Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды выделение из смесей

    Технологическая схема. Принципиальные схемы промышленных комплексов установок для производства индивидуальных изомеров ароматических углеводородов Се представлены на рис. 2.77. Схемы а и б с выделением этилбензола из исходного сырья или из смеси исходного сырья с циркулирующим потоком используются при проведении изомеризации на монофункциональных катализаторах. Схему в используют в том случае, когда этилбензол изомеризуется в ксилолы и выделение этилбензола экономически нерационально. Схема г имеет специфические особенности, поскольку смесь НР + ВРз является одновременно экстрагирующим агентом для выделения лг-ксилола. Установки выделения изомеров ароматических углеводородов Се в настоящее время строятся главным образом в составе комплексов с установками из ом ер и за ци и. [c.268]


    В качестве сырья установок каталитического риформинга используются прямогонные бензиновые фракции. Вовлечение в. сырье бензинов вторичных процессов (бензинов термокрекинга и коксования, отгонов гидроочистки дизельных топлив и др.) в смеси с прямогонными бензинами возможно в количествах, не превышающих 10% на смесь. Все сырье, поступающее на каталитический риформинг, должно быть подвергнуто предварительной гидроочистке с целью удаления соединений, содержащих серу, азот, кислород, галогены и металл, а также олефиновые углеводороды и влагу. В процессе риформинга образуются жидкие продукты — катализат (риформат), который используется как компонент высокооктанового бензина или направляется на выделение товарных ароматических углеводородов, а также газы, в том числе водород. [c.13]

    Для извлечения из нефтяных фракций сульфидов многие исследователи пользовались водным раствором ацетата ртути, так как образующиеся комплексы сульфидов алифатического и цикланового строения растворимы в воде. Таким методом были получены сульфиды из иранской нефти [51]. Смесь сернистых соединений и ароматических углеводородов, выделенная из разбавленного водой кислого гудрона тракторного керосина иранской нефти, ректифицировали. Узкие фракции обрабатывали водным 0,7—1,0 М раствором ацетата ртути. К водному слою для разложения растворимых комплексов сульфидов добавляли горячий 5 н. раствор соляной кислоты. Сульфиды отделяли от водного слоя и нейтрализовали раствором щелочи. Производные тиофена, присутствовавшие во фракции, не растворялись в водном слое, а оставались в сернисто-углеводородной фазе. [c.119]

    При разделении асфальтенов на гелях СДВ до 60-65 массы асфальтенов нефтяных остатков исключается,т.е. имеет молекулярную массу выше предела исключения гелей СДВ. Наилучшим гелем для разделения смол и ароматических углеводородов, выделенных из нефтяных остатков, является смесь гелей СДВ /7 5 10 и СДВ /7-2 -10 в соотноше-шш 80 20. Эта смесь гелей и была взята нами для разделения асфальтенов, выделенных из нефтяных остатков, подвергнутых термообработке.  [c.54]

    Маточный раствор, состоящий из двух жидких фаз, проходит в экстрактор 8 для выделения 4-метилпиридина слабой фосфорной кислотой. Экстрагированный 4-метилпиридин далее отделяется от кислоты ректификацией — с верха колонны 3 отгоняется азеотропная смесь 4-метилпиридин — вода, остаток колонны — кислота. Из азеотропной смеси с водой 4-метилпиридин поглощают исходным сырьем (ксилолами) в колонне 1. После удаления 4-метилпиридина маточный раствор поступает в колонну 10 отделения ароматических углеводородов С а 70 от промывного потока. Растворитель из отстойника маточного раствора 6 направляется в емкость для растворения осадка 5, куда поступает также осадок с вакуум-фильтра 4. После смешения этих потоков при 80 °С осадок растворяется, и п-ксилол, входивший в состав клатрата, выделяется в виде жидкой фазы. В аппаратах 9 и 5 регенерируют 4-метилпиридин. [c.131]


    Продукты каталитического риформинга бензиновых фракций представляют собой смеси ароматических углеводородов, нафтенов и парафинов с примесью непредельных углеводородов. Это могут быть либо узкие фракции, содержащие соответственно бензол, толуол или ксилолы, либо широкие фракции, содержащие смесь ароматических углеводородов. Выделение ароматических углеводородов высокой степени чистоты (99—99,9%) из этих смесей является сложной задачей, связанной с применением целого ряда процессов. [c.90]

    Исходная фракция поступает вначале в колонну 2, где из исходной смеси выделяется этилбензол, п- и л-ксилолы, затем в колонну I для выделения этилбензола. Нижний продукт колонны 3 направляется в колонну 4 для выделения о-ксилола. Ароматические углеводороды Сд и выше используют как высокооктановый компонент автобензина. Смесь изомеров Са подвергают низкотемпературной кристаллизации с получением л-ксилола и концентрата л-ксилола. Последний передают на изомеризацию для увеличения производства п-ксилола. [c.254]

    С целью выделения ароматических углеводородов смесь сульфокислот была разбавлена четырехкратным объемом дистиллированной воды и подвергнута гидролизу при 210°. Полученную смесь выделенных ароматических углеводородов после промывки и сушки над хлористым кальцием фракционировали в присутствии металлического натрия. [c.88]

    Для выделения сульфокислот смесь предварительно очищают серной кислотой, и образовавшиеся гудроны удаляют. Последующее сульфирование масел олеумом (20% ЗОд) позволило получить некоторые кислоты с хорошими моющими свойствами. При сульфировании образуются растворимые в масле (так называемые коричневые ) и растворимые в воде ( зеленые ) кислоты. Первые —это в основном моносульфокислоты ароматических углеводородов н нафтенов с длинными боковыми парафиновыми цепями. Они обладают капиллярноактивными свойствами (эмульгаторы, пенообразователи) их выделяют из сульфированного масла экстракцией щелочами или спиртами (этиловым, изопропиловым, бутиловым). [c.343]

    Исходное сырье — смесь ароматических углеводородов Q — вместе со стабильным продуктом изомеризации поступает на установку выделения о-ксилола 8 и далее — /г-ксилола I. Маточный раствор, полученный после низкотемпературного выделения п-ксилола, в смеси с циркулирующим водородсодержащим газом нагревается в печи 2 и поступает в реактор изомеризации 4. Продукты реакции [c.93]

    При охлаждении смеси ароматических углеводородов Са первым кристаллизуется п-ксилол, причем температура начала кристаллизации определяется составом исходной смеси. По мере снижения температуры происходит дальнейшее образование кристаллов п-ксилола и изменение состава жидкой фазы. Выделение чистого п-ксилола возможно только до тех пор, пока не начнет кристаллизоваться эвтектическая смесь п-ксилол — лг-ксилол (температура кристаллизации —52,7"С). Степень извлечения п-ксилола при кристаллизации обычно не превышает 55—65% содержания его в сырье. Для увеличения выхода п-ксилола проводили кристал лизацию в присутствии растворителей или добавок некоторых веществ, снижающих температуру образования эвтектических смесей или устраняющих их образование. Однако затраты на последующее отделение введенных соединений практически сводят на нет те преимущества, которые достигаются от некоторого повышения выхода. Поэтому такой прием не получил применения в промышленности. [c.251]

    При использовании различных десорбентов в процессе адсорбционного разделения коэффициенты разделения изменяются, т. е. в этом случае изменяется селективность "адсорбента. Влияние различных десорбентов при выделении ге-ксилола па К-Ва-формах цеолита X изучали следующим образом в сырье (смесь ароматических углеводородов Сд) добавляли 75% углеводородов, которые могут быть использованы в качестве десорбентов. После этого определяли коэффициент разделения. В этих условиях была получена следующая селективность адсорбентов t90, 95] .  [c.124]

    Селективность процесса выделения л-ксилола возрастает при сульфировании в две стадии [127]. На первой стадии ароматические углеводороды Се смешивают с раствором сульфокислот в серной кислоте (сульфомассой). Растворимость л-ксилола в сульфомассе выше, чем других ароматических углеводородов С д. Смесь ароматических углеводородов с сульфомассой сульфируют на второй. стадии серной кислотой, содержащей 20% олеума, при 60 °С. Результаты приведены ниже  [c.141]

    Разработка промышленного процесса выделения мезитилена из его смесей с ароматическими углеводородами Сд методами ректификации, кристаллизации, сульфирования и др. связана со значительными трудностями, и технико-экономические показатели такого производства могут быть на низком уровне. Поэтому были проведены исследования по синтезу мезитилена изомеризацией псевдокумола и дегидроконденсацией ацетона. При изомеризации псевдокумола в присутствии гетерогенных катализаторов получают смесь метил-производных бензола с концентрацией мезитилена, близкой к термодинамически возможной. Этилтолуолы, особенно о-этилтолуол, которые затрудняют выделение мезитилена из продуктов реакции ректификацией, в этих условиях не образуются. [c.218]


    Для получения фракции смеси ксилолов обычно используют бензиновую фракцию 105—140°С, из которой после риформинга смесь ароматических углеводородов экстрагируется диэтиленгликолем. Однако для получения смеси ксилолов более выгодным оказывается каталитический риформинг фракции 105—124 °С с последующим выделением смеси ксилолов из катализата ректификацией [11, 32]. Ректификация стабильного катализата проводится последовательно в двух колоннах. В первой колонне четко отгоняется толуол и все предельные углеводороды, содержащиеся в ка-тализате, с минимальным отбором этилбензила и ксилолов. Во второй колонне смесь ксилолов отгоняется от высококипящих ароматических углеводородов. Отбор смеси ксилолов составляет 92— 95% (масс.), качество смеси ксилолов удовлетворяет треб01ваниям, предъявляемым к ксилолу техническому нефтяному по ГОСТ 9410—78 марки А и дополнительному условию по содержанию непредельных углеводородов Сд и выще не более 0,15% (масс.). [c.248]

    С целью идентификации ароматических углеводородов, выделенных из фракции 122—150°С, углеводородняя смесь с температурой кипения 135—144 С 1° 0,8656 1,4976  [c.47]

    Таким образом, говоря об ароматических углеводородах, выделенных из -масляной фракции селективным растворителем, мы должны сделать заключение, что в этих ароматических углеводородах содержится смесь ароматических, нафтеновых и нафтеново-ароматических углеводородов полицик-лического строения с ко]эоткими боковыми цепями. Эта смесь обладает более высокой вязкостью, чем рафинатная часть, называемая вышеуказанными иссле-.дователями нафтенами , в которых совершенно очевидно имеется смесь мало--цик.лических нафтеновых, ароматических и нафтеново-ароматических углеводородов с длинными боковыми цепями. Поэтому все заключе ния об ароматических углеводородах, выделенных из масляных фракций, как о носителях вязкости являются 0ШХ1б0ЧНЫМИ. [c.122]

    Исследование методом термодиффузии смесей ароматических углеводородов, выделенных из дизельного топлива анастасьевской нефти и из широкой фракции норийской нефти показало, что разделение происходит менее четко и выделенные ароматические углеводороды содержат примеси нафтеновых углеводородов. Ароматическая часть представляет собой смесь алкилбензолов с би- и полициклическими нафтено-ароматическими углеводородами, имеющими парафиновые разветвления. [c.131]

    Из четырех смесей циклических сульфидов с моноциклическими ароматическими углеводородами одна смесь была полностью разделена, две частично и одну смесь разделить не удалось. Следовательно, циклические сульфиды труднее, чем алифатические сульфиды отделяются от гомологов бензола. Однако в ряде случаев возможно выделение циклических сульфидов из их смеси с гомологами бензола как однократным, так и повторным хроматермографированием. Смесь алифатических и циклических сульфидов также трудно отделить от моноциклических ароматических углеводородов. Однако и здесь при достаточном количестве повторных хроматермографиро-ваний возможно полное выделение алифатических и циклических сульфидов. [c.122]

    Анилиновые точки узких фракций ароматических углеводородов, выделенных из газойля каталитического крекинга, оиределить ие представилось возможным, так как при охлаждении смеси фракций с анилином не образуется кольцо, а сразу вся смесь превращается в полутвердую, трудно перемешиваемую массу. Это явление требует последующего изучения. [c.495]

    Циклопе нтан (т. кип. 49,5° при 752 мм рт. ст., = 1,4070 и = = 0,7445) в количестве 238,2 г (320 мл) вводился в контакт с платино-глино-земным катализатором при 4б0° и давлении водорода 20 ат с объемной скоростью 0,43 час . При этом было получено 184,3 г (2С8 мл) жидкого ката-лизата, который имел= 1,3660 и = 0,7315 выход его составлял 77,4% при расчете на исходное вещество. Интересно отметить, что он содержал 9% объемн. ароматических углеводородов. Выделенная из катали-зата адсорбцией на силикагеле смесь ароматических углеводородов в количестве 17,1 г имела = 1,4180 и (1 = 0,8705 для остальной и главной части катализата (нафтено-парафиновой) Пд = 1,с850 и — 0,6754. В табл. 1 и на фиг. 2 приводятся результаты фракционирования 52,0 г наф-тено-парафиновой части катализата на колонке с погоноразделительной способностью в 70 теоретических тарелок при 756 мм рт. ст. [c.168]

    В лаборатории одного из предприятий, чтобы избежать образования эмульсии при отделении продуктов полимеризации от катализатора, к хлористому алюминию добавляют безводный МагСОз, а по окончании реакции в смесь вводят такое количество воды, при котором не образуется эмульсии и не происходит отстаивания шлака от катализатора. Потери продуктов в полимеризации со шлаком составляют 14—17%. Ароматические углеводороды, выделенные этим методом, имеют большие йодные числа поэтому для получения товарных продуктов требуется дополнительная очистка от непредельных. [c.82]

    ТэтпИГ образом, в ароматических углеводородах, выделенных из масляной фракции селективным растворителем, мы должны представлять, что в этом экстракте содержится смесь ароматических, нафтено-ароматических и нафтеновых углеводородов с короткими боковыми цепями. Эта смесь обладает более высокой вязкостью, чем рафинатная часть, которую исследователи часто называли нафтеновой и которая на самом деле представляет собой смесь малоциклических нафтеновых, наф-тено-ароматических и ароматических углеводородов с длинными парафиновыми или изопарафиновыми цепями [c.156]

    Процесс основан на том, что неароматическая часть образует со смесью метанол — вода илиметил-этилкетон — вода тройную азеотропную смесь, от которой ароматические углеводороды могут быть отделены перегонкой. На рис. 52 дана упрощенная схема выделения чистого толуола из продуктов гидроформинга. Из продуктов гидроформинга выделяется кипящая в узких пределах толуольная фракция, которую подают в колонну вместе с азеотропо-образователем, в данном случае с водным метилэтилкетоном. Азеотропная смесь (метилэтилкетон — вода — неароматическая часть) отгоняется, а получающийся в виде остатка чистый толуол отбирают из низа колонны, и далее очищают серной кислотой и промывают щелочью, водой и повторно перегоняют. [c.108]

    С целью упрощения состава, смесь выделенных ароматических углеводородов была обработана пикриновой кислотой, которая удалила конденсированные ароматические углеводороды в виде пикратов. При этом получен пикрат с температурой плавления 112—113°, что указывает на присутствие в мирзаанской нефти 1,6-диметилнафталина. Кроме того, был получен пикрат с температурой плавления 116—123°, что указывает на присутствие в той же нефти метилированных гомологов нафталина. [c.32]

    Регенерирование конденсированных ароматических углеводородов из пикратов производилось следующим образом к раствору пикрата в этиловом эфире прибавлялось 5—6% аммониевого основания в количестве 1 1,5 в условиях энергичного перемешивания. В результате разложения пикратов в эфирный слой перешли регенерированные конденсированные ароматические углеводороды, а в осадок — пикриновая кислота. Эфирный экстракт, после соответствующей промывки и суп1кп, перегонялся с целью удаления эфира. Выделенная таким путем смесь конденсированных ароматических углеводородов фракционировалась в вакууме при остаточном давлении 12 мм. [c.40]

    С целью удаления конденсированных ароматических углеводородов каждая фракция была обработана пикриновой кислотой в следующих условия.х. К исследуемой фракции добавлялся насыщенный раствор пикриновой кислоты в этиловом. спирте и смесь кипятилась на водяной бане в продолжении 1 часа после охлаждения производилось вымораживание пикратов, фракция вновь обрабатывалась пикриновой кислотой до тех пор, пока не прекращалось образование пикратов и в результате охлаждения не выделялась свободная пикриновая кислота. Выделение конденсированных ароматических углеводородов производилось также обработкой фракций непосредственно сухой никриновой кислотой. Ре- [c.53]

    В выделенных нами фракциях можно было ожидать на личие конденсированных ароматических углеводородов, поэтому каждая из них была обработана пикриновой кислотой. На исследуемой фракции действовали насыщенным спиртовым раствором пикриновой кислоты, после чего реакционную смесь кипятили на водяной бане в течение одного часа вымораживанием и фильтрованием производили удаление образовавшегося осадка от углеводородов, не вступивших в реакцию. Исследуемые фракции указанным способом обрабатывались до отрицательной реакции на пикриновую кислоту, что указывало на полное выдаление конденсированных ароматических углеводородов. Повторной перекристаллизацией осадка из этилового спирта получали пикраты в чистом виде, определением температуры плавления которых устанавливали природу конденсированных ароматических углеводородов. [c.94]

    Экстракция ароматических углеводородов из дизельных масел производится также и фурфуролом [84] при температуре выше температуры окружающей среды (60—80 °С). При промывании фурфуролом смесей, полученных путем крекинга газовых масел, кроме ароматических углеводородов, удаляются также металлические конгломераты и соединения серы [73, 76]. Третьим растворителем, применяющимся в промышленном масштабе для вымывания ароматических углеводородов из легких продуктов пиролиза, является водный раствор диэтиленгликоля. Эта экстракция, известная под названием метод Удекс [70, 71, 73, 76, 94, 951, впервые была применена Б 1950 г. В качестве новых растворителей был испытан ряд различных жидкостей, в том числе -цианэтиловый эфир [88], азеотроп-ная смесь углеводородов с цианистым метилом, комплекс фтористого бора с кислородными соединениями, фтористый водород [100] и т. д. Для выделения из продуктов пиролиза нефти толуола высокой чистоты пригодна вода [67]. Для удаления ароматических углеводородов из керосиновой фракции пригоден раствор 75—99,9% метанола [851 и жидкий аммиак [87]. [c.402]

    Химический состав твердых углеводородов масляных фракций зависит от характера нефти, из которой они выделены. Так, в масляных фракциях нефтей парафино-нафтенового основания содер-жится меньше твердых ароматических углеводородов, чем в соответствующих по температурам кипения фракциях, выделенных из тяжелых высокоароматизированных нефтей. Химический состав твердых углеводородов масляных фракций зависит также от пределов выкипания этих фракций. По мере повышения пределов выкипания фракции одной и той же нефти содержание твердых парафиновых углеводородов уменьшается, а твердых нафтеновых и ароматических углеводородов возрастает (рис. 26). Церезины, концентрирующиеся в остатке от перегонки мазута, представляют собой в основном смесь нафтеновых углеводородов и в меньших количествах содержат твердые ароматические и парафиновые углеводороды, причем их соотношение зависит от характера нефти, из которой выделен церезин. Изопарафиновые углеводороды содержатся в церезинах в сравнительно небольших количествах. Химический состав природных церезинов аналогичен составу нефтяных церезинов [3]. [c.117]

    В работе [211 изучали очистку низкомолекулярных парафинов (фракция 240-350°С), выделенных из ромашкинской и туймазинской нефти, на силикагеле марки АСК и на алюмосиликатном адсорбенте активностью соответственно 12,0 и 11,6 при 25-30°С. Было установлено, что для полной деароматизации парафина на I кг ароматических углеводородов требуется 30 кг адсорбента, а для получения парафина с содержанием О,5-1,0 (масс.) ароматических углеводородов - 20-23 кг. Для десорбции применяли гептановую или изооктановую фракцию, бензол и спиртобензольную смесь. [c.230]

    Экстрактивная перегоика — второй метод разде [ения близкокипящих компонентов. При этом смесь перегоняют с третьим, малолетучим компонентом, присутствие которого увеличивает разницу в летучести разделяемых компонентов. Так, смесь толуола и метилциклогексана имеет относительную летучесть а = = 1,25 при наличии 50% (масс.) фенола в жидкой фазе а повышается до 1,75. В отличие от разделяющего компонента азеотропной перегонки, летучесть которого относительно велика и который уходит в виде дистиллята, разделяющий компонент экстрактивной перегонки обладает невысокой летучестью и уходит с остатком перегонки, что может оказаться экономичным, если концентрация компонента, уходящего в виде остатка, невелика. Экстрактивная перегонка, подобно азеотропной, применяется для выделения ароматических углеводородов, а также для разделения бутан-бу-тиленовых и бутилен-бутадиеновых смесей, получаемых в процессе дегидрирования к-бутана. В качестве экстрагентов применяют фурфурол, N-мeтилпиppoлидoн и др. [c.50]

    Растворитель из экстрактного раствора регенерируют па лаборатор1гой установке АРН-2 пли на других примепяеммх для этой цели аппаратах (см. стр. 66). Получеиный экстракт, представляющий собой смесь ароматических углеводородов, подсушивают хлористым кальцием и подвергают четкой ректификации на установке АЧР-2 или др. Полученные фракции ароматических углеводородов взвешивают и составляют материальный баланс процесса выделения ароматических углеводородов. Чистоту полученных ароматических углеводородов оценивают по показателям преломления. [c.197]


Смотреть страницы где упоминается термин Ароматические углеводороды выделение из смесей: [c.43]    [c.47]    [c.47]    [c.231]    [c.39]    [c.225]    [c.242]    [c.169]    [c.416]    [c.160]    [c.65]    [c.273]    [c.139]    [c.287]   
Технология органического синтеза (1987) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение ароматических

Выделение смеси ароматических углеводородов из катализатов риформинга

Выделение углеводородов

Методы выделения ароматических углеводородов из нефтяных смесей



© 2024 chem21.info Реклама на сайте