Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связующие тиксотропные

    Если вязкость связующего настолько низка, что при определенных условиях может произойти стекание связующего с волокон, ткани или листов наполнителя, отжим связующего при формовании и т. п., в состав его вводят загустители или тиксотропные добавки. Загустителями обычно служат полимеры или высоковязкие олигомеры, растворяющиеся в связующем, тиксотропными добавками— тонкодисперсные порощки с высокой поверхностной энергией, например коллоидальная окись кремния (аэросил), бентонит и т. п. [c.78]


    Пластичные смазки, а в определенной степени и парафинистые масла, при низких температурах являются тиксотропными системами. При нагружении таких систем в момент достижения предела прочности при сдвиге лавинообразно разрушаются основные связи в структурном каркасе. Это соответствует скачкообразному снижению предела прочности от измеряемой величины до нуля. После перехода за предел прочности смазка становится жидкостью. При снятии нагрузки между фрагментами дисперсной фазы (частицами загустителя) практически мгновенно возникают новые связи и формируется новый структурный каркас. Если бы размер и форма частиц дисперсной фазы, прочность и число контактов между ними при деформировании смазки не менялись, то и все свойства смазки сохранились бы неизменными. Фактически дело обстоит сложнее. [c.274]

    Системы, у которых напряжение сдвига изменяется не пропорционально скорости сдвига, называются неньютоновскими. В случае проявления неньютоновского течения для системы характерна зависимость вязкости от напряжения сдвига г = г](Р). Чтобы отличить такую вязкость от ньютоновской, ее называют структурной , так как часто эта зависимость связана с разрушением структуры системы под действием напряжений. Чтобы отличить обе вязкости, ньютоновская обозначается т]о, а структурная — т]. Структурная вязкость т], зависящая от напряжения или скорости деформации, для различных веществ наблюдается при переходе структуры из неориентированного в ориентированное состояние (ориентационные эффекты), обратимом (тиксотропном) разрушении структуры, при увеличении скорости деформации сдвига и уменьшении энергии активации процесса течения. [c.148]

    Учитывая значения энтропии, соответствующие выделенным участкам кривых, можно считать, что в первой области скоростей сдвига имеет место течение жидкости с практически неразрушенной структурой, когда разрушаемые связи успевают полностью восстанавливаться. Принципиально иная картина имеет место в области более высоких скоростей деформирования - разрушение поперечных связей не компенсируется в условиях больших силовых полей и жидкость течет с постоянной вязкостью предельно разрушенной структуры. Соответственно возрастает величина энтропии по сравнению с начальным участком течения. Промежуточная область скоростей сдвига, характеризуемая максимальными значениями энергетических параметров течения, отражает процесс тиксотропного разрушения пространственной сетки, вся кривая в целом - течение структурированной жидкости со структурой коагуляционного типа. [c.24]


    Тиксотропия коллоидных растворов объясняется тем, что механическое воздействие вызывает разрушение структуры, что в свою очередь приводит к снижению сопротивления деформации. Со временем структура самопроизвольно восстанавливается, с чем связано тиксотропное застудневание. Очевидно, что время восстановления структуры зависит от степени её разрушения, сопротивления движению частиц со стороны дисперсионной среды (ее вязкости) и свойств самих частиц. Этим объясняется влияние перечисленных факторов на тиксотропию. Тиксотропия эмульсий и неструктурированных растворов полимеров связана с деформацией частиц и молекул под нагрузкой и замедленным восстановлением их первоначальной формы после снятия напряжения. [c.224]

    На основании рассмотрения сил притяжения и сил отталкивания между двумя частицами и количественного их проявления при сближении частиц можно рассчитать потенциальную энергию сближающихся частиц по соответствующим формулам и определить равновесное расстояние, на которое подойдут частицы друг к другу. Очевидно, энергия притяжения между сближающимися частицами возрастает. Максимального значения энергия притяжения достигла бы при полном слиянии частиц. Энергия отталкивания возрастает с уменьшением расстояния между частицами. В результирующем взаимодействии между частицами можно выделить минимум потенциальной энергии при достаточно больших расстояниях между сольватированными частицами, максимум потенциальной энергии — при средних значениях расстояний между частицами и снижение потенциальной энергии при малых расстояниях между частицами, которое определяет межмолекулярное связывание частиц друг с другом с энергией около 20 кДж/моль. Такое состояние является теплоустойчивым состоянием, то есть тепловой формы движения недостаточно для разрушения указанной связи частиц и в системе может быть создана пространственная сетка, которая легко разрушается при механическом встряхивании или нагревании. Такие системы обладают тиксотропными свойствами. [c.65]

    Консистентные смазки, как коллоидные системы, обладают тиксо-тропными свойствами. При перемешивании и других механических воздействиях первоначальная их структура нарушается, после более или менее длительного пребывания в покое она восстанавливается. Однако при тиксотропном восстановлении механические свойства консистентных смазок далеко не всегда достигают первоначальных значений, имевшихся до нарушения структуры. Это можно объяснить тем, что не все связи структурного каркаса консистентной смазки, разрушенные при механическом воздействии, способны к полному восстановлению. [c.196]

    Конденсационно-кристаллизационные структуры (хрупкие гели) образуются за счет химических связей между частицами либо путем сращивания кристалликов твердой фазы. Таким образом, между частицами дисперсной фазы возникают непосредственные фазовые контакты. Эти структуры жестки и хрупки они не способны к набуханию и в них не происходит синерезис. Прочность таких структур выше, чем коагуляционных, однако после механического разрушения химические и кристаллизационные связи не восстанавливаются самопроизвольно. Вследствие этого в таких системах отсутствуют тиксотропные свойства, а также эластичность и пластичность. Типичным представителем конденсационных структур является гель кремниевой кислоты. Кристаллизационные структуры образуются при твердении минеральных вяжущих материалов цементов, гипса, извести. [c.475]

    Тиксотропное структурообразование — это самопроизвольный процесс, протекающий в изотермических условиях тиксотропные связи обратимы, они восстанавливаются в результате сближения дисперсных частиц (волокон, лент) на расстояние действия межмолекулярных сил при тепловом движении в жидкой среде без термической обработки. [c.669]

    При напряжении сдвига та достигается предел прочности структурного каркаса и начинается его хрупкая деформация. При этом смазка должна бы перестать существовать как единое тело, но благодаря тиксотропным свойствам разрушенные связи восстанавливаются. В точке кривой, соответствующей напряжению сдвига хз, восстанавливаются не все разрушенные связи- и насту- [c.358]

    Кинетика тиксотропного разрушения и восстановления пластичных смазок впервые изучена Д. С. Великовским. Обобщенная кривая тиксотропного разрушения и восстановления смазок приведена на рис. 98. При механическом воздействии прочность смазок вначале резко понижается, далее устанавливается равновесие между разрушенными и восстановленными связями. Конечная прочность разрушенной структуры зависит от интенсивности механического воздействия и состава смазки. Увеличение концентрации и уменьшение размеров частиц (до определенных пределов) способствуют улучшению механической стабильности смазок. [c.361]


    Каждая тиксотропная связь имеет среднее время жизни [c.227]

    Предполагается, что продолжительность импульса в тиксотропной составляющей течения контролируется скоростью сдвига. Однако, если энергия, необходимая для разрыва связи, много меньше кТ, тогда связи разрушаются главным образом под влиянием тепловой энергии и превалирует ньютоновское течение. При этих условиях вероятность разрыва связей в секунду выражается как [c.228]

    Структура истинно тиксотропных жидкостей характеризуется наличием сравнительно устойчивой пространственной сетки межмолекулярных связей. Очевидно, что такой структурный каркас обладает определенной сдвиговой прочностью. При при- [c.166]

    Регистрация при реологических измерениях предельного напряжения сдвига свидетельствует о существовании трехмерного каркаса в системе, образуемого в основном частичками кокса. С повышением содержания связующего наступает состояние, при котором структурный каркас разрушается, и композиция становится неупругой жидкостью [2-129], склонной к тиксотропному восстановлению своей структуры в отсутствие внешних возмущающих воздействий. [c.135]

    Эти результаты прямо указывают на то, что иммобилизация воды в дисперсиях гидрофильных веществ и структурообразо-вание тесно связаны между собой. Тиксотропная коагуляционная структура, по-видимому, формируется при взаимном влиянии поверхности гидрофильных частиц на структуру полислоев воды и их свойства, а структура гидратных оболочек — на характер ориентации и силы сцепления частиц твердой фазы друг с другом. Связанная вода во многом обусловливает те свойства, которые присущи коагуляционным структурам пониженную механическую прочность, способность к замедленной упругости и т. д. [135]. Вместе с тем в результате формирования коагуляционной сетки в дисперсии заметно снижается молекулярная подвижность иммобилизованной воды [136], изменяется также кинетика ее удаления из дисперсии [137]. Уже отмечалось, что в процессе структурообразования дисперсий монтмориллонита (перехода золь — гель) наблюдается обратимое увеличение объема дисперсии. Это указывает не только на понижение плотности граничных слоев воды при структуриро- [c.44]

    Процессы разрушения структуры отчетливо наблюдаются в тиксотропных дисперсных системах. В связи с этим важно сравнить результаты, следующие из уравнения (6.4), с экспериментальными данными. Известно, что сегменты макромолекулы, например эластомеров, содержат примерно 30—40 углеродных атомов в цепи главной валентности, что соответствует длине отрезка цепи 3,5— 5 нм. Так как расстояние между цепями в полимере примерно равно 0,5 нм, объем сегмента составляет (0,9ч-1,2) 10- см . Подстановка характерного для полимеров объема сегмента (шэ= 10 2 см ) в (6.4) приводит к выводу [6.5 6.6], что уравнение не дает какого- [c.149]

    Сцепление элементов конденсационных структур осуществляется путем образования химических связей, что обусловливает значительную прочность этих структур. Конденсационные структуры не тиксотропны и не пластичны, это упруго-хрупкие, необратимо разрушаемые структуры, в отличие от тиксотропно-обратимых коагуляционных структур. [c.314]

    Специфическим свойством коагуляционных структур является их способность к тиксотропным превращениям, т. е. к изотермическому переходу гель < золь. Сущность этого явления состоит в том, что разрушенные при наложении сдвигающего усилия связи между частицами геля могут восстановиться и вновь образовать структуру. Из других свойств гелей следует отметить способность к ползучести — медленному течению без заметного разрушения пространственной структуры — и синерезису — постепенному уплотнению структуры геля, сопровождающемуся выделением дисперсионной среды из петель сетки. [c.475]

    В отличие от тиксотропных, структуры, в которых связи между частицами образуются за счет химического взаимодействия или в результате сращивания кристалликов, разрушаются необратимо, так как силы такого рода действуют на очень коротких расстояниях. В качестве примера системы, структура которой разрушается практически необ- [c.132]

    Рассмотрим дисперсные системы с тиксотропной структурой. Тиксотропия — способность структуры к самопроизвольному (в результате броуновского движения) восстановлению во времени связей, разрушенных в результате механических воздействий, вязкость которых зависит от напряжения сдвига. Если к жидкости приложены напряжения, не превышающие предела прочности структуры, то происходит медленное течение с постоянной вязкостью т],,. При очень медленном течении структура либо совсем не разрушается, либо если и разрушается, то успевает вновь восстановиться за счет броуновского движения. Вязкость ч]о отвечает структуре, в которой разрушенные под влиянием внешних сил связи полностью восстанавливаются за счет броуновского движения. Такая структура получила название практически неразрушенной структуры, а вязкость — г)о — вязкости практически неразрушенной структуры. При дальнейшем повышении напряжения разрушение структуры превышает ее восстановление за счет броуновского движения, вязкость начинает падать, причем [c.134]

    Реологические свойства рассмотренных жидкостей не зависят от ьремени. По есть группа жидкостей, не подч 1Няющихся подобной закономерности. К ним относятс реопектические и тиксотропные жидкости. Эффективная вязкость реопе тических жидкостей увеличивается со временем, а тиксотропных — уменьшается при условии постоянства С <орости сдвига. Подобные свойства этих жидкостей связаны с разрушением ix структуры и ее восстановлением. Их необходимо учитывать при расчетах пусковых характеристик оборудования. [c.143]

    При перемешивании структурированная суспензия может превратиться в неструктурированную, т. е. состоящую из отдельных несвязанных одна с другой частиц. Обратимое изотермическое разрушение и восстановление связей между частицами в структурированной дисперсной системе получило название тиксотропш, а сами дисперсные системы с такими свойствами — тиксотропными. Структурированное состояние является характерным для подавляющего числа технических суспензий. [c.146]

    В заключение отметим, что формирование слоев связанной воды вблизи поверхности силикатных частиц коллоидных размеров тесно связано с формированием коагуляционной сетки в дисперсии. Из работ [132—134] следует, что формирование гиксотропной структуры в дисперсиях монтмориллонита приводит к заметному увеличению так называемого всасывающего давления я — величины, которая измеряется с помощью тен-зиометров и характеризует способность почвы при соприкосновении с чистой водой впитывать ее в себя. По величине я легко определить изменение химического потенциала связанной воды граничного слоя по сравнению с объемной, а по зависимостям я от температуры — парциальные молярные энтальпии и энтропии связанной воды. Перемешивание дисперсий (разрушение тиксотропной структуры) приводило к резкому уменьшению значений я. Получаемые на их основе парциальные термодинамические функции связанной воды практически не отличались от таковых для объемной воды. Тиксотропное структу-рообразование, наоборот, вызывало повышение значений я, а термодинамические характеристики связанной в структурированной дисперсии воды были существенно иными, чем в объемной воде [133]. [c.44]

    Мыльные консистентные смазки товарного ассортимента имеют конденсационную и тиксотропную структуры. После слива из варочных котлов подавляющее большинство мыльных смазок имеет конденсационную структуру. При гомогенизации смазок путем их механической обработки на вальцах, в специальных гомогенизаторах и других перетирочных машинах, часть конденсационных структурных элементов разр)гшается, смазка становится мягче, пластичней, более гладкой. В дальнейшем при отсутствии механического воздействйя между отдельными частицами образуются только тиксотропные связи. Но и после гомогенизации в смазках сохраняется часть конденсационной структуры, которая с каждой последующей механической обработкой (например, при работе смазки в подшипнике) все больше и больше разрзгшается. С этим приходится считаться при применении смазок в узлах трения. Чтобы смазка длительное время работала без существенного изменения, хорошо удерживалась в подшипниках, не сбрасывалась и не вытекала [c.669]

    Различие, на которое впервые ясно указал Каргин (см. гл. V), состоит в том, что при продольном течении с увеличением градиента скорости, разворачивающего макромолекулы, вязкость не убывает, а, напротив, возрастает. Это связано с возникновением положительной обратной связи между степенью деформаЩии (растяжения) и напряжением 22], в то время как при сдвиговой вязкости обычно имеет место отрицательная обратная связь, проявляющаяся как тиксотропная аномалия вязкости. Исследовано четыре варианта продольного течения [см. сноску на стр. 177], причем отмечено несоответствие ориентации основных компонент тензоров деформации и напряжения при сдвиговом течении и совпадение их ориентаций при продольном. Этих соображений, однако, недостаточно, чтобы объяснить своеобразные аномалии продольной вязко- [c.220]

    Исходный гидрат при получении т)-оксида алюминия — байерит. Осаждение проводят при pH 10—12, байерит выпадает в виде крупных, малогидратироваиных и рыхлоупакованных кристаллов, промежутки между которыми, как и в случае осадка бемита, заполнены коллоидно-связанной водой, но связь ее с гидратом менее прочна, чем у бемита. Осадки байерита тиксотропны, при растирании выделяют часть воды и разжижаются. При высыхании и прокаливании коллоидно-связанная вода удаляется, образующиеся пустоты создают систему макропор. Одновременно при прокаливании происходит распад крупных кристаллов байерита 30—70 нм) в мелкие кристаллы т1-оксида алюминия (2—3 нм). Поверхность байерита составляет 50—80 м г, а поверхность т)-оксида алюминия — 400— 500 м /г. Чистый байерит не удается сформовать в прочные гранулы. [c.67]

    Гудив распространил на псевдопластичность концепцию о том, что складываются два независимых эффекта. Он полагал, что на режим течения концентрированных эмульсий и дисперсий влияют ньютоновский эффект, при котором сдвигающая сила пропорциональна скорости сдвига, и тиксотропный эффект, при котором сдвигающая сила постоянна независимо от скорости сдвига. Между частицами, находяпщмися в контакте, устанавливаются связи во время сдвига эти связи растягиваются, искривляются, рвутся и восстанавливаются. Этот процесс сопровождается переносом количества движения (кинетической энергии) от движущегося слоя к соседнему более медленно движущемуся слою [c.227]

    Ньютоновский и тиксотропный эффекты, выраженные уравнениями (IV.57) и ( .58), выведены следуюпщм образом. Сила Р. , противодействующая искажению связей в тиксотропной составляющей, дается в виде [c.227]

    Образование и разрушение связей происходит под влиянием как сдвига, так и броуновского движения. Гудив (1939) полагал, что эффектом, вызванным последним фактором, можно пренебречь в простых тиксотропных системах, в системах со слабым броуновским движением и ирп высоких скоростях сдвига. Джиллесии (1960а, Ь) обобщил эти выводы, рассмотрев эффекты, вызываемые броуновским движением. Однако его теория применима лишь для не очень концентрированных эмульсий (с объемной долей Ф -<0,3), так как основана на [c.228]

    Характерная особенность смазок — быстрое восстановление разрушенных связей между частицами дисперсной фазы и приобретение ими свойств твердого тела после снятия нагрузки. Она проявляется в уменьшении предела прочности и вязкого сопротивления при механическом воздействии на смазки и в последующем полном или частичном восстановлении этих свойств после снятия нагрузок. Характер такого восстановления зависит от структуры смазок. Структура смазок может быть двух видов конденсационная, образующаяся после охлаждения расплава и не восстанавливающаяся после снятия механического воздействия, и обратимая (тиксотропная), восстанавливающаяся после снятия механического воздействия в большей или меньшей степени. Тиксотропное восстановление структуры очень важно для оценки свойств смазок, особенно предназначенных для опфьггых узлов трения. [c.355]

    Необходимость ретулирования тиксотропных свойств буровых растворов часто возникает в связи с потерей структуры при стабилизации их химическими реагентами, при поступлении в раствор солей пластовых флюидов и разрушаемых горных пород. [c.57]

    При вводе ультрадисперсных оксидов металлов в водную суспензию на основе талюма или талюм-гипсовой смеси в период вязкопластичного состояния во время приготовления исходной композиции катализаторного покрытия прочность контакта между оксидами металлов и цементом обеспечивается вандерваальсовской и водородной связями. При этом образуется тиксотропная коагуляционная структура с повышенным уровнем сцепления частиц [108]. Можно полагать, что оксиды металлов ультрадисперсных систем ведут себя в водной суспензии катализаторного покрытия аналогично песку (оксид кремния) в строительных цементных растворах. В анализируемых экспериментах наибольшая механическая прочность катализаторных покрытий наблюдалась при соотношении та-люм-УДП, равном 1 (2-3). Необходимо отметить, что в нашей стране растворная цементная смесь в строительстве изготавливается из одной ма ссовой части цемента и трех массовых частей стандартного кварцевого песка, в США при определении механической прочности образцов бетона при сжатии применяют раствор состава (цемент - песок) 1 2,75, а II Японии при определении сжатия и изгиба - раствор состава 1 2 [109]. [c.139]

    Измерения предельного напряжения сдвига и скорости сдвига показали, что прядение зависит от тиксотропных свойств пеков. Было установлено, что реологические свойства мезофазнЕлх пеков связаны не только с содержанием веществ, нерастворимых в пиридине (хинолине), но и с распределением относительных молекулярных масс в этих фракциях пека. [c.609]

    В состоянии тиксотропного равновесия, т. е. при у > 71, первое слагаемое уравнения (VI 1.53) в точности равно в соответствии с (VII.40) удельной энергии связи час1иц [c.210]

    Тпксотропия — явление довольно распространенное. Оно наблюдается в золях V2O5, WO3, РегОз, в различных суспензиях бентонита, в растворах вируса табачной мозаики, миозина. Причем тиксот-ропныегели легче всего образуются у золей, обладающих асимметричным строением частиц (например, палочкообразной формы). Тиксотропные структуры возникают лишь при определенных концентрациях коллоидных частиц и электролитов. Для обратимого (тиксотропного) застудневания требуется определенное значение дзета-потенциала, лежащее выше критического. В этом случае заряд коллоидных частиц хотя и понижен, но не в такой степени, что- бы начался процесс коагуляции. В этих условиях уже становятся заметными силы взаимодействия между отдельными частицами дис- персной фазы, они образуют своеобразную сетку, каркас. При сильном встряхивании связь между частицами дисперсной фазы нарушается — тиксотропный гель переходит в золь. В состоянии покоя связи в результате соударения частиц при броуновском движении восстанавливаются, золь вновь переходит в тиксотропный гель и т. д. [c.379]

    Некоторые студни полимеров обладают явно выраженными тиксотропными свойствами. У таких студней прочность связей между макромолекулами должна быть достаточно малая, чтобы они могли легко разрушаться под действием приложенного усилия сдвига. Кроме того, у подобных студней должен быть достаточно узкий спектр молекулярных контактов. Студни, у которых этот спектр размыт, обычно не проявляют тиксотропии. В самом деле, когда связность структуры нарушается путем механического воздействия, при узком спектре молекулярных контактов больш11НСТво связей разрушается и затем восстанавливается при стоянии системы. Эт5 и составляет сущность явления тиксотропии. Если же спектр контактов широкий, разрушается только небольшое число связей, обладающих наименьшей прочностью. Система распадается на большие куски, которые не могут соединиться и образовать структуру с первоначальным значением критического напряжения сдвига. [c.487]

    Застуднение материала сначала происходит в результате взаимодействия между гидратными оболочками соседних частиц (образование коагуляционной структуры по П. А. Ребиндеру). Водородные связи, образующиеся между молекулами воды этих оболочек, сравнительно слабы и не препятствуют тиксотропному разжижению геля. [c.184]


Смотреть страницы где упоминается термин Связующие тиксотропные: [c.215]    [c.198]    [c.275]    [c.340]    [c.11]    [c.12]    [c.12]    [c.151]    [c.152]    [c.81]    [c.137]   
Коррозия (1981) -- [ c.469 ]




ПОИСК





Смотрите так же термины и статьи:

Тиксотропня

тиксотропные



© 2025 chem21.info Реклама на сайте