Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды открытие

    Ароматические углеводороды, не содержащие боковых цепей, 1 ак, например, бензол, нафталин, или содержащие короткие боковые цепи — толуол, ксилол, весьма устойчивы в условиях высоких температур и не подвергаются распаду. Длинные боковые цепи ароматических углеводородов в условиях термического крекинга отрываются, ядро же ароматического углеводорода остается неизменным. В результате образуется более простой ароматический углеводород и предельный или непредельный углеводород с открытой цепью. [c.227]


    С формалином и серной кислотой все ароматические углеводороды, имеющие хотя бы один незамещенный водородный атом, образуют так называемые формолиты — высокомолекулярные продукты конденсации, но растворимые в ароматических и других углеводородах. Количественное значение этой реакции невелико, зато для качественного открытия ароматических углеводородов, независимо от их молекулярного веса, формолитовая реакция является наиболее удобной и убедительной. [c.110]

    Избирательный дегидрогенизационный катализ, открытый и разработанный акад. Н. Д. Зелинским [1] н его школой, имеет не только теоретический, но и большой практический интерес. Это открытие дает возможность изучать химический состав нефти, облагораживать бензиновую фракцию, ароматизировать бензиновую и керосиновую фракции, что имеет весьма большое народнохозяйственное значение. Ароматические углеводороды являются весьма желательными составными частями бензина, поэтому, чем больше ароматических углеводородов содержит бензин, тем он ценнее, как сырье для получения ароматических углеводородов. Большинство природных бензинов не содержат в достаточном количестве ароматических углеводородов. Метод акад. [c.185]

    Пожаро- и взрывоопасность трубчатых печей с наружным огневым обогревом связана с источниками открытого огня, пожаро- и взрывоопасностью нагреваемых продуктов, образующих с воздухом взрывоопасные газо- и паровоздушные смеси. Пары ароматических углеводородов, входящих в состав нефтепродуктов и образующихся при их нагревании в процессах пиролиза, значительно тяжелее воздуха (бензин в 2,7 раза, толуол в 3,2 раза и т. д.), они могут скапливаться внизу производственных помещений, на территории предприятия, в траншеях, колодцах, создавая локальные очаги взрывоопасных паровоздушных смесей.  [c.134]

    Хойт [229] предложил рефрактометрический способ для суммарного количественного определения ароматических углеводородов в бензинах прямой гонки. Однако Добрянский считает, что рефрактометрическое определение содержания ароматических углеводородов в бензине не может претендовать на точность больше 1—2% (абсолютных), т. е. содержание 1% ароматических углеводородов в бензине может быть не открыто. [c.488]

    На рис. 2.10 приведена фазовая диаграмма равновесия, показывающая систему с малой растворимостью ароматических углеводородов к-гептан — толуол — Н-метилпирролидон с 10% Н2О [15]. Такая система называется открытой. При возврате ароматического углеводорода в экстрактор из экстрактной фазы можно выделить ароматический углеводород требуемой чистоты. [c.48]


    Эта реакция, открытая еще в начале XX века Н. Д. Зелинским, заключается в том, что углеводороды ряда циклопентана и циклогексана и их гомологи в присутствии некоторых катализаторов при повышенной температуре превращаются в ароматические углеводороды, причем в случае производных циклопентана происходит расширение цикла (из пятичленного в шестичленный)  [c.258]

    В этой группе в зависимости от характера углеводородов, направления процессов и получаемых продуктов надо различать следующие типы реакций 1) дегидрирование полиметиленовых углеводородов 2) дегидрирование ароматических углеводородов (дегидроконденсация) 3) дегидрирование углеводородов с открытой цепью и [c.252]

    Ранее процессы полимеризации применялись в промышленном масштабе только для получения высокооктановых топлив из крекинг-газов. В настоящее время неуклонно растет значение этих процессов для получения таких нефтехимических продуктов, как гептен, димер, тример, тетрамер и пентамер пропилена, а также алкилиро ванных ароматических углеводородов —этилбеизола, изопропилбензол а, цимола и бутилбензола. Можно ожидать, что по мере открытия новых областей применения высших олефинов этот описок будет непрерывно увеличиваться. [c.254]

    Ароматические углеводороды бы.1ш впервые открыты в нефтях и систематически изучены В. В. Марковниковым и В. Ог.поб- [c.31]

    Так же почти обстоит дело и с открытием химических соединений. До появления структурных теорий А. Кекуле и А. М. Бутлерова все органические соединения (парафиновые и ароматические углеводороды, спирты, амины и т. д.) были открыты неожиданно, как нечто принципиально непредвиденное. С появлением же структурных теорий появилась возможность не только предвидеть, ио прямо-таки планировать открытие до того неведомых новых соединений путем их синтеза. [c.228]

    Чистые парафиновые углеводороды проверяют на отсутствие в них следов ароматических углеводородов и олефинов. Составьте и подробно опишите методику для открытия этих примесей в чистых жидких предельных углеводородах. [c.331]

    Рафинатная часть состоит в основном из алканов, цикланов и части ароматических углеводородов циклические углеводороды имеют в молекуле небольшое число циклов с длинными открытыми углеводородными цепями такие углеводороды приближаются по свойствам к алканам. К экстрактной части относятся полициклические ароматические углеводороды и цикланы с короткими алкильными цепями, а также нафтеновые кислоты, смолы, асфальтены и прочие соединения, содержащие в молекуле кислород, серу, азот. [c.342]

    При помощи специальных катализаторов (например, платинированного угля) при 300—310° С ароматические углеводороды могут быть получены из предельных и непредельных углеводородов с открытой цепью. Процесс заключается в отщеплении водорода [c.338]

    Ценность нефти как химического сырья повышается еще и в результате того, что в ней содержатся не только алканы, но и другие углеводороды. Мы уже упоминали о том, что некоторые месторождения дают нефть со значительным содержанием ароматических углеводородов. Однако все же процент этих углеводородов в нефти не очень велик. Важное значение имеет то, что в нефти содержатся также углеводороды с циклопентановым и циклогексановым скелетами. Особенно много таких углеводородов в бакинской нефти. Здесь они были в прошлом столетии открыты В. В. Марков-никовым и получили название нафтенов. [c.134]

    Парафиновые углеводороды, содержащие в молекуле достаточное количество углеродных атомов для замыкания шестичленного цикла, в результате дегидроциклизации образуют ароматические углеводороды, которые вследствие своей высокой реакционной способности находят обширное применение в органической химической промышленности. Эта реакция была открыта одновременно и независимо друг от друга Б. А. Казанским и А. Ф. Платэ [2], Б. Л. Молдавским с сотрудниками [З], В. И. Каржевым, М. Г. Северьяновой к [c.108]

    Состав бензинов и других фракций каталитического крекинга определяется способностью катализаторов крекинга (алюмосиликатов) вызывать изомеризацию и диспропорционирование водорода. В результате этих процессов в каталитических крекинг-бензинах преобладают разветвленные парафины, разветвленные олефииы с открытой цепью, алкилциклопентаны, циклопентены и ароматические углеводороды. В табл. 3 и 4 ясно показано, что нормальные парафины от пентана до октана, преобладающие в термических крекинг-бензинах и бензинах прямой гонки из нефти Мид-Континента, в каталитических крекинг-бензинах имеются в относительно небольшом количестве. Из парафинов более всего преобладают разветвленные парафины с одной метильной группой в боковой цепи, такие как метилбутаны и метилпентаны. Обычно алкилциклопентаны [c.50]

    Нафтеновоароматические углеводороды. Поведение нафтеновых производных ароматических углеводородов при пиролизе в общем аналогично реакциям алкилированных ароматических углеводородов с открытой цепью. Имеются два основных тина производных 1) нафтеновые кольца, присоединенные к ароматическому ядру простой связью и 2) нафтеновые кольца, конденсированные с ароматическими ядрами. [c.111]


    Теоретические основы и применение реакций алкилирования парафиновых углеводородов yffie рассматривались в предыдущих главах. Алкилирование ароматических углеводородов подобно алкилированию парафшюв к концу 30-х годов XX в. нашло значительное применение в нефтяной промышленности, что в значительной мере было обусловлено политическими событиями, прешедшими к второй мировой войне. Одпако пути развития этих двух процессов сильно различны. В то время как промышленное применение алкилирования парафинов должно было ожидать открытия основной реакции, подыскания подходящих катализаторов и подбора рабочих условий, алкилирование ароматических углеводородов уже осуществлялось в химической промышленности в течение десятков лет, поэтому задачи, связанные с применением его в больших масштабах, представляли собой главным образом технологические проблемы. [c.488]

    Как уже отмечалось выше, одним из наиболее ранних применений реакции алкилирования ароматических углеводородов в нефтяной промышленности было получение антиокислителей для бензина. Хотя даже предельные углеводороды, нашедшие в настоящее время применение в качестве авиационных топлив, ухудшают свои качества при хранении, однако впервые возникла проблема борьбы с окисляемостью только в связи с открытием термического крекинга, когда появились затруднения, обусловленные порчей цвета продукта и процессами смолообразования. В поисках эффективных антиокислителей многие исследователи пришли к алкилированным фенолам. В качестве ингибиторов для авиационных бензинов алкилированные фенолы пашли в настоящее время почти универсальное нрименение для моторных бензинов также считается необходимым применение ингибиторов фенольного или амипного типа. [c.507]

    Ароматические углеводороды. При обычных условиях ароматические углеводороды взаимодействуют с серной кислотой в незначительной степени, если их концентрация не слишком велика. При работе же с дымящей серной кислотой или при высокой температуре может происходить сульфирование. Реакция между серной кислотой и ароматическими углеводородами имеет существенно важное значение для нефтяных фракций, богатых ароматикой или алкилароматикой, а также для процессов получения белых масел и керосина, требующих глубокой сернокислотной очистки. В тех случаях, когда в очищаемой фракции присутствуют не только ароматические углеводороды, но и олефины, как например, в крекинг-дистиллятах, может иметь место алкилирование ароматических колец. Это явление было открыто сравнительно давно [7, 8]. [c.224]

    Реакция конденсацип, нри которой открытая цепь олефинов зад1ьп ается, образуя полиметилены (которые в дальнейшем нри дегидрогенизации могут дать ароматические углеводороды). [c.246]

    Химическая стабильность бензинов определяется составом и строением углеводородов [8]. Парафиновые, нафтеновые и ароматические углеводороды в условиях хранения и транспортирования окисляются относительно медленно. Наибольшей склонностью к окислению обладают непредельные углеводороды. Способность последних взаимодействовать с кислородом воздуха зависит от их строения, числа двойных связей и их расположения. Менее стабильными являются диолефиновые углеводороды с сопряженными двойными связями и MOHO- и диолефиновые углеводороды, содержащие бензольное кольцо. Олефиновые углеводороды с двойной связью в конце углеродной цепи окисляются труднее, чем олефины с двойной связью в середине цепи. Циклические олефины окисляются легче, чем олефины с открытой цепью, а олефины с разветвленной цепью окисляются легче, чем аналогичные углеводороды с прямой цепью. [c.24]

    В Секторе нефтехимии проводились работы по уточнению ресурсов нефтехимического сырья на Украине, в частности по оценке содержания нормальных алканов и ароматических углеводородов в различных фракциях нефтей Украины, изучались теоретические основы карбамидной депарафинизации. В соавторстве с П. Н. 1 аличем, Л. А. Куприяновой, К. И. Патриляком и другими исследованы процесс клатратообразования, взаимодействие индивидуальных нормальных алканов С —С12 с карбамидом в широком диапазоне температур в разных средах, равновесие в системах карбамид — алкан — комплекс, термохимия ] оА[1глексов карбамида и кинетика процессов их образования и разложения. Открыто явление низкотемпературного гистерезиса, связанного с механизмом образования и разложения комплексов и термодинамическими характеристиками процессов перекристаллизации мочевины и адсорбции — десорбции включенного вещества. [c.13]

    На величину уд. веса бензина влияют 1) примеси ароматических углеводородов и "2) нафтеновых. В случае бензинов нафтенового типа, каков1.1 большинство советских, примесь ароматических углеводородов, если она не чрезмерна, не может быть открыта только на основании уд. веса. Уд. веса фракций обыкновенного бакинского бензина, полученных медленной разгонкой яа заводской колонне в 9. и вышины, приведены в таблице 21, столбец 1. [c.119]

    Судя но тому опыту, кото )ый был накоплен па наших толуоловых заводах, рефрактометрическое определение ароматических углеводородов в бензине никак не может претендовать на точность больше 1—2% абсол., т. е. примесь в 1% в бензине может бьггь не открыта. [c.147]

    Химию нефти в значительной степени обогатили глубокие ис-следоваия Зелинского и его учеников. В 1911 г. Зелинский открыл явление, названное им избирательным катализом, заключающееся в обратимом гидрировании-дегидрировании шестичленных нафтенов на металлических катализаторах. Позднее он исследовал процесс разложения нефтяных фракций в присутствии флоридина (1915 г.), а затем хлорида алюминия (1918 г.). Работы Гудри по каталитическому крекингу нефтяных фракций, выполненные в двадцатые годы, фактически были продолжением исследований Летнего, Лермонтовой и Зелинского в области катализа. Важное практическое значение имела реакция дегидроциклизации алканов на металлических и оксидных катализаторах, открытая в 1935—1936 гг. Зелинским, Казанским, Молдавским, Каржевым и их сотрудниками [5, 6], которая дала возможность получать ароматические углеводороды из парафинового сырья. [c.5]

    Проведенными за последние два десятилетия специальными (спектральными, микроскопическими и др.) исследованиями (Брукса, Тейлора, Уайтта, Хонда, Р.Н.Гимаева, З.И.Сюняева и др.) в продуктах карбонизации органических полимеров, нефтяных и каменноугольных пеков, остатков и индивидуальных ароматических углеводородов были обнаружены анизотропные микросферические структуры размером 0,1 - 20 мкм, обладающие специфическими свойствами жидких кристаллов и получившие название мезофазы. Это открытие имеет исключительно важное научное и практическое значение и позволяет более точно установить механизм термодеструктивных превращений нефтяного сырья. Мезофаза представляет собой слоистый жидкий кристалл, состоящий преимущественно из конденсированных арома- [c.57]

    Среди непредельных углеводородов наиболее склонны к окисленгю диолефиновые углеводороды с сопряженными двойными связями и олефипо-ароматические углеводороды, присутствующие обычно в бензинах те ) -ческого и каталитического крекинга (см. табл. 1. 16 и 1. 20). Олефиновые углеводороды с двойной связью в конце углеродной цепи окисляются тру днее, чем олефиновые углеводороды с двойной связью в середине цепи. Циклоолефиновые углеводороды окисляются легче, чем олефиновые с открытой цепью. [c.65]

    Материалы в пользу теории Бона были приведены также в работе Ланда [31], которому удалось, наряду с альдегидами, изолировать и алкоголи, при медленном горении высших парафшювых углеводородов. С. С. Наметкиным и В. К. Зворыкиной [32] были найдены спирты также в продуктах окисления парафина. Н. И. Черножуковым и С. Э. Крейн [33] установлено наличие спиртов в продуктах окисления некоторых ароматических углеводородов (трифенилметана). Таким образом, несомненно, что в процессах окисления, наряду с другими продуктами, могут получаться и спирты. Вопрос о том, являются ли эти спирты первичными продуктами окисления или продуктами разложения других кислородных соединений, все еще следует считать открытым. При одних условиях спирты, возможно, являются и первичными продуктами (получающимися одновременно с перекисями), в других же —их образование можно объяснить и вторичными реакциями разложения алкилперо-ксидов [33] или гидроперекисей, реагирующих с альдегидами 134]. [c.349]

    II нормальных парафинов в ароматические углеводороды. Первая реакция была открыта Н. Д. Зелинским в 19П г. Примечательно, что вторая реакция была открыта практически одновременно несколькими советскими химиками — В. И. Каржевым, Б. А. Казанским и А. Ф. Платэ, Б. Л. Молдавским и Г. Д. Камушером, работавшими в разных лабораториях (подробнее см. раздел второй). [c.17]

    Прекрасным примером каталитической реакции получения ароматических углеводородов является классический метод каталитической дегидрогенизации шестичленных нафтеновых углеводородов над платиновой или палладиевой чернью, разработанный Зелинским. При термическом крекинге циклогексана бензола практически не образуется, т. е. реакция дегидрогенизации в этих условиях не наблюдается. Продукты крекинга состоят в основном из открытых парафиновых и этиленовых углеводородов, образовавшихся в результате разрыва шестичленного ядра. В присутствии же платиновой или палладиевой уерни при температуре около 300° С наблюдается гладкая дегидрогенизация циклогексана (и других шестичленных нафтеновых углеводородов) без побочных реакций распада углеводородного ядра. Специфичность действия катализатора выражается также в-том, что-пятичленные нафтеновые углеводороды, парафины, а также двузамещенные (при одном углеродном атоме) циклогексаны, например-1,1-диметилциклогексан, вовсе не подвергаются дегидрогенизации в указанных условиях [Зелинский (66)]. Теоретическое обоснование-дегидрогенизационного катализа Зелинского разработано Баландиным (2) в его мультиплетной теории . [c.239]

    Анализ гидрированных ароматических углеводородов в инфракрасной части спектра, проведенный А. В. Иогансеном по методике ВНИИНП, показал, что средняя молекула фракции 1 состоит из двух нафтеновых циклов и имеет две боковые цепи, одна из которых короткая (этильная), вторая длинная. Средняя молекула фракции 5 составлена из системы конденсированных нафтеновых колец (скорее трех, чем четырех) и имеет пять метильных групп при практическом отсутствии других открытых цепей. СНд-группы связаны непосредственно с кольцами. [c.29]

    Термокатализ полиметиленовых углеводородов над алюмоси-ликатным катализатором при температурах до 300° прежде всего приводит к изомеризации шестичленных циклов в пятичленные, причем частично происходит отщепление боковых цепей, если они имелись в исходном углеводороде также при этом образуются небольшие количества ароматических углеводородов, скорее всего за счет дегидрогенизации. При более высоких температурах, характеризующих каталитический крекинг, полиметиленовые циклы разрушаются с образованием непредельных углеводородов с открытой цепью, превращающихся затем вследствие дипропор-ционирования водорода в метановые и ароматические углеводороды. [c.89]

    Гидрирование трехкольчатых ароматических углеводородов при высокой температуре подтверждает возможность перехода трициклического углеводорода в бициклический и, наконец, в мо-иоциклический, но этот процесс, как идущий при высоких температурах, пе способствовал сохранению вновь образовавшихся цепей, которые отщеплялись по мере их возникновения. Вопрос о возможности сохранения вСех цепей при низких температурах гидрирования остается еще открытым. [c.123]

    Свойства тиофенов (табл. 68) очень близки к свойствам ароматических углеводородов — они, например, сульфируются подобно бензолу, но при действии азотной кислоты сгорают в углекислоту, воду и серную кислоту, не образуя типичных нитросоединений. Тиофены не имеют неприятного запаха и легко открываются в бензоле изотиновой реакцией с серной кислотой (синее окраши-валие). Тиофены представляют собой типичные пирогенные продукты, поэтому их много в легких фракциях каменноугольной смолы, сланцевой и других найдены они и в продуктах пиролиза нефти. В литературе имеются указания на открытие тиофенов [c.176]

    Однак и нефти, не содержащие ароматических углеводородов, также могут быть их источником благодаря ра.чвнтию ра.зличных методов а р о м а т и з а и и и входящих в состав нефтей циклопара.финов и углеводородов с открытой цепью. Про,цессы арома- [c.477]

    При ремком открытии дроссельной заслонки создаются неблагоприятные условия для распыливания и испарения бензина вследствие того, что в первый момент после открытия дросселя значительно падает скорость подачи возд ха и уменьшается разряжение во впускной системе. Основная часть бензина оседает на стенках впускного трубопровода, а паровоздушная смссь обогащается низкокипящими углеводородами. Высокооктановые ароматические углеводороды, содержание которых в последние годы резко возросло в автомобильных бензинах в связи с развитием процессов ри4>орминга, группируются в основном в "хвостовых" фракциях бензинов. При среднем [c.56]

    Первый пред ставитель ароматических углеводородов — бензол — имеет состав СвИ6- Это вещество было открыто М. Фарадеем в 1825 г. в жидкости, образующейся при сжатии или охлаждении так называемого светильного газа, который получается при сухой перегонке каменного угля впоследствии бензол обнаружили (А. Гофман, 1845 г.) в другом продукте сухой перегонки каменного угля — в каменноугольной смоле. Он оказался весьма ценным веществом и нашел широкое применение. Затем было установлено, что очень многие органические соединения являются производными бензола. [c.325]

    Впервые эксимеры были открыты при изучении влияния возрастания концентрации некоторых растворов на флуоресценцию. Интенсивность нормальной флуоресценции уменьшается, в то время как в длинноволновой области появляется новая полоса, интенсивность которой возрастает с увеличением концентрации. Особенно отчетливо такой характер проявляется у некоторых ароматических углеводородов типа пирена. В разбавленном растворе пирен имеет фиолетовую флуоресценцию. При высоких концентрациях вместо флуоресценции наблюдается быстроструктурное голубое излучение. Это излучает эксимер, образованный возбужденным синглетным пиреном и пиреном в основном состоянии. Если пирен обозначить как Р, то схема возбуждения выглядит так  [c.132]


Смотреть страницы где упоминается термин Ароматические углеводороды открытие: [c.136]    [c.146]    [c.204]    [c.170]    [c.255]    [c.4]    [c.65]    [c.127]    [c.29]    [c.621]    [c.6]   
Анализ органических соединений Издание 2 (1953) -- [ c.27 ]




ПОИСК







© 2025 chem21.info Реклама на сайте