постоянной и не зависит от рабочего давления. При этом скорость процесса и селективность мембраны также постоянны. Расчет основных характеристик процесса ультрафильтрации для этого случая рассмотрен ниже (см. гл. V). / [c.183]

    Проницаемость определяется также близостью концентрации раствора к ГПГ. Именно на ГПГ проницаемость высокоселективных мембран обращается в нуль, независимо от рабочего давления. Для остальных мембран небольшая остаточная (но уже неселективная) проницаемость наблюдается и за ГПГ, что, вероятно, объясняется наличием в этих мембранах определенного числа крупных неселективных пор. [c.206]


    В области больших разведений, когда концентрации соли в слое связанной воды и разделяемом растворе становятся сопоставимыми, следует ожидать, что ф высокоселективной мембраны будет находиться в обратной зависимости от растворимости в слое связанной воды. Увеличение концентрации исходного раствора приводит к уменьшению вклада этого эффекта в процесс разделения. Проницаемость в первой области остается практически постоянной, что объясняется прежде всего отсутствием заметного влияния концентрации раствора на движущую силу процесса. Из факта снижения селективности при большом разбавлении (I область) следует важный для практики вывод, что уровень примесей в воде, очищенной обратным осмосом, определяется их растворимостью в слое связанной воды. [c.211]

    Невысокие концентрации растворенного вещества, гидродинамическая обстановка в потоке отвечает области, в которой проницаемость линейно возрастает с увеличением Re, а селективность остается постоянной. Этот случай характеризуется постоянной селективностью мембраны, которая не зависит от числа Рейнольдса и концентрации раствора. Проницаемость линейно возрастает с увеличением числа Рейнольдса и линейно снижается с увеличением концентрации. Поэтому суммарная зависимость проницаемости от этих факторов может быть представлена уравнением вида [c.234]

    Для расчета по выражениям (У.76) и (У.77) достаточно проведения одного эксперимента в лабораторной ячейке с мешалкой, в котором определяются проницаемость мембраны и состав фильтрата при требуемой конечной концентрации раствора Хк. [c.239]

    Выразим проницаемость в виде функции от концентрации раствора по уравнению [c.199]

    Велики трудности создания математически разработанной теории растворов электролитов. Было бы очень просто, если бы можно было рассматривать такую систему, как совокупность заряженных шариков-ионов в растворителе, представляющем собой непрерывную среду с диэлектрической проницаемостью е. Такая модель не может дать согласия с опытом. Ведь надо учесть совокупное действие ряда факторов изменение а растворителя в зависимости от природы ионов и их концентрации, влияние собственного объема ионов, влияние концентрации несвязанного растворителя, возможность формирования сложных (тройных и др.) частиц, изменение энергии сольватации ионов с концентрацией раствора, неполноту диссоциации электролита, изменение структуры раствора с его концентрацией. Обилие этих факторов и различный их вклад (в зависимости от природы компонентов раствора, его концентрации и температуры) делает невозможным их строгий количественный учет во всей совокупности. Современный уровень квантовомеханического и электростатического подходов совершенно недостаточен для этого. [c.173]

    Электростатическая составляющая обусловлена возникновением доннановского потенциала, т. е. электрическими характеристиками раствора и ионита (заряды ионов, диэлектрическая проницаемость, дипольный момент растворителя), концентрацией раствора, степенью превращения (емкостью) ионита, сродством ионита и раствора и температурой. Подчеркнем, что среди прочих факторов температура также оказывает влияние на эффекты, вызывающие набухание, поэтому важно рассмотреть и учесть при моделировании тепловые процессы, возникающие при отмывке ионита. [c.375]

    Таким образом, диэлектрическая проницаемость как мера полярности может служить и показателем степени поверхностной активности веществ. Поэтому было весьма интересно исследовать зависимость диэлектрической проницаемости от концентрации растворов активных компонентов нефти в бензоле. [c.34]

    О наличии явлений ассоциации молекул асфальтенов в бензольных растворах и о характере ее зависимости от температуры и концентрации растворов свидетельствует и то обстоятельство, что при достаточно высокой для бензольных растворов температуре (65° С), затрудняющей явления ассоциации, диэлектрическая проницаемость растворов изменяется линейно с концентрацией. В области более низких температур (40° С и ниже) обнаруживается отклонение от линейного характера этого изменения, причем чем ниже температура, тем при более низкой концентрации асфальтенов в растворе проявляется это отклонение от линейного характера изменения. При температуре 40° С отклонение от линейного характера изменения диэлектрической проницаемости бензольных растворов асфальтенов наблюдается при концентрации их, равной 11—12%, при 20°С —8—9%, а при 7° С— уже при концентрации асфальтенов в растворе, равной 4%- [c.80]

    Она зависит от температуры, диэлектрической проницаемости растворителя и некоторых других его свойств. Для водных растворов и 25°С /4 = 0,509. При средних концентрациях раствора (/ = 0,5...0,8) коэффициент активности иона может быть рассчитан по уравнению Дэвис, также основанному на теории Дебая —Хюккеля  [c.25]


    Следовательно, характеристическая длина зависит от диэлектрической проницаемости среды, заряда иона и концентрации раствора. Очевидно, с ростом концентрации ионная атмосфера сжимается, тогда как увеличение диэлектрической постоянной приводит к ее расширению. [c.395]

    Растворитель — диэлектрик ослабляет этот процесс тем сильнее, чем больше его диэлектрическая проницаемость ер. Если молекулы растворителя поляризуются сильнее, чем растворенные ионы, то, очевидно, деформация ионных полей ведет к притяжению их к молекулам растворителя и, следовательно, к отталкиванию друг от друга. При достаточно высоких концентрациях отталкивание может преобладать над притяжением за счет кулонов-ских сил и коэффициент активности становится больше единицы, что и наблюдается в растворах с большими значениями Вр (например, в водных). Поляризация диполей растворителя ионами приводит, с одной стороны, к их ориентации вокруг ионов, что способствует уменьшению ер, а с другой стороны, ориентированные диполи растворителя сгущаются вокруг иона, образуя его сольватную оболочку, что связано с локальными повышениями давления (явление электрострикции), способствующего росту Вр. Однако это повышение суммарно значительно меньше изменения ер в сторону понижения за счет ориентационной поляризации, поэтому в конечном итоге при повышении концентрации раствора 400 [c.400]

    Электростатическая теория позволяет рассчитать ряд свойств растворов сильных электролитов, которые находятся, однако, в удовлетворительном согласии с опытом лишь для весьма малых концентраций раствора, порядка 0,01 М и менее. Ряд фактов эта теория объяснить не может. Все это связано с неточностью принятых допущений. При малых расстояниях между ионами силы их взаимодействия не могут быть сведены лишь к электростатическим. Учет взаимодействия ионов с растворителем не должен игнорировать молекулярную структуру растворителя простым введением диэлектрической проницаемости. Характер этого взаимодействия зависит от строения и других индивидуальных особенностей ионов электролита и молекул растворителя и изменяется с разбавлением раствора. Представление о полной диссоциации электролита должно быть дополнено учетом ассоциации ионов и образования комплексных ионов и молекул. [c.214]

    На рис. 52 приведено изменение отношения диэлектрической проницаемости к вязкости в зависимости от напряженности поля по данным Грэма и Бутса (вязкость дана в пуазах). По этим данным отношение 01ц резко падает с увеличением напряженности поля, отвечающей существующим условиям в двойном электрическом слое. На рис. 53 отношение Ь/т] представлено как функция 11)1 при различных концентрациях раствора. Из этого графика можно видеть, что с возрастанием концентрации электролита отношение 0 г быстро падает. [c.91]

    Состояние сильных электролитов в растворах. Сильные электролиты не только в разбавленных растворах, но и в растворах значительной концентрации практически полностью диссоциированы на ионы, т.е. а=1. Поэтому в растворах сильных электролитов вследствие большого числа ионов усиливается электростатическое взаимодействие ионов. Каждый гидратированный ион окружен роем противоположно заряженных гидратированных ионов, образующих в соответствии с теорией Дебая — Хюккеля (1923) ионную атмосферу , которая препятствует движению ионов. С увеличением концентрации раствора усиливается тормозящее действие ионной атмосферы на ионы. Электростатическое взаимодействие в значительной степени зависит также от величины зарядов и радиусов ионов, диэлектрической проницаемости среды. Поэтому определяемая на опыте степень диссоциации сильных электролитов не отражает истинной картины распада электролита на ионы. Она получила название кажущейся степени диссоциации. [c.211]

    Если концентрацию раствора выразить через число молей в единице объема, то электрическую проводимость называют молярной электрической проводимостью Лщ- Электрическая проводимость растворов электролитов зависит от концентрации, давления, температуры, природы растворенного вещества и растворителя, вязкости, диэлектрической проницаемости. [c.270]

    Концентрация, при которой возможно образование ионных пар, зависит прежде всего от диэлектрической проницаемости растворителя. Чем ниже диэлектрическая проницаемость, тем больше вероятность образования ионных пар. Поэтому в растворителях с низкой диэлектрической постоянной вещество практически полностью находится в виде ионных ассоциатов. Для образования ионных двойников в растворителях с высокой диэлектрической проницаемостью требуется высокая концентрация раствора. Так, например, в воде ассоциация КС1 возможна при концентрации 27 кг-экв/м . [c.221]

    Эффект дисперсии диэлектрической проницаемо-сти раствора зависит от концентрации, -размеров ионов и частоты. Влияние частоты на величину диэлектрической проницаемости раствора наблюдается только при частотах выше 650 Мгц, при более низких частотах этим эффектом можно пренебречь. Наоборот, эффектом уменьшения диэлектрической -проницаемости раствора с увеличением концентрации пренебрегать нельзя, так как это может привести -к погрешности определения емкости С2. Эта погрешность, в зависимости от размеров ионов и температуры, для концентрированных растворов может достигать 30—50%. [c.120]

    Метод позволяет определять диэлектрическую проницаемость водных растворов электролитов от чистой воды до концентрации приблизительно 10- , н. Погрешность измерения порядка 1%. [c.272]

    Дипольный момент л характеризует только отдельно взятые молекулы, а диэлектрическая проницаемость — смеси, растворы разных веществ и концентраций и поэтому более удобна в практическом отношении (табл. 3). [c.28]

    П1 приближение (анализируемое уравнение было вначале предложено как эмпирическое. Гюккель пытался его теоретически обосновать, учитывая изменение диэлектрической проницаемости с концентрацией раствора)  [c.199]

    Опыты проводились с керосиновым раствором ОП-4 концентрацией 0,05, 0,08 и 0,1%. Раствор фильтровался через кварцевый песок с проницаемостью 0,5 д. Скорость фильтрации составляла 8,32 см/ч. Опыты показали, что с уменьшением концентрации раствора уменьшается величина предельной адсорбции и увеличивается объем раствора ПАВ, необходимый для ее достижения. [c.48]

    Опыты проводились и при более высоких концентрациях раствора сульфата алюминия. Так, при закачке 6 поровых объемов 2%-ного раствора сульфата алюминия коэффициент проницаемости модели пласта уменьшается в десятки раз. При переходе на закачку воды после сульфата алюминия коэффициент проницаемости пористой среды увеличивается. Однако при этом исходная проницаемость не восстанавливается. [c.305]

    Влияние минерализации пластовой воды (непосредственно в пласте) на стабильность свойств раствора ПАА, а в итоге на нефтеотдачу, сложнее и неоднозначнее. Увеличение минерализации пластовой воды снижает вязкость раствора (ухудшает полимерный раствор) фазовая проницаемость для раствора при этом, как правило, уменьшается, что способствует повышению коэффициента нефтеотдачи. Результирующий эффект может быть различным в зависимости от свойств пластовой воды, пористой среды, типа полимера, свойств растворителя и концентрации раствора. [c.110]

    В этой области концентраций, одтако, с успехом может быть, использована формула Гюккеля. Сохранив основные положенпя второго приближения теории Дебая — Гюккеля — конечные размеры иоиов, пренебрежение всеми членами разложения в ряд, кроме члена первого порядка,—Гюккель учел изменение диэлектрической проницаемости, а именно ее уменьшение с ростом концентрации растворов. Ее уменьшение вызывается ориентацией диполей раствонтеля вокруг иона, в результате чего снижается их реакция иа эффект внешнего поля. Несмотря на физическую правдоподобность исходной посылки Гюккеля, данный им вывод уравнения для коэффициента активности встречает серьезные возражения, а само уравнение из-за его громоздкости оказывается неудобным ири ироведеиии расчетов. Его, однако, можно заменить иа более простое  [c.93]

    Исследования проводились с растворителями с диэлектрической проницаемостью в интервале от 4,6 до 64, концентрация раствора электролита составляла 0,02—0,5 М. Сдвиг, обусловленный ионной парой катион — анион , можно определить одновременно с величиной К из данных по сдвигу. Полученные результаты показали [38], что межион-ное расстояние в растворителях с высокой диэлектрической проницаемостью выше, чем в растворителях с низкой диэлектрической проницаемостью. [c.189]

    В качестве параметра для прогнозирования действия ПАВ на показатели депарафинизации может быть принята их относительная полярность [106]. Эту величину для ПАВ (смол и присадок) определяли по тангенсу угла наклона (tg ё) касательной к кривой завиотмости днэлек11ричвокой проницаемости е растворов смол и присадок в бензоле от их концентраций (рис. 61). Сопоставление значений тангенса угла наклона касательной для смол и присадок показало, что относительная полярность рассматриваемых присадок выше, чем смол. По относительной полярности присадки не- [c.172]

    Изучение закономерностей изменения диэлектрической проницаемости бензольных растворов смол и асфальтенов в зависимости от температуры и концентрации растворов позволило использовать этот метод для обнаружения явлений ассоциации. Известно, что диэлектрическая проницаемость растворов неассо-циированпых полярных соединений снижается с повышением температуры, между тем как в концентрированных растворах смол и асфальтенов в бензоле в области температур от 10 до 25—30° С, наоборот, наблюдается повышение значений диэлектрической проницаемости с ростом температуры. Такой характер температурной зависимости диэлектрической проницаемости в концентрированных бензольных растворах смол и асфальтенов можно объяснить лишь явлениями ассоциации молекул смол и асфальтенов. [c.80]

    Различие в химических свойствах фракций смолистых веществ проявляется и в характере температурной зависимости диэлектрической проницаемости растворов последних. Наблюдается следующая закономерность чем более полярным растворителем извлечена из силикагеля данная фракция смолы, тем при меньших концентрациях раствора на кривых e=f(t) появляется максимум, а в близких концентрациях максимум тем значительнее и тем больше смещен в область высоких температур. Так, например, для раствора фракции смолы ромашкинской нефти, извлеченной ацетоном, наблюдается максимум на кривой е=/( ) уже при концентрации смолы в растворе, равной 14%, причем восходящая ветвь кривой (Ае/Л >0) доходит до +7°, в то время как для фракции смолы этой же нефти, но извлеченной четыреххлористым углеродом, максимум на соответствующей кривой появляется при концентрации смолы, равной 33%, а восходящая ветвь кривой кончается уже при —5°. Сопоставление этих данных с результатами изучения химического состава и свойств соответствующих фракций ясно показывает, что увеличение склонности к ассоциации смолистых веществ в растворе связано с увеличением количества полярных групп и с повышением суммарного содержания в смоле гетероатомов (З+К+О). Чем выше содержание гетеропроизводных органических соединений, тем сильнее и в более широком интервале происходит повышение диэлектрической проницаемости с ростом температуры, обусловленное диссоциацией молекулярных ассоциатов. Эти выводы носят пока качественный характер, поскольку количественные соотношения могут быть установлены только при учете фактора вязкости. [c.187]

    На поляризационных свойствах отчетливо проявляется влияние качественного различия смол и асфальтенов, обусловленное различиями в характере ассоциации этих веществ в растворах. На рис. 31 и 32 показана зависимость поляризации Ри г) и диэлектрической проницаемости (е) от концентрации растворов смол и асфальтенов ромашкинской нефти для нескольких температур. Поляризация вычислена по формуле Клаузиуса—Массоти исходя из экспериментально полученных значений диэлектрической проницаемости и удельного веса  [c.187]

    Поскольку при атмосферных условиях насыщенный раствор сероводорода содержит всего 0,1 моля, для полного его осаждения достаточно 2,5%-ного раствора медного купороса. Исследо-ванш1 показали, что проницаемость песчаника с начальной про-ница< Мостью 0,26 Д, насыщенного сероводородной водой, снижаете,я практически до нуля при пропускании через него 2,5%-ного раствора медного купороса. Процесс кольматации порового простравства заканчивается через 10—12 мНн (температура 22° С, избыточное давление 1 кгс/см , диаметр образца 26 мм, высота 25 мм). Для снижения проницаемости песчаника с начальной проницаемостью 0,96 Д потребовалось трижды вытеснять сероводородную воду 5,0%-ным раствором медного купороса, после каждого вытеснения вновь насыщая песчаник сероводородной водой. При этом после первого вытеснения проницаемость снизилась до 0, i2 Д, после второго — до 0,136 Д, а после третьего стала практически равна нулю. В пластовых условиях растворимость серо-водо])ода может быть значительно большей, чем при атмосферных условиях. Поэтому концентрацию раствора медного купороса следз ет выбирать опытным путем. Поскольку образующийся суль( )ид меди практически не растворим и не подвергается коррозии в среде сероводорода, этим методом может быть достигнута надежное и не ограниченное во времени отключение (глушение) пластов, содержащих сероводородные воды. [c.267]

    Были сделаны попытки уточнить уравнение предельного закона Дебая и Гюккеля путем учета собственного размера ионов, изменения диэлектрической проницаемости в зависимости от концентрации раствора, учета возможности ассоциации ионов и других эффектов, что позволило увеличить концентрационные пределы применимости полученных вместо предельного закона уравнений. Эти уточнения, однако, обычно касаются лишь некоторых из подобных эффектов, содержат дополнительные допу-ш ения, а потому не вполне совершенны. [c.214]

    Вычислить дипольный момент хлорбензола СеНаС по данным зависимости диэлектрической проницаемости и плотности его растворов в бензоле от температуры и концентраци раствора. Сопоставить найденную величину с приведенной в справочнике [М.]. [c.30]

    Получены термодинамические и структурные параметры процессов ассоциации и комплексообразования. Определены функции распределения ассоциатов и комплексов по paзмq)aм и структуре в зависимости от концентрации раствора и температуры. Показана возможность единого описания функций смешения, дюлектрической проницаемости, коэффициентов Рэлеевского рассеяния света и количественного анализа ассоциативных равновесий и межмолекулярных взаимодействий в растворах. [c.24]

    Результаты этих опытов показали, что присутствие пены снижает фазовую проницаемость для газа в зависимости от концентрации раствора на один, два порядка. Отсюда следует, что пены, особенно из растворов ПАВ высокой концентрации, можно использовать для сильного уменьшения проницаемости или для газоизоляции отдельных участков пласта. Сильное снижение газопроницаемости пористой среды оказывает выравнивающее действие на фронт вытеснения в неоднородных по проницаемости пластах. Оценим эффект выравнивания газопроницаемости слоистого пласта с проницаемостью слоев 1 дарси (М) и 5 дарси (Д). После закачки пены (или ее образования в пористой среде) согласно данным 2 при использовании 0,5%-ных растворов пенообразователя газопроницаемость снизится в 70—100 раз и для слоя (М) будет порядка 0,01—0,014 дарси, а для слоя (Д) —0,05—0,072 дарси, т. е. разница в проницаемости слоев будет уже порядка 40—60 миллндарси. Таким образом, пена сильно препятствует движению таза в зоне Д, вследствие чего создаются вертикальные градиенты [c.125]

    Практически определяют (путем измерения диэлектрическои проницаемости) поляризацию раствора в зависимости от концентрации растворенного зешества и экстраполируют к нулевой концентрации, т е. получают поляризацию полярного вещества прн бесконечном разбавле[[ии 2=0- В этом случае дипольиый момент вычисляется ио формуле [c.288]


Смотреть страницы где упоминается термин Проницаемость концентрации раствора: [c.203]    [c.130]    [c.36]    [c.197]    [c.187]    [c.151]    [c.115]    [c.378]   
Баромембранные процессы (1986) -- [ c.84 , c.90 , c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Концентрация растворов

Проницаемость и концентрация



© 2025 chem21.info Реклама на сайте