Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горные породы определение ванадия

    Ванадий встречается часто, а уран редко когда оба эти элемента содержатся вместе, они взаимно мешают определению один другого так, ванадий, в зависимости от его количества, мешает осаждению большего или меньшего количества урана сульфидом аммония. Бериллий не принадлежит к числу обы чных составных частей горных пород в большинстве разделений он сопровождает алюминий. . [c.114]


    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Например, при определении в алюминии примеси железа роданидным методом в растворах, содержащих ионы хлора, иногда пользуются калибровочным графиком, установленным по растворам, не содержащим ионов хлора. Тогда все результаты характеризуются хорошей воспроизводимостью, но вовсе не отвечают истинному содержанию. При анализе горных пород нередко заказ геологической партии не предусматривает определения ванадия, но включает определение титана. Титан обычно определяют в виде желтого комплекса с перекисью водо- [c.224]


    При исследовании горных Пород, которое может быть приведено в качестве примера, обычный ход анализа требует определения в осадке от аммиака кремнекислоты (оставшейся после выделения главной ее массы в начале анализа), железа р титана. Дальнейшее вычитание из суммы окислов (см. стр. 113) проводят на основании результатов анализов отдельных навесок анализируемого материала. Например, цирконий и редкоземельные металлы определяют в одной навеске, фосфор — в другой, хром и ванадий — в третьей. Такой метод хорош в тех случаях, [c.118]

    Если первоначальный щелочной фильтрат окрашен в желтый цвет,, то можно считать вероятным присутствие хрома или урана, особенно при исследовании горных пород, и вести анализ дальше, исходя из предположения, что окрашивание вызвано хромом. С возможностью того, что желтое окрашивание происходит от органических веществ, извлеченных из фильтра, считаться не приходится, если фильтр был перед фильтрованием хорошо промыт горячим раствором щелочи. Если окрашивание слабое, то хром определяют колориметрически (стр. 595) и сохраняют раствор для определения ванадия. Действительное присутствие хрома или урана может быть впоследствии проверено после отделения фосфора, но лучше это делать непосредственно, определяя эти элементы из отдельной большой навески (стр. 596). Если окраска раствора слишком интенсивна для колориметрического определения хрома, то кипятят щелочной раствор, пока вся перекись водорода не разложится, подкисляют серной. [c.120]

    Для определения хрома в горных породах 1—5 г пробы сплавляют со смесью карбоната и селитры, как описано в гл. Ванадий (стр. 510). Плав растворяют в воде, и если в растворе находится перманганат, прибавляют несколько капель этилового спирта для разрушения его окраски, а затем фильтруют через асбест. Если окраска раствора чрезмерно бледна, повышают концентрацию хрома упариванием раствора или осаждением нитратом ртути (I) и последующей обработкой, как указано в гл. Ванадий (стр. 510). [c.596]

    Метод определения железа и ванадия при совместном их присутствии , в котором ванадий определяют по разности, мало пригоден для анализа горных пород вследствие очень малого содержания в них ванадия. [c.958]

    Результат определения железа (П1), найденный по разности, только в том случае не будет ошибочным, если известно количество пиритного железа, перечисленное на окись, и если оно вычтено из общего количества железа (П1). (Предполагается, что содержание пиритного железа представляется в отдельной графе таблицы результатов анализа). Это количество может быть определено по содержанию серы, если она присутствует только в виде пиритной, — факт, который обычно может быть установлен с достоверностью. Но если присутствующие сульфиды растворимы в серной или плавиковой кислоте, то сероводород, выделяющийся при растворении пробы во время определения железа (II) или железа (III), вероятно, восстановит небольшое количество соли железа (III) и таким образом увеличит количество железа (II) и уменьшит количество железа (III). Влияние таких сульфидов не может быть определено. Мешают также незначительные количества ванадия, присутствующие в большей части горных пород и глин. Поэтому очевидно, что результат определения окиси железа (III) может быть только приблизительным. [c.959]

    При полном или почти полном отсутствии ванадия, как это бывает в тех богатых магнием горных породах (перидотитах) которые содержат большие количества хрома, приведенный нин<е метод выделения и весового определения хрома дает хорошие й согласующиеся результаты но в присутствии ванадия (а лучше всего предполагать его присутствие) нужно отдавать предпочтение колориметрическому методу. [c.978]

    При анализе минералов и горных пород, содержащих сульфиды железа или других элементов, происходят две ошибки. Одна из них зависит от содержания железа в сульфидах, другая — от неопределимого восстанавливающего действия на железо (III) того сероводорода, который выделяется в свободном состоянии при определении железа (И) (стр. 996). К этим двум источникам ошибок нужно прибавить третий, вызванный присутствием ванадия (с гр. 997). Поэтому во всех таких случаях окончательные результаты определения как железа (III), так и железа (И) не совсем надежны. [c.1004]

    Финкельштейн Д. Н. Колориметрическое определение ванадия в горных породах, железных и марганцевых рудах. Зав. лаб., [c.229]

    Фрид Б. И. Количественный микрохимический анализ минералов, руд и горных пород. [Сообщ.]. 6. Определение хрома и ванадия. Зав. лаб., 1945, 11, № 1, с. 17— [c.230]

    Купферонат пятивалентного ванадия количественно извлекается хлороформом в интервале pH 0-—2,5 при рн > 9 ванадий практически не экстрагируется [107, 976]. Максимум светопоглощения экстракта наблюдается при длине волны 505 ммк [1122, 1259]. Купферон применялся для выделения ванадия и определения его в горных породах и метеоритах [500], в алюминии и тканях методом активационного анализа [1362, 1379]. [c.174]

    Ванадий. Из колориметрических методов определения ванадия в горных породах, рудах, сплавах и других объектах наибольшее распространение получил вольфрамат-ный метод, предложенный Виноградовым (1931) для определения ванадия в золе растений. Метод основан на том, что при прибавлении к кислому раствору, содержащему ванадий, фосфорной кислоты и вольфрамата натрия образуется окрашенный в зеленовато-желтый цвет, фосфоро-вольфрамово-ванадиевый комплекс, состав которого до сих пор еще изучен мало. Растворы подчиняются закону Бера при концентрации ванадия от 10 до 200 мкг в 50 мл раствора. [c.63]


    Фотометрические методы используются для определения небольших количеств многих редких элементов бериллия в вольфраме и сплавах галлия, индия, таллия, редкоземельных элементов и германия в разнообразных объектах титана в горных породах, рудах, сплавах, в металлических вольфраме и цирконии тория в горных породах, цирконе и других материалах циркония в различных материалах ванадия в рудах, минералах, сплавах, сталях, металлическом цирконии ниобия в горных породах и минералах тантала в металлических цирконии, гафнии, ниобии висмута в металлическом молибдене молибдена в сплавах на основе титана, сталях и минеральном сырье селена и теллура в рудах и минералах рения в молибденсодержащих продуктах и в сплавах с танталом или вольфрамом. [c.22]

    Суммируя, следует сказать, что определение 13 компонентов, перечисленных в начале главы, нужно считать минимумом при всех случаях анализа горных пород. Углекислоту, окиси бария и стронция и серу тоже следует определять в большинстве случаев не меньшее значение имеет фтор. Испытанием на литий с карманным спектроскопом не следует пренебрегать даже и в том случае, когда определяются только другие 13 компонентов. Определение хлора не надо пропускать, когда имеют дело с щелочными вулканическими породами или если в округе известны случаи скаполитизации. Следующими по значению идут цирконий, никель, хром, ванадий и медь, определение которых желательно в тех случаях, когда возникают вопросы петрогенезиса. Растворимый в кислоте сульфат (50з) обыкновенно не имеет особого значения. Другие компоненты, как литий (весовое определение), бор, бериллий, редкие земли, молибден и мышьяк, определяются только в особых случаях. В присутствии заметного количества бария хорошо убедиться в том, сколько серы связано с ним в барит (стр. ИЗ). [c.41]

    Для многих аналитиков, работающих с горными породами, полный анализ включает определение не только этих тринадцати компонентов, но и других элементов, присутствующих в количествах до нескольких процентов. К ним часто относятся сера (сульфидная и сульфатная), углерод (карбонатный и некарбонатный), хлор, фтор, хром, ванадий, барий. [c.15]

    Один из старейших методов, иногда и сейчас применяемых для определения циркония (и гафния), основан на осаждении их в виде фосфатов из разбавленного сернокислого раствора. Это определение легко сочетать с определением других компонентов силикатных пород, таких, как хром, ванадий, сера и хлор в исходном щелочном фильтрате, а редкоземельных элементов и бария с цирконием в остатке. Этот метод приводится в руководствах по анализу горных пород, но в публикуемых методиках не упоминаются трудности, связанные с точными определениями малых количеств циркония [5]. [c.452]

    Метод применим для определения ванадия, в горных породах, железных, титаномагнетитовых и марганцевых рудах [c.83]

    В первую очередь, следует указать на отсутствие полностью разработанного метода рационального или фазового анализа ванадия в различных объектах (растительные и животные организмы, горные породы и минералы, промышленные продукты). Известно, что в таких объектах ванадий, присутствует в виде соединений различной валентности (III, IV и V), но определение степени окисления ванадия и формы образуемого им соеди- [c.476]

    Из новых работ отметим работу Сендэла и Перлиха но определению никеля и кобальта в силикатных породах. Определение никеля основано на осаждении его диметилглиоксимом из аммиачно-тартратного раствора анализируемой породы, экстрагировании полученного соединения хлороформом, взбалтывании хлороформного слоя с соляной кислотой для переведения никеля в воДную фазу и конечном его определении колориметрическим методом с диметилглиоксимом (см. стр. 468, сноска 2) при концентрации его, не превышающей 6 мкг в 1 мл. Этим методом можно обнаружить 0,0001% никеля в 0,5 г пробы медь, кобальт, марганец, хром и ванадий в количествах, в каких эти элементы встречаются в большинстве изверженных горных пород, определению никеля не мешают. [c.1034]

    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]

    В растворе, содержаш,ем фторид-ионы, мояшо [51] титровать раствором NH4VO3 в присутствии железа, ванадия, молибдена и титана. Метод пригоден [52] для определения урана в горных породах. [c.142]

    Титрование солью Мора при потенциале +1,0 s было предложено И. П. Алимариным и Т. К. Кузнецовым и вслед за ними Г. А. Бутенко и Г. Е. Беклешовой для определения ванадия, хрома и марганца в легированных сталях. Одновременно аналогичный метод предложен за рубежом для определения ванадия и хрома также в сталях и нефтяных продуктах. Метод апробирован лабораторией Днепропетровского металлургического завода Затем вышла работа И. П. Алимарина и Б. И. Фрид по приложению этого же метода к микроопределению ванадия и хрома (а также железа) в минералах, рудах и горных породах. На этом же принципе основан предложенный Е. Г. Кондрахиной и др. амперометрический вариант определения железа (II) по А. В. Шейну [c.180]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Для микроколориметрического определения ванадия (V) в минералах, горных породах и рудах была применена реакция ванадия (V) с бензиди-ном в концентрированной форсфорной кислоте, сопровождающаяся появлением желтого окрашивания, свойственного продуктам окисления [c.517]

    В обычном ходе анализа горных пород поведение урана в значительной мере зависит от наличия двуокиси углерода и ванадия. В их отсутствие уран количественно осаждается аммиаком если, не ввести поправку на его содержание, точность анализа будет зависеть от метода, применяемого для определения железа. Наибольшая ошибка получается при определении железа, если последнее проводится титрованием перман-i-anaTOM после восстановления цинком, который восстанавливает уран, частично даже ниже, чем до четырехвалентного состояния. Поскольку при титровании перманганатом эквивалент ГегОз меньше эквивалента UgOg, то рассчитанное по разности содержание алюминия также будет яе совсем точным (несколько повышенным). При восстановлении же железа сернистым ангидридом, сероводородом или хлоридом олова (И) ошибка получается только лишь в рассчитанном по разности содержании алюминия, так как уран этими реагентами не восстанавливается. [c.523]

    Определение алюминия в чистых солях обычно не вызывает особых затруднений, но установление точного содержания его в таких материалах, как горные породы, минералы и керамические или металлургические продукты, является одной из наиболее сложных задач аналитической химии. В обычном ходе анализа алюминий попадает в осадок от аммиака совместно со многими другими элементами, такими, как железо, титан, цирконий, ванадий, фосфор и кремний. Содержание такой смеси часто принимают за процентное содержание КзОд , что, естественно, может ввести в заблуждение. Если состав осадка неизвестен, его следует считать как процентное содержание смешанных окислов . Неправильно также, как это часто практикуется, определять в осадке от аммиака только железо, иногда и титан, а остальное считать за алюминий. В большинстве случаев содержание алюминия целесообразно устанавливать по разности, после определения всех остальных компонентов во взвешенном прокален- [c.559]

    Купфероновый метод можно применять к любому раствору горной породы, не содержащему кремния, элементов группы сероводорода и больших количеств фосфора. Обычно этот метод служит для отделения титана вместе с цирконием, железом, ванадием и пр. (стр. 145) от алюминия, хрома, а также фосфора, за исключением тех случаев, когда последний присутствует в значительных количествах и сопровождается циркониелг, торием или титаном. Тогда сначала сплавляют пробу с карбонатом натрия, выщелачивают плав водой, остаток переводят в сернокислый раствор (иногда применяя для этого сплавление с пиросульфатом) и в этом растворе проводят осаждение купфероном. Тем же способом удаляют и ванадий. Металлы сероводородной группы могут быть удалены из сернокислого раствора обработкой сероводородом (стр. 83), после чего удаляют железо прибавлением винной кислоты и сульфида аммония (стр. 90). Эти методы отделения служат для удаления всех мешающих веществ, кроме циркония. Фильтрат после отделения сульфида железа подкисляют, осаждают титан и цирконий купфероном, осадок прокаливают и взвешивают сумму окислов обоих металлов. Содержание титана находят затем по разности после сплавления смеси окислов с пиросульфатом, растворения плава в серной кислоте и определения циркония в виде нирофосфата (стр. 640). [c.968]

    Ненадежность определения железа (//). Из предыдущего ясно, что, несмотря на крайнюю тщательность в работе, точное определение железа (II) в горных породах сопряжено с чрезвычайными затруднениями и его результаты ненадежны. Только нри отсутствии разлагаемых сульфидов и углистых веществ, точном знании количества находящегося в породе ванадия и его валентности и анализе относительно грубоизмельчепного порошка породы можно считать результаты онределения безупречным. [c.1003]

    Метод А. П. Виноградова [293] был предложен сначала для определения ванадия а золе морской фауны, в частности в ас-цидиях из Черного моря. Этот метод более чувствителен, чем метод с перекисью водорода (пределы фотоколориметрического определения 1,1—45,0 мкг мл при толщине слоя жидкости 1 см). Впоследствии этот метод был применен для определения ванадия в горных породах, рудах и в стали [295]. Существует также вариант этого метода, а именно фосфорновольфрамованадиевый комплекс восстанавливается хлористым оловом, причем образуется расно-фиолетовая окраска, которую и колориметрируют. Этот метод был предложен А. Л. Давыдовым м 3. М. Вайсберг в 1940 г. и затем несколько видоизменен А. А. Тихоновой н другими в приложении к разным объектам [296, 297]. [c.128]

    С давних времен человек размышлял о происхождении и составе Земли и о большом разнообразии пород и минералов, из которых она состоит. Выдающиеся химики XVIII—XIX столетий занимались анализом неопознанных минералов в результате им удалось идентифицировать, а затем и выделить многие новые элементы. В конце XIX столетия И. Берцелиус, Л. Мейер, Л. Смит и другие разработали основы классической схемы анализа силикатных пород, используемого и в настоящее время. В конце прошлого столетия были предложены методы определения всех основных элементов. В 1920 г., после выхода в свет третьего издания книги Вашингтона Руководство по химическому анализу пород [1] и книги Гиллебранда Анализ силикатных и карбонатных пород [2], в которых были подведены итоги определения основных элементов, методы анализа горных пород стали распространяться на элементы, присутствующие лишь в малых количествах. Барий, цирконий, сера и хлор — элементы, которые могут быть определены надежными весовыми методами,— были вскоре добавлены к перечню основных компонентов, необходимых для полного анализа . После того как титан, ванадий и хром были признаны основными компонентами некоторых силикатных пород, для их определения разработали новые методы. [c.9]

    Можно привести несколько типичных примеров. При определении ванадия и никеля в алюминии ванадий выделяли экстракцией при помощи кунферона, а никель — в виде диметилглиоксимата. Никакие другие приемы отделения при этом не требовались [849]. При экспрессном определении титана по короткоживу-щему (5,8 мин.) Ti в горных породах и других объектах использовали экстракцию титана в виде купфероната диизопропи-ловым эфиром [850]. Экстракцию теноилтрифторацетоната нептуния (IV) применяли для определения урана (в алюминии и свинце высокой чистоты) по изотопу Np , который образуется в результате облучения [851]. Ряд примеров см. в [87]. [c.258]

    Алимарин И. П. Микро- и полумикроколори-метрическое определение ванадия в минералах, горных породах и рудах при помощи -бензидина. Бюлл.Всес.н.-и.ин-та минерального сырья. (М-лы научно-методические и производ. лабор. геол. управлений. Ком-т по делам геологии при СНК СССР), 1943, № 2, с. 22—32. Библ. 2 назв. Машинопись. 2889 Алимарин И. П. Микроколориметрическое определение ванадия в минералах, горных породах и рудах при помощи бензидина. ЖПХ, 1944, 17, № 1—2, с. 83—93. Резюме на англ. яз. Библ. 18 назв. 2890 Алимарин И. П. Осаждение ниобия и тантала в присутствии оксикислот продуктами конденсации формальдегида с фенолами. Зав. [c.122]

    Ненеина Л, А. Упрощенное амперометрическое определение марганца, хрома и ванадия в минералах и горных породах.— В кн. Количественный анализ минералов и горных пород физическими методами. Новосибирск, 1965, 61-62. (АН СССР. СО. Ин-т геол. и геофиз. Вын. [c.48]

    Окспкпслоты и их солп очень широко используются в по-.лярографнц в качестве комплексообразователей. Благодаря их применению появилась возмоншость полярографического определения титана в бокситах, сталях [9], горных породах, минералах [10], мыле [11] п других материалах. Показана возможность определенпя титана в сталях (без отделения его от железа и ванадия) методом осциллографической полярографии прп прпмепениц насыщенного раствора оксалата натрия, [c.363]

    V (V) Ванадий можно экстрагировать из 2,8—4,3 н. соляной кислоты 0,1%-ным раствором реагента в хлороформе. Темно-красное хелатное соединение поглощает свет при 510—530 ммк (молярный коэффициент погашения равен 4500) [808, 810, 853]. Экстракция при помощи М-бензоил-К-фенилгидрок-силамина была применена для определения ванадия в сталях [1311], горных породах [853i, титане [11531 и нефти [1614]. [c.183]

    Алимарин И. П. Мнкроколориметрическое определение ванадия в минералах, горных породах н рудах при помощи бензидина. ЖПХ 17, 83 (1944). [c.538]

    Рейхен [830] определяла вольфрам в горных породах полярографически на фоне 4,6 Af H l + 0,1 Af винная кислота. Анализируемое вещество сплавляют с Nag Og, железо отделяют фильтрованием, ванадий маскируют коричной кислотой определению не мешают Мо, Sn, Sb, если их содержание не намного больше содержания вольфрама. По точности метод приближается к гравиметрическому. Активационным методом определяли 4-IO" — 1,1-10-< % W при навеске 0,1 г [704] и 7-10-5-9,2-10- % W [85], атакже(0,9—4,4)-10 % W в феррогаббро и (1,5—4,5)-lQ- %W в дунитах [533]. Среди реагентов для фотометрического определения наиболее пригодны роданид [64, 847] и толуол-3,4-дитиол [64, 245, 404, 405, 717, 822]. Роданид позволяет определять 1 10 -1-10 % W в осадочных породах методом стандартных серий после разложения породы кислотным способом с добавлением HF [64]. [c.170]

    Определение хрома и ванадия обычно производят совместно есл и хром уже определен, операция определения ванадия потребует еще около 30 мпн. Ванадий находится почти в каждой горной породе, изверженной, метаморфической или осадочной, но этого нельзя сказать о хроме, хотя обычно он присутствует. Эти два компонента варьируют независимо друг от друга. Как правило, содержание хрома невелико в кислых и промежуточных изверженных породах, но быстро возрастает при переходе к основным или ультраосновным типам. Его определение несомненно необходимо в случае дунитов и перидотитов, может быть, содержащих хромит, а также в породах с хромсодержащей слюдой (фуксит), хромдиопсидом, хромтремолитом, уваровитом (хромсодержащий гранат) или тавмавитом (хромсодержащий эпидот). В большинстве пород с основностью базальтов хром содержится в заметных количествах, но в меньших, чем в щелочных базальтах. [c.37]

    Ранкама применил при исследовании остатка от кремнекислоты спектрографический анализ (проводившийся всегда в однообразных условиях с применением реактивов, испытанных спектрографически). Исследуя 16 анализированных изверженных горных пород с содержанием кремнекислоты от 41 до 75%, он обнаружил определенную тенденцию к обогащению остатка германием, оловом, свинцом и галлием. Тенденция к обогащению существует, но менее отчетлива у цинка, бериллия, никеля и, возможно, хрома. Тенденция к обеднению была установлена для ванадия, вольфрама и кобальта. Во всех остатках присутствовали редкие земли, алюминий, барий, кальций, железо, калий, натрий, магний, марганец, стронций, титан и цирконий, а также платина как загрязнение от платиновой посуды. Автор приходит к выводу, что загрязнения объясняются а) попаданием соединений, самих по себе нерастворимых, например фосфата титана, а в случае недостаточного промывания — и сульфата кальция б) адсорбцией малорастворимых веществ, получающихся во время гидролиза, например при превращении хлорного железа в окись и хлорокись в) поглощением ионов, при котором, повидимому, вносится ряд более редких элементов. [c.210]

    На данной стадии развития анализа горных пород главнейшей проблемой остается определение алюминия. В классической с.хеме анализа алюминий определяли по разности. Следовательно, ошибки определения некоторых других компонентов отражались на значениях, получаемых для алюминия. Прямой весовой и титрнметрическни методы для алюминия после отделения мешающих элементов (железо, титан, марганец, хром, ванадий, цирконий п, возможно, фосфор) часто трудоемки, и применяют пх только потому, что нет ничего лучшего. Спектрофотометрические методы для алюминия не избирательны, они требуют предварительного разделения, а метод атомно-абсорб-ционной спектроскопии предусматривает использование высокотемпературного пламени (закись азота). [c.11]


Смотреть страницы где упоминается термин Горные породы определение ванадия: [c.947]    [c.130]    [c.250]    [c.880]    [c.889]    [c.547]    [c.234]   
Полярографический анализ (1959) -- [ c.539 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение

Горные породы как

Горный



© 2024 chem21.info Реклама на сайте