Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлороформ, действие на ионы

    Хотя константы диссоциации четвертичных аммониевых соединений в дихлорметане и хлороформе имеют порядок 10 —10 их влиянием в часто используемых разбавленных растворах нельзя пренебрегать. Желательно, чтобы в органической фазе происходила ассоциация ионных пар, так как этот процесс способствует экстракции. Поэтому более концентрированные растворы обладают преимуществом. Если анион вводится в систему частично в виде неорганической соли NaX, то высокая концентрация и избыток ЫаХ в водной фазе увеличивают экстракцию [Q+X ] в органическую фазу. В то же время возможная ассоциация ионов неорганической соли в водной фазе в больщинстве случаев не оказывает неблагоприятного действия на процесс в целом. [c.22]


    Как молекулы, так и атомы и ионы могут испытывать подобные воздействия не только при наложении т вещество внешнего электрического поля, но и при взаимодействии между собой. Так, при взаимодействии между двумя ионами всегда происходит и некоторая деформация их под действием электрических полей, возбуждаемых зарядами другого иона.. Поэтому молекулы воды, взаимодействуя с находящимся в растворе ионом, под действием создаваемого им сильного электрического поля не только ориентируются около него в соответствии-с направлением поля, но и претерпевают деформацию, так как один конец их притягивается ионом, а другой отталкивается от него. При этом полярность их возрастает и они становятся способными еще сильнее связываться с другими полярными молекулами и, в частности, с другими молекулами воды. Также, например, в молекуле хлороформа атомы хлора, обладающие одноименным (отрицательным) зарядом, вза- [c.76]

    Сальсолина гидрохлорид — белый или белый со слабым желтоватым оттенком кристаллический порошок, т. пл. 197—203°, растворяется 1 14 в воде, мало растворим в спирте, хлороформе, бензоле, эфире, петролейном эфире. При действии бромной воды выделяется ярко-красный осадок, который вначале растворяется, но при дальнейшем прибавлении бромной воды вновь выделяется. Хлорным железом окрашивается в синий цвет. Нитратом серебра осаждается белый осадок (хлор-ион). [c.451]

    По-видимому, нитраты применялись для защиты спиртовой группы только в области сахаров [209]. Эти эфиры могут быть получены при низкой температуре действием одной азотной кислоты или же ее смеси с серной или уксусной кислотой можно использовать также пятиокись азота в хлороформе. Нитраты устойчивы в условиях, в которых происходят обычные превращения сахаров, например при метилировании иодистым метилом и окисью серебра, ацетилировании уксусным ангидридом, ацилировании или получении эфиров сульфокислот в пиридине. Нитраты достаточно устойчивы к действию горячих разбавленных кислот, но энергично разлагаются в щелочной среде с образованием карбонильных соединений и нитрат-ионов. Для выделения оксисоединений из нитратов их подвергают восстановительному расщеплению бисульфитами щелочных металлов, алюмогидридом лития или водородом в присутствии катализаторов. Нитраты сахаров нашли применение главным образом для синтеза различных метиловых эфиров фруктозы [210], галактозы [211] и глюкозы [212]. [c.220]


    Вследствие электроноакцепторного действия трех атомов хлора хлороформ является весьма сильной СН кислотой. Поэтому первой стадией является ионизация молекулы хлороформа последующее отщепление хлорид-иона веде к образованию дихлоркарбена  [c.92]

    Вследствие электроноакцепторного действия трех атомов хлора хлороформ - весьма сильная СН-кислота. Поэтому первой стадией при получении дихлоркарбена является ионизация молекулы хлороформа. Последующее отщепление хлорид-иона от трихлорметил-аниона ведет к образованию дихлоркарбена. [c.286]

    С сильно тормозящим извлечение действием цитрат-и тартрат-ионов встречаются при проведении экстракции ионов раство]юм дитизона в четыреххлористом углероде при pH 9—9,5 и раствором дитизона в хлороформе при pH 10,5—И, при этом заботятся о соответствующем избытке дитизона. [c.216]

    Дитизонат железа растворяется в четыреххлористом углероде и хлороформе с фиолетово-красной окраской [37 ]. Раствор быстро разлагается на воздухе, причем в щелочном растворе ионы Ре + под действием [c.319]

    Реакция Реймера — Тимана включает стадию электрофильного замещения в очень активном кольце фенолят-иона. Электрофильным реагентом является дихлорметилен lg, генерируемый из хлороформа действием щелочи. Хотя дихлорметилен электрически нейтрален, он содержит атом углерода, несущий лишь секстет электронов и потому являющийся сильным электрофилом. [c.769]

    Кузнецовой [294] разработана методика извлечения галлия из водно-ацетоновых растворов хлороформом с использованием непосредственно самого экстракта для проведения колориметрической реакции с метиленовым синим. Молярный коэффициент погашения хлоро -формно-ацетонового экстракта 6,8-10 . Мешающее действие ионов Fe (III), Sb (V),Tl (Ш). Au (III), Те (IV) устраняют восстановлением их до низших степеней валентности треххлористым титаном в 6—7 N НС1. [c.136]

    В одном из ранних исследований Илани [42] обнаружил, что миллипоровый фильтр, пропитанный чистым растворителем (например, бутанолом, октанолом, толуолом, хлороформом) действует как электрод с жидкой мембраной, селективный к ионам по сравнению с Ыа , причем особенно отчетливо это проявлялось у мембраны с толуолом. Исследованию подвергли и другие растворители, а именно бромбензол, бутилбромид и этиленхлорид [43]. Селективность электрода с мембраной из бромбензола уменьшалась в ряду [44]  [c.225]

    Кроме самих карбенов для получения трехчленных циклов из алкенов можно использовать и более доступные дигалоген-карбены. Последние могут быть генерированы действием трет-бутоксида калия на хлороформ или бромоформ. С этими соединениями алкоголят весьма энергично взаимодействует как основание, отщепляя протон. Так как в реакционной среде присутствуют ионы щелочного металла, то реакция завершается отщеплением одного атома хлора в виде аниона с образованием дигалогенкарбена  [c.497]

    ФЕНИЛЕНДИАМИНЫ eHi (NH ) , — известны три изомера все они бесцветные кристаллы, темнеющие на свету и на воздухе, хорошо растворяются в спирте, эфире, хлороформе, горячей воде. Получают о-Ф. восстановлением о-нит-роанилина м-Ф. восстановлением л-ди-нитробензола п-Ф. восстановлением и-нитроанилина или л-аминоазобензола. Ф. широко применяют в производстве красителей, для синтезов и в аналитической химии. Так, о-Ф. служит реактивом на дикетоны, карбоновые кислоты, альдегиды м-Ф,— реактив на нитрит-ион м-Ф. и п-Ф. применяют для синтеза красителей. Все Ф. токсичны, действуют на центральную нервную систему, расширяют сосуды слизистых оболочек, действуют на кровь, превращая оксигемоглобин в feтгeмoглoбин, вызывают сильное раздражение кожи. [c.260]

    Действие окислителей. Хлорная вода, КМПО4, НЫОг, соли железа (III) окисляют иодид-ион до свободного иода. К испытуемому раствору прибавляют немного KN02 или ЫаЫОз н несколько капель уксусной кислоты. Выделяющийся 1з окрашивает раствор в темно-коричневый цвет. Его идентифицируют по реакции с крахмалом или извлекают хлороформом, бензином, прич ем иод придает раствору фиолетовую окраску. Концентрированная азотная или серная кислоты также вызывают выделение иода  [c.247]

    Пахикарпин-гидройодид — белый кристаллический порошок, т. пл. 233—236°. легко растворим в воде, спирте и хлороформе, мало растворим в эфире и в ацетоне. [а] ° = 8,6 — 9,6 (с = 7, спирт). При взаимодействии спиртового раствора препарата с раствором пикриновой кислоты выделяется желтый осадок дипикрата пахикарпина, т. пл. 206—208°. Наличие йод-иона определяют действием на водный раствор препарата нитрита натрия и серной кислоты в присутствии хлороформа, окрашивающегося при этом в фиолетовый цвет. Чистоту препарата устанавливают по бесцветности и прозрачности водного раствора, отсутствию избыточной щелочности или кислотности, тяжелых металлов, сульфатной золы выше норм ГФ1Х. [c.437]

    Для анализа иодозо- и иодосоединений применяется следующая методика. В колбу для титрования емкостью 200 мл с притертой пробкой помещают 100 мл воды, 10 мл 6 н. раствора серной кислоты, 2 г иодистого калия, свободного от ионов йодноватой кислоты, 10 мл хлороформа и, наконец, навеску вещества, содержащую около 0,25 г. Смесь взбалтывают в течение 15 мин. (или дольше, если реакция не закончится) и титруют 0,1 н. раствором тиосульфата натрия. Если образец чистый, то о конце титрования можно судить по изменению цвета хлороформенного слоя, если же образец содержит примеси, то к нему следует добавить раствор крахмала, так как примеси окрашивают хлороформенный раствор в буроватый цвет. Применение хлороформа в качестве растворителя наиболее желательно, так как он облегчает реакцию с подпетым калием, растворяя продукты реакции. Иодозобензол можпо отличить от иодобензола на основании того, что первый восстанавливает ионы иода в насыщенном растворе борнокислого натрия, в то время как иодобензол такого действия не оказывает . Метод анализа основан на следующих реакциях  [c.265]


    При действии хлороформа и хлористого алюминия алкилбензолы дают окрашивание от оранжевого до красного. Такая окраска возникает в результате образования триарилметильных карбониевых ионов АгдС" , которые, вероятно, получаются в результате реакции Фриделя — Крафтса с последующим переносом гидрид-иона (разд. 6.16). [c.390]

    Закономерности, которые наблюдались при экстракции ионных ассоциатов, имеют место и прп извлечении по ионообменному механизму (конкурируюш,ее действие некоторых анионов, высаливающее действие катионов и влияние природы разбавителя). Степень извлечения растет с повышением молекулярного веса амина, однако селективность при этом падает (более подробно по этому вопросу см. [435, 436)). При использовании разбавителей с низкими значениями диэлектрической проницаемости (бензол, толуол, ксилол, хлороформ, четыреххлористый углерод, октан и др.) при больших концентрациях извлекаемого элемента в фазе растворителя протекают процессы ассоциации. Чем выше молекулярный вес амина и ниже значение диэлектрической проницаемости (е) разбавителя, тем в большей степени протекают процессы полимеризации (вплоть до мицеллярно-коллоидного состояния) [437, 677, 680, 1063]. Растворимость ассоциатов анионов с аминами падает по мере возрастания молекулярного веса неполярных разбавителей. Повышение температуры или добавление полярных разбавителей повышает растворимость. Практически для всех аминов влияние анионов на экстракцию ассоциатов перренат-иона уменьшается в ряду IO4 > J Вг N0 " 1 . Более подробно о механизмах экстракции см. в [48, 588, 1023 и др.), [c.201]

    Так же как и в случае алкиламинов, наблюдаемое снижение степени экстракции ассоциата перрената с катионом четвертичного аммониевого основания с ростом копцентрацип азотной кислоты связано с ее конкурирующим действием. Учитывая, что перманганат-ион образует с катионами ряда более тяжелых четвертичных оснований ассоциаты, извлекаемые смесью амилового спирта с хлороформом [1278], не исключена возможность и аналогичного поведения пер])енат-иопа. [c.205]

    В данном случае ССЦ принимает электрон, что ведет к разложению с образованием трихлорметильного радикала и хлорид-иона [25]. Затем трихлорметильный радикал отрывает водород от алкильной группы, образуя хлороформ, а другие побочные реакции приводят к образованию НС1 из С1" и, следовательно, к осаждению хлористоводородной соли амина. Хотя максимум поглощения наблюдается при сравнительно коротких волнах, полоса простирается в область, где прозрачны обычные стеклянные сосуды, в которых происходит разложение под действием ультрафиолетового излучения, присутствующего в солнечном свете. Аналогичная реакция протекает на дневном свету между ферроценом и четыреххлористым углеродом, приводя к образованию феррициниевых солей [26]  [c.221]

    Дихлоркарбен образуется при реакции -элиминирования элементов галогеноводорода от полигалогенопроизводных под действием сильных оснований. Так, r lj возникает при обработке хлороформа mpem-бутилатом калия. Ион iHeO" отрывает протон от молекулы хлороформа, а возникающий при этом трихлор-метильный анион диссоциирует на ион хлора и дихлоркарбен [c.266]

    Определение в виде Вгз или ВгС1 после предварительного окисления. Для анализа растворов, не содержащих иодид-ионов, предложено окислять бромид-ионы в подкисленном водном растворе действием хлорной воды до Вгз и Br l, экстрагировать окисленные формы хлороформом и анализировать экстракты методом стандартных серий [121]. Количественное образование Br l обеспечивается добавлением 10-кратного избытка хлорной-воды по отношению к содержанию брома в анализируемой пробе. Этот вариант метода более точен, но и он имеет отрицательные погрешности порядка 2—4%. Метод использован для анализа морской, воды и различных видов рапы, содержащих в 1 л 0,03—0,25 г Вг . В последнем случае стандартные растворы готовят на ране без Вг плп на 20%-ном растворе КС1. Фотометрический вариант метода более чувствителен и позволяет определять Вг при концентрации 1,6—160 мг л в присутствии значительно превосходящих количеств СГ [632]. Он не требует экстракции Вгз и сводится к измерению оптической плотности водного раствора со светофильтром с максимумом пронускания от 400 до 465 нм. [c.102]

    Любой способ стабилизации ионов путем делокализации заряда, будь то за счет групп, входящих в состав иона, или за счет сольватации, разумеется, тем эффективнее, чем значительнее смещение электронов к катионнму центру карбокатионов или от анионного центра карбанионов. Такая делокализация не должна, однако, переходить некоторые пределы, за которыми может произойти разрыв старых и/или образование новых ковалентных связей. Один подобный пример мы уже приводили в /и/>е/и-бутильном катионе (26), стабилизация которого осуществляется за счет поляризации связей С-Н, при неблагоприятных условиях может произойти полный сдвиг заряда, результатом чего будет выброс протона и образование двойной связи. Аналогичные примеры можно найти и в химии карбанионов. Так, например, известно, что при наличии хлора как заместителя при карбанионном центре стабильность этого аниона существенно возрастает из-за высокой электроотрицательности хлора. По этой причине трихлорметильный анион (45), легко генерируемый при действии оснований на хлороформ, относится к категории стабильных анионных частиц, и известно немало реакций, протекающих с участием этого интермедиата. Однако эффект стабилизации для этой частицы за счет сдвига электронов на атомы хлора, очевидно, несколько зашкален , поскольку для 45 особенно характерна склонность к элиминированию хлор-аниона и образованию дихлоркарбена (46). [c.95]

    Соединения циклического строения, способные образовывать с катионами внутрикомплексные соли, изучались конкретно с точки зрения отделения Th и U (VI) от рзэ. Эффективность их действия, которую можно качественно выразить разницей в pH 50%-ного извлечения La и Th, увеличивается по следующему ряду 3,5-дини-тробензойная кислота (в гексоне)—1,5 салициловая кислота (в гексоне) — 1,8 [11081 1-нитрозо-2-нафтол (в хлороформе) —2,3 [875] коричная кислота (в гексоне) — 2,9 [1108] трополон (в хлороформе) - 4 [871]. Наконец, наибольшая разница получена для N-фенилбензгидроксамовон кислоты (в хлороформе) — 4,4 [872] (см. рис. 20—22). Все указанные реагенты чувствительны к изменению концентрации ионов водорода, поэтому разделение следует осуществлять при соответствующем pH, зависящем от концентрации реагента в водной фазе. [c.138]

    ОТ его липофильности, т. е. от коэффициента распределения между мембраной и водой. Модельные эксперименты показали, что анестетики снижают температуру фазового перехода некоторых липидов и, таким образом, увеличивают текучесть мембраны, [9, 10]. Текучесть связана с проницаемостью мембраны для ионов и других низкомолекулярных веществ. В своем классическом эксперименте Бенгхем показал, что липосомы, содержащие радиоактивное вещество, при действии хлороформа или диэтилового эфира становились проницаемыми и выделяли радиоактивную метку в окружающую среду. Концентрация хлороформа, необходимая для этого эффекта, была достаточной для анестезии головастика. Бенгхем предположил, что один и тот же молекулярный механизм отвечает как за проницаемость мембраны, так и за анестезирующий эффект, и подтвердил этот вывод следующим экспериментом. [c.74]

    Сложные эфиры муравьиной и уксусной кислот частично гидролизуются, образуя свободные кислоты, при действии реактивов, содержащих воду, а также в хлориде пиридиния в пиридине и хлористоводородной кислоте в диоксане. Степень гидролиза намного меньше нри использовании почти безводных реактивов,-например, хлористого водорода в диэтиловом эфире и хлорида пиридиния в хлороформе. Мешающее влияние реакционноспособных сложных эфиров при определении в диоксане или в растворах хлорида магния, вероятно, молено уменьшить, понижая температуру и (или) уменьшая продолжительность реакции Можно воспользоваться и другими средствами, например, вместо ацидиметрического титрования неизрасходованной хлористо водородной кислоты оставшиеся хлорид-ионы определить по Фольгарду или другим аргентометрическим методом. Менее гидролизуемые эфиры, например этилизовалерат, диметилмалонат, бутилстеарат, этилолеат и бензилбензоат, при гидрохлорировании хлористоводородной кислотой в диоксане или хлоридом пиридиния в хлороформе не оказывают влияния. Применимость одного из наиболее предпочтительных методов (реактив — хлористоводородная кислота в диоксане) к анализу сложных смесей иллюстрируется данными табл. 5.6. [c.250]

    Денатурирующие агенты делятся на химические и физические. К последним относится прежде всего температурное воздействие, в частности замораживание или нагревание, а также давление, ультразвуковое воздействие, облучение и др. Химические агенты — это органические растворители (ацетон, хлороформ, спирт), концентрированные кислоты, щелочи, ионы тяжелых металлов. В лабораторной практике в качестве денатурирующих агентов чаще всего используют мочевину или гуанидинхлорид, легко разрывающие водородные и гидрофобные связи, при помощи которых формируется третичная структура белка. Максимальное денатурирующее действие оба реагента прояв- [c.53]

    Медь реагирует с дифенилтиокарбазоном (дитизоном), имеющим зеленую окраску., с образованием продукта красно-фиолетового цвета 44]. Образец должен содержать не более 0,005 мг меди в объеме 5 мл 0,1 н. кислоты. Анализируемый раствор встряхивают в небольшой делительной воронке с 0,001 %-ным раствором дитизона в четыреххлористом углероде. Неводный слой будет содержать смесь дитизоната меди И избытка дитизона. Его исследуют на фотоэлектрическом фотометре в интервале длин волн 500—550 или 600—650 ммк. Калибровочная кривая должна строиться по измерениям свежеприготовленных растворов, непосредственно применяемых в данной серии анализов, так как концентрация реагента сохраняется постоянной лишь в течение нескольких недель. Указанный метод называется методом смешанной, окраски ввиду того, что раствор содержит как окрашенный в красный цвет комплекс, так и избыток реагента зеленого цвета. Если фотометрическое измерение проводится гари длине волны, лежащей з интервале 500—550 ммк, который соответствует зеленой области спектра, то поглощение в этом случае будет пропорциопальным концентрации комплекса, поглощающего в зеленой области, в то время как реагент зеленый цвет пропускает. Если раствор исследуется при длине волны в интервале 600—650 М.МК, поглощение -показывает избыток реагента. Для анализа можно использовать любой из этих вариантов. Дитизон вызывает аналогичную окраску с ионами металлов Мп, Ре, Со, N1, Си, 2п, Рс1, А , Сё, 1п, 5п, Р1, Ли, Нд, Т1 и РЬ. Несмотря на это, надежное определение осуществляется лишь благодаря избирательному действию реагента, достигаемому точной регулировкой значения pH, при котором проводится экстрагирование четыреххлористым углеродом (или хлороформом). Детали метода описаны Сенделом. [c.54]


Смотреть страницы где упоминается термин Хлороформ, действие на ионы: [c.366]    [c.84]    [c.289]    [c.399]    [c.359]    [c.398]    [c.95]    [c.484]    [c.324]    [c.724]    [c.330]    [c.477]    [c.225]    [c.26]    [c.320]    [c.131]    [c.484]    [c.124]    [c.86]    [c.124]    [c.740]    [c.76]   
Курс химического качественного анализа (1960) -- [ c.2 , c.38 , c.382 ]




ПОИСК





Смотрите так же термины и статьи:

Хлороформ



© 2025 chem21.info Реклама на сайте