Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимический потенциал системы

    Резюмируя сказанное, можно утверждать, что равновесному состоянию системы, ионит — раствор соответствует равенство электрохимических потенциалов фаз системы. Электрохимический потенциал отличается от химического потенциала на выражение, учитывающее разность электрических потенциалов обеих фаз. Для электролита электрохимический потенциал равен э = + где э - — электрохимический потенциал к-то компонента [c.373]


    Катализ осуществляется на границе раздела фаз. Поэтому параметры, отражающие влияние изменения свойств границы раздела фаз на общие свойства системы, могут служить надежными методами контроля каталитических процессов. Как отмечено Фрумкиным, на границах раздела фаз возникают свободные заряды, притягивающие заряды противоположного знака и образующие двойной электрический слой, что определяет возникновение электрохимического потенциала в системе. Электрохимический потенциал системы является хотя и не единственным, но, вероятно, важнейшим параметром, характеризующим свойство и строение границы раздела фаз. [c.184]

    При одновременном воздействии на систему положительных ионов (металла), механического и электрического внешнего фактора электрохимический потенциал системы Хэх равен  [c.109]

    Так как в реальном процессе переноса элементарного заряда из одной фазы в другую химическая и электрическая работы совершаются одновременно, то определить можно лишь общий энергетический эффект, отвечающий изменению электрохимического потенциала, но не отдельные его слагаемые. Поэтому найти экспериментально абсолютную разность электрических потенциалов (или скачок потенциала между двумя разными фазами) до сих пор не удалось. Э.д.с. электрохимической системы Е, напротив, можно непосредственно измерить она л.олжна, следовательно, отвечать разности потенциалов между двумя точками, лежащими в одной и той же фазе. Этими точками (см. рис. 7) могут быть точки Ь н д, находящиеся в одном н том же металле, или точки а и г, расположенные в вакууме вблизи поверхности металла. На рис, 7 изображена правильно разомкнутая электрохимическая цепь, на двух концах которой находится один и тот же металл. Если считать э,д.с. положительной величиной, то положительное электричество [c.30]

    Электрическая энергия, вырабатываемая элементом (или цепью элементов), равна полезной работе А суммарного процесса, протекающего в элементе, который мы рассматриваем как термодинамическую систему. Полезная работа Л, процесса максимальна н равна убыли изобарного потенциала системы —AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и др.), протекающими обратимо. В том случае, когда процесс является обратимым, можно, заставляя элемент работать при почти полной компенсации его э.д.с. внешней разностью потенциалов, т. е. заставляя его находиться бесконечно близко к равновесию (этому состоянию и соответствует измеренная величина ), вычислить изменение изобарного потенциала системы AG через измеренную э.д.с..  [c.527]


    Потенциал металла покрытия измеряют на цельном электроде, считая, что диффузионные и кинетические ограничения, а также площадь электрода из-за пор практически не меняются. Затем строят поляризационную кривую для иокрытия, на нее наносят потенциал системы основа — металлическое покрытие и по нему определяют плотность тока коррозионного элемента. На рис. П.10 приведены коррозионные диаграммы двухэлектродных систем. Из приведенных графиков следует, что в электрохимическом отношении при одинаковых толщинах покрытий наиболее активна система железо-медь, а наименее активна железо—хром, чем объясняются высокие во многих случаях защитные свойства хромовых покрытий. Таким образом, возможность определения коррозионного тока, возникающего между основой и покрытием, позволяет оценить защитную способность покрытия и является объективным показателем пористости покрытия. [c.75]

    В состоянии равновесия электрохимический потенциал компонента в каждой из фаз системы является постоянной величиной. [c.282]

    Система, подчиняющаяся распределению Ферми, называется вырожденной и уровень электрохимического потенциала в ней находится выше, чем нижний энергетический уровень. Так, при температуре, близкой к абсолютному нулю, уровень электрохимического потенциала практически совпадает с верхним из заполненных энергетических уровней (см. рис. 5, а). В соответствии с этим величина — (ц + Б,, ) имеет отрицательное значение для всех энергетических уровней, расположенных ниже уровня 1, и положительное значение для более высоких уровней. >Из сказанного [c.40]

    Теоретически полная защита металла от коррозии при катодной поляризации возможна тогда, когда металлу будет сообщен потенциал более отрицательный, чем термодинамический потенциал металла. Величина защитного эффекта при некотором смещении потенциала Дф определяется катодной и анодной поляризуемостью Дф/Дг системы. Катодная защита эффективна тогда, когда металл обладает большой катодной поляризуемостью и малой анодной, т. е. для смещения потенциала системы до потенциала защиты фз нужны относительно небольшие токи. Во всех случаях электрохимическая защита эффективна в средах с достаточно высокой электропроводностью. Как правило, ее широко применяют для защиты от коррозии в морской воде, в почвах, в грунтовых водах и т. п. [c.141]

    Таким образом, при равновесии в системе, содержащей молекулы НС1, их электрохимический потенциал равен сумме электрохимических потенциалов атомов хлора и водорода. При равновесии в системе с молекулами воды справедливо следующее выражение  [c.33]

    Вводя понятие электрохимического потенциала (см. 3) мы считали, что в рассматриваемой системе частицы определенной химической природы (например, молекулы НС1) обладают единственно возможным значением полной потенциальной энергии. В об- [c.36]

    Таким образом, зная электрохимический потенциал для частиц данной химической природы, можно определить концентрацию их молекул на любом энергетическом уровне системы. [c.38]

    Поскольку термодинамическая концентрация частиц всегда меньше единицы, уровень электрохимического потенциала расположен ниже всех энергетических уровней системы (рис. 4, 6  [c.38]

    При установлении между окисной пленкой и объемом кристалла электронного равновесия в рассматриваемой системе образуется общий уровень электрохимического потенциала электронов, который не может проходить выше зоны проводимости и ниже валентной зоны. Поэтому энергетические уровни окисной пленки, оказывающие наибольшее влияние на величину коэффициента поверхностной рекомбинации, должны находиться вблизи уровня на расстоянии, не превышающем ширины запрещенной зоны для данного кристалла (см. рис. 53 и 58). Считая, что гидратированная окисная пленка вместе с адсорбированными в ней частицами подобна водному раствору, и обращаясь к рис. 53, мы приходим к выводу, что наиболее эффективными центрами рекомбинации в окисной пленке являются атомы или ионы элементов, располагающихся в правой части ряда напряжений металлов или металлоидов (см. стр. 192). Такими элементами являются водород, медь, серебро, золото, а также кислород и сера. Напомним, что именно для ионов этих элементов характерна высокая скорость электронного обмена при контакте металла или полупроводника с электролитом. Поэтому дe aнный [c.210]

    Вещества, способные создавать на поверхности корродирующего металла защитные оксидные пленки с участием его ионов. Следует различить прямое окисление поверхности металла добавкой, что, по-видимому, наблюдается крайне редко, и торможение анодной реакции со смещением потенциала до значения, при котором возможны разряд молекул воды или ионов гидроксида и адсорбция на металле образующихся атомов кислорода. Хемосорбировэнные атомы кислорода замедляют процесс коррозии как по каталитическому механизму (блокировка наиболее активных центров), так и по электрохимическому (создание соответствующего добавочного скачка потенциала). Количество кислорода на поверхности возрастает и создает сплошной моноатомный слой, который практически не отличим от поверхностного оксида. Оксид может образовываться и в результате окисления добавкой ионов металла, уже перешедших в раствор, до ионов более высокой валентности (например Ре до Ре ), способных образовывать с гидроксильными ионами менее растворимую защитную пленку. К таким веществам можно отнести большинство неорганических окислителей, потенциал которых выше равновесного потенциала системы Ре /Ре . [c.53]


    Электродный потенциал системь[ (2) зависит от pH и в нейтральной среде имеет значение -0,41 В. На катоде будет происходить процесс с большим электродным потенциалом, т.е электрохимическое восстановление воды [c.60]

    Осуществление реакции на поверхности катализатора вызывает изменение строения границы раздела катализатор — раствор или катализатор — газ и соответствующее изменение потенциала системы. Поэтому электрохимические (потенциометрический) методы весьма перспективны для исследования катализаторов и каталитических реакций с участием электромоторно-активных газов (водород, кислород, галогены и т. д.). [c.184]

    Если токообразующий процесс провести в обратимых условиях, то гальванический элемент произведет максимальную работу Атах, которая равна убыли изобарного потенциала системы — AG. Изменение изобарного потенциала вызвано совокупностью электрохимических реакций на обоих электродах, т. е. химической реакцией типа (V.1), либо другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и т. п.), протекающими обратимо. Заставляя элемент работать при почти полной компенсации его э.д.с. наложенной разностью потенциалов, т. е. при состоянии, бесконечно близком к равновесию, можно вычислить изменение изобарного потенциала системы AG через измеренную э. д. с. Действительно, если в химическую реакцию или в другой токообразующий физико-химический процесс вступили z г-экв каждого из участников процесса, то соответствующее количество электричества равно zF, а полезная работа электрического тока, равная убыли изобарного потенциала, определяется выражением [c.139]

    При рассмотрении равновесия в неоднородных системах (концентрация носителей меняется от точки к точке) с электрическим потенциалом ср термодинамика вводит (см. 3) так называемый электрохимический потенциал, определяемый равенством е/г = г — (р. [c.243]

    Потенциометрический анализ — метод определения концентрации ионов, основанный на измерении электрохимического потенциала индикаторного электрода, погруженного в исследуемый раствор. П-отенциомет-рический метод был разработан еще в конце прошлого столетия, после того как Нернст вывел уравнение, связывающее электродный потенциал с активностью (концентрацией) компонентов обратимой окислительно-восстановительной системы. В разбавленных растворах коэффициенты активности ионов близки к единице, а активность близка к концентрации, поэтому можно пользоваться уравнениями Нернста в концентрационной форме, а именно  [c.454]

    Особый случай представляют электрохим. системы, где присутствуют заряженные частицы, а в потенциалы G, Н, F, и дпя данной фазы вносит вклад электростатич. энергия (ре е - заряд фазы, <р - внутр. потенциал фазы). Дпя таких систем X. п. замнется во всех ур-ниях на электрохимический потенциал щ  [c.254]

    Решение. Стандартный электродный потенциал системы N3 + е" = Ма(-2,71 В) значительно отрицательнее потенциала водородного электрода в нейтральной водной среде (-0,41В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением водорода  [c.112]

    Система тилакоидных мембран хлоропласта превраш,а-ет энергию света в форму, которая может быть использована для осушествления химических реакций. Целиком процесс фотосинтеза был схематически представлен на рис. 10.1. В приводимом ниже обсуждении фотосинтеза рассматриваются три стадии. Первая стадия представляет собой световую реакцию — первичный процесс, с помош,ью которого энергия света поглощается светособирающими пигментами и переносится на фотохимические реакционные центры. На второй стадии поглощенная энергия света используется для осуществления транспорта электронов от воды до NADP+. В ходе электронного транспорта устанавливается градиент заряда, или концентрации протонов, через функциональные везикулы мембраны. Третья стадия представляет собой путь, по которому NADPH, образованный электронтранспортной системой, и АТР, генерируемый за счет различий электрохимического потенциала протонного градиента, используются для фиксации СО2 и синтеза углеводов. Хотя в целях упрощения процесс фотосинтеза разбит на три стадии, необходимо помнить, что поглощение света, транспорт электронов и генерация электрохимического градиента в действительности очень тесно сопряжены. [c.333]

    Мембраны не являются пассивными полупроницаемыми оболочками, но принимают прямое и очень важное участие во всех функциях клетки. Мембраны обеспечивают активный транспорт вещества, идущий в направлении, противоположном градиенту химического или электрохимического потенциала. В мембранах локализованы основные биоэнергетические процессы — окислительное фосфорилирование и фотосинтез. АТФ синтезируется в мембранах митохондрий, в тилакоидных мембранах хлоропластов зеленых растений. Есть основания думать о связи между рибосомами, на которых синтезируется белок, и мембранной системой эндоплазматического ретикулума. Репликация ДНК и хромосом, по-видимому, происходит с участием мембран. [c.333]

    Во-вторых, поскольку, согласно принципу Франка—Кондона, электронные переходы в ходе электрохимической реакции на межфазной границе происходят между уровнями равной энергии [6], то для эффективного переноса зарядов (т. е. протекания электрохимической реакции на границе раздела) необходимо перекрывание уровней энергии в растворе электролита и в разрешенной зоне в твердом теле. Поэтому, например, электродные реакции, уровень электрохимического потенциала которых лежит вблизи потолка валентной зоны , обменивают заряды между раствором и алмазом весьма эффективно. Это согласуется с обсуждавшейся выше (рис. 27) зависимостью скорости реакции от равновесного потенциала окислительно-восстановительных систем. Мы видим, в частности, что уровень электрохимического потенциала системы Ре(СК) расположен близко к валентной зоне и очень далеко от зоны проводимости. Очевидно поэтому, что электродные реакции с участием ионов Fe( N)g и Ре(СК) протекают с участием валентных электронов алмаза, а не электронов зоны проводимости. Более детальньгн анализ годографов импеданса, подобных изображенным на рис. 31а (см. так- [c.56]

    Величина fi,- названа электрохимическим потенциалом (Гуг-генгейм) он равен энергии Гиббса 1 моль иона определенного типа или электрона в данной системе и при данном ее состоянии, т. е. при фиксированном составе, давлении и температуре. Подобно химическому потенциалу для незаряженных частиц электрохимический потенциал определяет направление процесса, приводящего к выравниванию его значения как внутри каждой фазы, так и во всей системе в целом. Электрохимический потенциал широко используют для описания распределения ионов и электронов между фазами, мембранных равновесий и процессов, протекающих в гальванических элементах. [c.424]

    Теперь мы можем понять, как действует переход на границе полупроводник — жидкость. Когда полупроводниковый электрод погружен в содержащий окислительно-восстановительную пару (редокс-пару) раствор, химические потенциалы электрода и раствора должны быть одинаковыми, если не приложена внешняя сила. Тогда зоны в полупроводнике искривляются так, чтобы привести в соответствие уровень Ферми и окислительновосстановительный потенциал (редокс-потенциал). Направление искривления зависит от конкретной системы, но для материалов л- и р-типов искривление обычно происходит в направлении, показанном на рис. 8.19, а и в. Освещение поверхности электрода может приводить к переводу электронов из валентной зоны в зону проводимости. Градиенты поля на границе раздела электрод — жидкость будут способствовать, как и в случае твердотельного полупроводникового перехода, разделению вновь образующихся электронов и дырок. В случае направленного вверх изгиба, как на рис. 8.19, а, электроны движутся в глубь полупроводника, а дырки покидают поверхность раздела и уходят в раствор для окисления редокс-пары. Если затем внешней цепью соединяются полупроводниковый электрод и лротйвоэлектрод, также погруженный в раствор, то электроны будут течь от полупроводникового к противоэлектроду (восстанавливая ионы в растворе вблизи него). Таким образом, полупроводниковый электрод становится фотоанодом (рис. 8.19,6). Вследствие электрохимического потенциала /р, возникающего благодаря вентильному фотоэффекту, потенциал Ферми и редокс-потенциал становятся разделенными барьером 11 . На рис. 8.19, г показана аналогичная энергетическая диаграмма для поглощения света материалом р-типа, из которого электроны уходят в раствор, восстанавливая редокс-пару. В этом случае полупроводниковый электрод является фотокатодом. [c.277]

    Электрохимические элементы часто применяют для того, чтобы определить изменение изобарного потенциала химической реакции. Электрическая энергия, вырабатываемая элементом, работающим обратимо, равна полезной работе суммарного процесса, протекающего в элементе, который рассматривается как термодинамическая система. Как известно, полезная работа обратимого процесса является максимальной и равна изменению изобарного потенциала системы AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и т. д.), протекающими обратимо. Если процесс является обратимым, можно заставить элемент работать в условиях почти полной компенсации ЭДС элемента подключением внещ-ней разности потенциалов. При этом можно провести процесс в электрохимическом элементе бесконечно медленно, приближаясь бесконечно близко к состоянию равновесия. Такому процессу и соответствует измеренная величина , зная которую можно вычислить изменение изобарного потенциала системы AG. [c.244]

    Уже давно было отмечено, что проводимость приповерхностной области как легированных бором, так и не легированных (диэлектрических) алмазных пленок на воздухе часто превышает объемную проводимость алмаза [57]. Образование проводящего канала объясняли наличием поверхностных состояний на поверхности алмаза [58] (как это принято в физике полупроводников) но было вьщвинуто и электрохимическое объяснение [59]. Именно, предполагается, что на поверхности алмаза конденсируется влага в пленке воды растворены газы (например, СО ) и соли, которые образуют окислительно-восстановительную систему. Если эта система находится в электрическом равновесии с твердым телом, то при соответствующем значении электрохимического потенциала она может вызвать обогащение поверхности алмаза дырками. Аналогичным образом обстоит дело и в растворах, причем возникновение проводящего канала зависит от степени окисленности поверхности, pH раствора и других факторов [60]. Само явление образования такого канала может быть использовано при разработке электрохимического полевого транзистора , в котором ток, протекающий в канале, регулируется внешним напряжением, прикладываемым к алмазу с помощью вспомогательного электрода- сетки , находящегося в растворе [61, 62]. [c.21]

    В работах лабораторий Либермана п Скулачева расположение дыхательной цепи определялось по ее способности образовывать мембранный потенциал. В среду вводились различные доноры и акцепторы электронов, не проникающие сквозь мембрану. Оказалось, что эти вещества взаимодействуют лишь с цитохромом с в митохондриях. Установлено, что транспорт протонов и (или) электронов по дыхательной цепи действительно происходит. В других экспериментах определена локализация компонентов в мембране митохондрий. На рис. 13.10 показано вероятное расположение цепн. Согласно хемиосмотической гипотезе, любая сопрягающая система должна создавать электрохимический потенциал понов Н ". Действительно, опыты с проникающими синтетическими ионами показали возникновение А1 5 в митохондриях, СМЧ, хлоропластах (см. гл. 14) и мембранах бактерий. В то же время теория Митчелла встречается с трудностями и вызывает возражения. Блюменфельд приводит аргументы, показывающие невозможность построения машины Митчелла в конденсированной фазе. В такой машине АТФ-синтетаза использует разность концентраций протонов в водной фазе по обе стороны мембраны для выполнения внешней работы. Это — энтропийная машина, получающая энергию из термостата в форме кинетической знергип протонов. Нротоны движутся преимущественно по градиенту концентраций и передают свои импульсы подвижным частям машины разность потенциалов А1 5 расходуется на создание [c.437]

    В этой главе рассматриваются компоненты мембран клетки, регулирующие и обеспечивающие транспорт ионов, особенно Na+ и К+ (рис. 6.1). Подобные мембранные системы, расходуя метаболическую энергию клетки, могут перекачивать ионы из менее концентрированного в более концентрированный раствор (активный транспорт, ионный насос). В результате теплового движения и под действием электрохимического потенциала ионные токи л-югут менять направление без потребления метаболической энергии (пассивный транспорт). Для проведения нервного импульса энергетически необходимы оба процесса — активный транспорт ионов против градиента концентрации (как бы в гору) и пассивная диффузия по градиенту (как бы с горы). Таким образом, чтобы поддерживать ионный баланс, пассивные ионные токи должны компенсироваться активным транспортом. Здесь рассматривается только пассивный ионный транспорт активный транспорт и его Na+, К+-насос, движущей силой которого является энергия, высвобождаемая в результате гидролиза АТР (Na, К-зависимая АТРаза, или Na+, К -насос),. обсуждаются в гл. 7. Такое подразделение уже указывает на то, что в процессе принимают участие биохимически различные структуры. Существует несколько доказательств в пользу этого. [c.130]


Смотреть страницы где упоминается термин Электрохимический потенциал системы: [c.92]    [c.227]    [c.354]    [c.374]    [c.492]    [c.496]    [c.259]    [c.167]    [c.492]    [c.496]    [c.100]    [c.112]    [c.366]    [c.33]    [c.23]    [c.169]    [c.52]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал электрохимический



© 2025 chem21.info Реклама на сайте