Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расход оптимальное значение

    Имеется оптимальное значение удельной поверхности эмульсии, при котором расход катализатора на реакцию становится минимальным. Для рассмотренного выше случая алкилирования изобутана бутеном-1 с увеличением удельной поверхности эмульсии от 6800 до 10 900 см 1см расход катализатора понижается более чем на 20% при дальнейшем же увеличении удельной поверхности до 19100 см 1см расход катализатора повышается почти на 15%. [c.96]


    Превышение подачи насоса у новых карбюраторов в 2—2,5 раза оптимальных значений увеличивает расход топлива до 1 — 1,1 %. Еще более существенно влияние увеличенной подачи на выброс вредных веществ. Такое необоснованное с точки зрения рабочего процесса обогащение горючей смеси на режимах разгона приводит к увеличению выброса продуктов неполного сгорания СО в 1,6—2,1 раза и СН в 1,5-2 раза. [c.156]

    Можно облегчить режим работы элементов, во-первых, уменьшая вредное влияние на них перерабатываемых химически агрессивных веществ и окружающей среды, во-вторых, создавая соответствующие гидро- и аэродинамические режимы работы, выбирая оптимальные значения параметров технологических режимов (температура, давление и расход веществ) и обеспечивая оптимальный запас по нагрузке, мощности и прочности. Следует заметить, что замена одних элементов другими, рассчитанными на большие нагрузку, мощность или прочность, не обязательно приводит к повышению их показателей надежности. Это объясняется тем, что элементы, рассчитанные на большие на- [c.71]

    Эффективность пылеулавливания увеличивается с возрастанием интенсивности потока воды. Особенно резко это сказывается при повышении интенсивности потока от 1 до 2—3 м /(м ч), т. е. когда слой пены достигает достаточной высоты. При увеличении I д6.15м /(м ч) происходит практически полная очистка газа, в том числе и от гидрофобной, например апатитовой, пыли при 12 г/м . Снижение конечной концентрации пыли в газе в этом случае связано с резким повышением высоты пены до Н — 300—400 мм и получением необходимой утечки Ьу = 0,5 м /(м2-ч) в условиях повышенной запыленности. Поскольку необходимые значения Н ъ Ьу можно создать и за счет других факторов (см. гл. I), то применение таких высоких интенсивностей при пылеулавливании нецелесообразно, так как это связано с повышением удельного расхода воды та. При очистке холодных газов оптимальные значения интенсивности потока лежат в пределах 3—5 м /(м-ч). Значения удельных расходов воды в производственных аппаратах, соответствующие оптимальным лабораторным режимным условиям, приведены в табл. УП.4, УП.5 (см. стр. 285, 286). [c.201]

    Далее, производя минимизацию выражения (IX. 129) по П, получим оптимальное значение расхода парафина П°рЧ Материальный баланс узла а схемы на рис. IX. 18 имеет вид  [c.394]

    В процессе управления рассчитывается оптимальное значение десяти режимных координат (температура и уровень кипящего слоя в реакторе, температура в регенераторе и на выходе нагревательной печи, расход воздуха в регенератор, расход шлама и рисайкла и т. д.). При работе системы в режиме замкнутого контура ЭВМ изменяет задания соответствующим регуляторам локальных САР в разомкнутом режиме управление по рекомендациям ЭВМ осуществляет оператор. Оптимальный режим работы установки отыскивается с учетом ограничений это — ограничения по режиму блока фракционирования, по максимальному расходу воздуха в регенератор, по допустимой скорости циркуляции катализатора и т. д. [c.142]


    Следовательно, для нижней части колонны, работающей без кипятильника и с вводом водяного пара, характерным является уменьшение массы паров от тарелки к тарелке в направлении сверху вниз, что приводит к снижению эффекта ректификации в нижней части колонны. Вследствие этого эффективно работают только верхние тарелки отгонной части колонны и даже значительное увеличение числа тарелок не позволяет существенно снизить содержание НКК в остатке. Возможность же повышения четкости ректификации в нижней части колонны лимитируется расходом водяного пара. Чем больше вводится водяного пара для образования потока углеводородных паров, тем до более низкой температуры охлаждается остаток и соответственно возрастает расход водяного пара. Поэтому расход водяного пара быстро достигает своего оптимального значения. [c.159]

    Чем большее количество паров образуется при помощи водяного пара в нижней части колонны, тем до более низкой температуры охлаждается остаток и тем больше возрастает расход водяного пара, практически быстро достигая своего оптимального значения. [c.156]

    От кратности циркуляции катализатора зависит время пребывания его в зоне реакции и степень его закоксованности, а также количество теплоты, вносимой с катализатором в реактор как теплоносителем. С увеличением кратности циркуляции возрастает активность катализатора, повышается выход бензина и газа, но увеличиваются размеры регенератора и расход энергии на транспортировку катализатора в установке. Оптимальные значения параметров каталитического крекинга температура 480—490° С, давление 0,1—0,2 МПа, объемная скорость сырья 1,5—3,0ч" , кратность циркуляции катализатора 2,5—7,0 кг/кг. [c.138]

    В случае стационарности объекта указанная таблица однозначно определяет оптимальный режим в зависимости от заданного расхода сырья Хх- Найденные оптимальные значения Ха, Хз и Х4 являются значениями заданий для автоматических регуляторов. Надобности в монтаже вычислительных устройств нет. [c.153]

    У трех- и многоатомных газов при давлениях, близких к критическим, и температурах, имеющих место в компрессоре, кривые В расходятся весьма сильно. Это обстоятельство отражается на оптимальных значениях промежуточных давлений и должно учитываться при распределении сжатия. Но выбор промежуточных давлений приходится производить подбором их значений. [c.67]

    Скорректированная модель используется для вычисления оценок оптимальных значений управляющих координат, к которым отнесены уровень и температура в реакторе, температура в регенераторе, расходы рисайкла и шлама и т. д., всего 10 переменных. Вычисления проводятся с учетом ограничений по расходу воздуха, циркуляции катализатора и т. д. В качестве ограничения используется модель фракционирующей части. Система может работать в разомкнутом и замкнутом контуре. При работе синхронно процессу в разомкнутом контуре на печать выводятся оптимальные значения всех управляемых координат. Ориентируясь на эти данные, операторы вручную устанавливают необходимые значения координат. При работе в замкнутом контуре необходимые значения управляемых координат устанавливаются с помощью задающих устройств, которые управляются ЦВМ. При этом для операторов печатается полная информация обо всех изменениях, которые выполняются по программе управления. [c.210]

    Из уравнений (У[1,1) и (УП,2) определяют также расходы теплоносителей. Если же их расходы заданы, то, пользуясь теми же уравнениями, находят обычно неизвестную в этом случае конечную температуру одного из теплоносителей. Когда неизвестны конечные температуры обоих теплоносителей, то ими задаются, принимая во внимание, что разность температур между теплоносителями на конце теплообменника должна быть практически ие менее. 3—5 "С. Наиболее желателен выбор оптимального значения конечной гемпературы на основе технико-экономического расчета. [c.341]

    Эксплуатационные расходы, определяемые расходом теплоносителя, возрастают прямо пропорционально величине R (рис. ХП-18, кривая 1). Более сложной является зависимость капитальных затрат от величины флегмового числа. С увеличением R возрастает движущая сила процесса и уменьшается необходимое число теоретических и соответственно действительных ступеней. В итоге при некотором флегмовом числе рабочий объем колонны станет минимальным и, следовательно, минимальной будет ее стоимость. Поэтому зависимость капитальных затрат от флегмового числа имеет минимум (кривая 2). Отсюда следует, что суммарные затраты будет также иметь минимум, который не совпадает с минимумом капитальных затрат. Зависимость суммарных затрат 3 (в рублях) от флегмового числа изображается на рисунке кривой 3. Этому минимуму суммарных затрат соответствует оптимальное значение действительного флегмового числа (Rom)- [c.490]


    При минимизации целевой функции (2.27) на переменные w,DnH нагадываются следующие ограничения процесс при оптимальных значениях w,DuH должен обеспечивать заданную степень очистки х и расход по очищаемому газу Q. Таким образом, задача может быть решена мегодом неопределенных множителей Лагранжа [65] при учете двух функций ограничения f  [c.68]

    Газ-носитель и адсорбенты. Газ-носитель. Природа газа-носителя существенно влияет на качество разделения веществ и их определение. Основными требованиями, предъявляемыми к газу-носителю как подвижной фазе, являются следующие газ-носитель должен быть инертен по отношению к разделяемым веществам и сорбенту, поэтому не рекомендуется использовать, например, водород для элюирования ненасыщенных соединений, так как может происходить их гидрирование вязкость газа-носителя должна быть как можно меньшей, чтобы поддерживался небольшой перепад давлений в колонке коэффициент диффузии компонента в газе-носителе должен иметь оптимальное значение, определяемое механизмом размывания полосы (в ряде случаев последние два условия противоречат друг другу, тогда газ-носитель необходимо подбирать в соответствии с конкретной задачей анализа) газ-носитель должен обеспечивать высокую чувствительность детектора поскольку при проведении хроматографического процесса расходуется значительное количество газа-носителя, необходимо, чтобы он был вполне доступен газ-носитель должен быть взрывобезопасным выполнение этого требования особенно важно при использовании хроматографов непосредственно на технологических установках газ-носитель должен быть очищенным. [c.84]

    В результате резервирования элементов БТС происходит снижение себестоимости продукции до значения С2 которое определяется из анализа статей расхода калькуляции по производству данной продукции. Оптимальное значение надежности БТС с применением поэлементного резервирования должно отвечать максимуму глобального критерия оптимальности [c.173]

    II неоднозначен. Печи работают в самых разных условиях проводимые в них технологические процессы могут быть также различными. Основные показатели работы— производительность (суточная или годовая) и удельный расход электроэнергии — зависят от многих факторов, и дать аналитическое выражение для оптимальных значений этих показателей, пригодное для практических расчетов, не представляется возможным. Поэтому определение основных параметров дуговых печей приходится основывать на данных практики работающих установок и экспериментальных формулах, выведенных на основе обработки статистических данных по действующим печам. [c.86]

    При выборе оптимального варианта переработки газа по схеме НТК в качестве критерия оптимизации была принята температура конденсации газа. При этом давление в узле конденсации газа и деэтанизации конденсата во всех вариантах принято постоянным и равным 3.5 МПа. Изменение количества циркулирующего абсорбента в схемах НТА, а также температуры охлаждения газа в схемах НТК позволяет варьировать отбор пропана и более тяжелых углеводородов, добиваясь нахождения их оптимального значения. Во всех случаях целевыми компонентами являлись пропан + высшие. Известно, что энергозатраты на проведение процесса абсорбции в основном складываются из затрат на компримирование газа, охлаждение газа и тощего абсорбента, перекачку циркулирующего абсорбента. Энергозатраты на компримирование газа во всех вариантах практически постоянны. Энергозатраты на охлаждение газа и тощего абсорбента зависят от состава газа и удельного расхода абсорбента. [c.254]

    Количество водяных наров, которое целесообразно вводить в низ колонны, огра[1ичено, так как расход пара быстро достигает некоторого оптимального значения, после чего увеличепие количества пара уже не компенсирует снижения температуры гкидкости и практически пе увеличивает количества отгоняемых паров. [c.221]

    Увеличение осевой скорости заготовки и соответственно производительности прокатки может быть достигнуто увеличением числа заходов ребер на изделии. Это достигается разворотом валков на больший угол подачи а. Однако эти возможности ограничены, так как с увеличением числа заходов увеличиваются давление металла на валки в момент прокатки, усложняется инструмент и затрудняются условия формообразования высоких и тонких ребер. По опытным данным оптимальное значение угла подачи при прокатке ребристых труб составляет 2—4°. При прокатке высокоребристых труб важное значение имеет выбор технологических смазок и способа их нанесения. Наиболее эффективны смазочно-охлаждающие жидкости в виде водной эмульсии синтетических жиров, например синтетическая смазка ЛЗ-142. Эмульсию подают в зону деформации на валки при помощи насосной установки с расходом от 40 до 100 л/мин. Рабочая температура жидкости от 40 до 70° С. [c.156]

    Типичным случаем неправильной постановки условий задачи оптимизации является распространенная ошибка, когда нужно найти оптимальные значения нескольких величин одновременно, например толучить максимальный выход продукции при минимальном расходе сырья . Поскольку минимальный расход сырья, очевидно, равен нулю, ни о каком максимальном выходе продукции здесь нельзя говорить. [c.13]

    Правильная постановка оптимальной задачи при этом будет в любом из следующих вариантов толучить максимальный выход продукции при заданном расходе сырья или для заданного выхода продукции обеспечить минимальный расход сырья . В каждой такой формулировке соблюдается требование нахождения оптимального значения только одной величины, что является необходимым условием постановки оптимальной задачи. [c.13]

    При том же, что и в предыдущем случае, качественном составе параметров была сформулирована задача оптимизации работы полученного агрегата с учетом факторов неопределенности информации. Всего было выделено 11 точечных и 19 неопределенных параметров. Под точечными понимаются такие параметры, которые полностью соответствуют детерминированным оптимизирующим переменным традиционной оптимизации. В качестве примера таких параметров можно привестп объемы загрузок контактной массы, площади поверхности теплообменной аппаратуры и др. В результате решения поставленной задачи для четырехслойной системы производства серной кислоты из серы под давлением были получены оптимальные значения параметров технологических потоков ХТС (расходы, температуры, давления, [c.277]

    Другие задачи оптимизации. Рассмотренные здесь примерь дают представление о б основных идеях и методах, лежащих в основе решения разнообразных задач оптимизации реакторных узлов. Можно указать три направления уточнения и развития оптимальных расчетов. Первое из них — это анализ различных стадийных схем. Укажем, например, па расчет цепочек адиабатических реакторов, где охлаждение реагирующей смеси между стадиями происходит не в промежуточных теплообменниках, а путем добавления холодного сырья или инертного вещества. Другой пример — расчет оптимального трубчатого реактора с секционировапным теплообменником. Второе направление состоит в уточнении критерия оптимальности путем более полного учета затрат на ведение процесса. Например, результаты оптимального расчета цепочки адиабатических реакторов можво уточнить, приняв во внимание расходы на устройство промежуточных теплообменников. Наконец, третье направление — выбор оптимальных значений других управляющих параметров, помимо температуры процесса. Так, в работе [25] рассматривается вопр1>с об оптимальном профиле давления по длине трубчатого реактора, а в работе [26] — об оптимальном изменении состава каталитической системы. При проектировании стадийных схем, наряду с определением оптимального перепада температур между стадаями, может рассчитываться оптимальное количество свежего реагента, добавляемого к реагирующей смеси. Вряд ли можно даже перечислить все возможные варианты задач оптимизации методы их решения, однако, мало отличаются друг от друга. [c.397]

    В расчетах сжигания мазута при определении площади поверхности нагрева змеевиков и расхода теплоты на разогрев удельную теплоемкость мазута можно принять равной Сср = 2 кДж/(кг-К), а коэффйциент теплопроводности 0,13 Вт/(м-К). Теплота плавления мазута равна 170—250 кДж/кг. Оптимальное значение коэффициента расхода воздуха, необходимого для полного сгорания мазута, принимают обычно а = 1,1-ь1,2. При тонком распылении, хорошем смесеобразовании и благоприятных условиях в рабочей или топочной камере полное сгорание топлива достигается при а = 1,05ч-1,1. [c.147]

    Эффективность очистки жидкости в основном определяется скоростью относительного движения частиц и пузырьков, изменяющейся с изменением концентраций фаз. Так, при малых концентрациях частиц скорость пузырьков с увеличением концентрации газа убывает вследствие уменьшения разности плотностей рс—рг и увеличения вязкости газожидкостной смеси. Эффективность же захвата частиц зависит от потока пузырьков через жидкость. Поскольку уменьшение скорости движения пузырьков относительно среды уменьшает эффективность отделения их во флотоотстойнике, то с изменением рода выделяемой примеси и конструктивных особенностей аппарата оптимальное значение концентрации газа также будет меняться. Уменьшение потока газа через слой жидкости при увеличении его расхода приводит к стесненному выделению пузырьков, увеличению объема среды и выхода жидкости с выделяемой примесью. [c.55]

    Одним из важнейших параметров процесса обессоливания нефти является температура. Применяемый на ЭЛОУ подогрев нефти позволяет уменьшить ее вязкость, что существенно повьпыает подвижность капелек воды в нефтяной среде и ускоряет их слияние и седиментацию. Кроме того, с подогревом нефти увеличивается растворимость в ней гидрофобных пленок, обволакивающих капельки воды. Вследствие этого снижается их механическая прочность, что не только облегчает коалесценцию капель воды, но приводит также к снижению требуемого расхода деэмульгатора. Вместе с тем, подогрев нефти на ЭЛОУ сопряжен с серьезными недостатками. С повышением температуры обессоливания сильно увеличивается электропроводность нефти и, соответственно, повышается расход электроэнергии в электродегидраторах, значительно усложняются условия работы проходных и подвесных изоляторов. Поэтому подогрев разных нефтей на ЭЛОУ проводят в широком интервале температур 60— 150 °С, выбирая для каждой нефти в зависимости от ее свойств оптимальные значения, обеспечивающие минимальные затраты на ее обессоливание. [c.39]

Рис. 1.39. Зависимость разности температур Д1ох от относительного расхода ц для вихревой трубы с ВЗУ при различном угле закрутки с оптимальными площадями сечения. От = 20 мм, р, = 0,6 МПа, л = 3. Р,, в ВЗУ соответствует оптимальным значениям (табл. 1.7) Рис. 1.39. <a href="/info/1073098">Зависимость разности температур</a> Д1ох от <a href="/info/647333">относительного расхода</a> ц для <a href="/info/32463">вихревой трубы</a> с ВЗУ при различном угле закрутки с оптимальными <a href="/info/1431488">площадями сечения</a>. От = 20 мм, р, = 0,6 МПа, л = 3. Р,, в ВЗУ соответствует <a href="/info/25901">оптимальным значениям</a> (табл. 1.7)
    Полученные результаты позволили определить оптимальные значения калибра для теплоизолированной вихревой трубы в зависимости от рабочих параметров газового потока. Так, при степени расширения 2 и 3 (рис. 1.46) оптимальная длина камеры энергетического разделения адиабатной трубы диаметром Дх = 20 мм лежит в области 40Дх, давая,большие значения А1ох во всем диапазоне изменения относительного расхода охлажденного потока ц. Для вихревой трубы с ТЗУ при Дт = 20 мм оптимальная длина составляет величину порядка 25Дт [7]. Вихревая труба Дт = 40 мм при аналогичных условиях имеет оптимальный калибр несколько больше ( 50), т. е. составляет калибр промышленных труб с Дт = 40 мм (рис. 1.47, кривая 1) максимум Л1о, получается при (л 0,2. Ощутимого влияния величины 3 в пределах ее изменения от 60 до 75 на калибр камеры энергетического разделения вихревой трубы с ВЗУ не установлено. [c.68]

    Оптимальное. чначенне удельного расхода абсорбента можно найти только путем технико-экономического расчета. Для этого надо задаться несколькими значениями ш, рассчитать для этих значений размеры колонны, определить стоимость амортизации, ремоггта и эксплуатации. Минимальные общие расходы соответствуют оптимальному значению Шоат- [c.666]

    В результате исследований получены параметры, необходимые для расчета сепараторов и оценки возможностей процесса ЭК-Ф. Оптимальное значение плотности тока, при котором достигается максимальный эффект сепарации нефтепродуктов, составляет 150-200 А/м . Расход тока для осуществления качественной очистки в случае использования алюминиевых электродов составляет 140—220 Кл/л, при применении графитовых—280—360 Кл/л. Напряжение электролиза зависит от степени минерализации обрабатываемой воды и выбранной пДвтности тока на электродах. Для расчета напряжения электрического поля получены эмпирические зависимости на ос ювании вольтамперных характеристик вод с различным содержанием солей. Расход электроэнергии на электролиз 1 м воды может быть определен по формуле  [c.62]

    Следовательно, уравнения (12.3-3) и (10.2-7) отличаются друг от друга на коэффициент, равный двум. Увеличение вынужденного потока означает существенное увеличение нагнетающей способности. Количественную оценку нагнетающей способности получают, сравнивая увеличение давления, предсказанное по уравнениям (10.2-7) и (12.3-2), при равном массовом расходе д = д, одинаковых вязкости и скорости пластин и соответствующем оптимальном значении Н. Максимальный градиент давления в этих условиях в примере с одной движущейся пластиной равен (йР/(1х)т-лх = 1У1121д (см. разд. 10.2). Аналогично из уравнения (12.3-2) получим, что для данных д и Уо максимальный градиент давления для Я = Зд 12Уо (т. е. = 2/3) равен ( / / х)гаах = 48цУо/27 . Таким образом выражение [c.454]

    Анализ данных, приведенных в табл. 9.7 показывает, что предлагаемые краски имеют улучшенные показатели реологических свойств оптимальные значения текучести 26-40 мм и структурирования — аномалия вязкости 3-7 единиц и повышенную интенсив1юсть — оптическая плотность оттиска толщиной 2 мкм на газетной бумаге составляет 1,02- 1,18 относительных единиц. Применение специально разработанного полиграфического мас.ла с высоким содержанием ароматических углеводородов и смолисто-асфальтеновых соединений в сочетании с нефтяными или канифольными смолами позволяет улучшить смачивание технического углерода маслом, за счет чего улучшаются реологические свойства краски, обеспечиваются требуемые текучесть и аномалия вязкости. За счет улучшения реологических свойств повышается процент перехода краски с формы на бумагу, улучшаются четкость графического изображения и соответственно увеличивается интенсивность — оптическая плотность оттиска. Использование предлагаемого полиграфического масла позволяет существенно снизить затраты на производство краски. Существенно сокращается расход дефицитного сырья канифоли в среднем на 130 кг на 1 тонну краски. Разработанная композиция успешно испытана в промышленных условиях. [c.268]

    Для простоты рассмотрения примем, что расход воздуха в процессе постоянен, т. е. управлять будем только скоростью вращения мешалки. Схематично решение задачи оптимального управления складывается из двух этапов — оценки коэффициентов математической модели А, а, Qmax, М по данным ведения процесса и определения оптимального значения nopt- [c.266]

    Экспериментальная проверка алгоритма оптимального управления проведена при биосинтезе пенициллина и окснтетрациклина на аппарате вместимостью 100 л [4]. При проведении испытаний замеряли парциальное давление кислорода в культуральной жидкости, концентрацию углекислого газа в выходящем потоке, скорость вращения мешалки, расход воздуха на аэрацию и давление в аппарате. Ежедневно один раз в сутки определяли пять указанных параметров, затем увеличивали скорость вращения мешалки на величину Ап (примерно 0,5—0,6 с ) и выдерживали объект в этом режиме 30 мин. Если изменение интенсивности дыхания оказывалось больше точности ее измерения, данные обрабатывались в соответствии с изложенным алгоритмом для определения параметров оптимального режима ( opt, pQikp ИТ, Qmax ). Затем устанавливали рассчитанное значение opt и проводили уточнение оптимального значения на объекте. Результаты функционирования [c.266]


Смотреть страницы где упоминается термин Расход оптимальное значение: [c.98]    [c.314]    [c.172]    [c.359]    [c.365]    [c.55]    [c.670]    [c.250]    [c.252]    [c.351]    [c.18]    [c.155]    [c.280]    [c.161]    [c.88]   
Противопожарная защита открытых технологических установок Издание 2 (1986) -- [ c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Оптимальные значения



© 2025 chem21.info Реклама на сайте