Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газы-носители различные аргон

    Метод тепловой десорбции. Определение удельной поверхности из хроматографических данных может быть проведено различными способами по удерживаемым объемам, по размытой стороне хроматограммы, по результатам фронтального анализа. Для массовых определений удельных поверхностей образцов адсорбентов или катализаторов может быть рекомендован метод термической десорбции. Он основан на прямой зависимости между расходом стандартного газа, поглощенного при низкой температуре образцом адсорбента из потока газа-носителя (гелия), и удельной поверхностью. После размораживания образца по площади хроматографического пика судят о величине удельной поверхности. В качестве адсорбтива используют азот, криптон или аргон. [c.51]


    Хроматографическое определение следов различных веществ с помощью проявительной хроматографии возможно только нри том условии, что газ-носитель не содержит анализируемых компонентов или концентрации их в газе-носителе намного ниже, чем в пробе. Однако, например, удаление следов инертных газов пз обычного газа-посителя очень затруднительно, а часто и неосуществимо, так что определение очень малых концентраций этих компонентов встречает серьезные затруднения. Поэтому Уиллис (1959) использовал принцип вакантохроматографии для определения N2, О2 и Н2 при концентрациях до 5-10" % в аргоне. Определение проводилось следующим образом. Приготовляли смесь аргона и постоянных газов при концентрациях более высоких, чем в пробе, и анализировали ее на масс-спектрометре. Эту смесь непрерывно пропускали через колонку, в которую дозировали анализируемую пробу. Разность концентраций компонентов смеси известного состава и анализируемой смеси пропорциональна площадям полученных отрицательных пиков. [c.438]

    С), где С — количество вещества в единице объема стандартного раствора или газа. После разделения вещество определяют любыми хим., физико-хим. или физ. методами. Различают X. а. газов и жидкостей. Кроме того, в зависимости от механизма разделения X. а. бывает молекулярный (адсорбционный и распределительный), ионообменный, осадочный, адсорбционно-комплексообразовательный, окислительно-восстановительный по форме проведения анализа — колоночный, капиллярный, на бумаге, тонкослойный и в гелях. Г азо-адсорбцион-н ы й X. а. основан на различной адсорбции компонентов газовой смеси твердым сорбентом (активированным углем, силикагелем, цеолитами и др.). Для продвижения пробы через колонку служит инертный газ-носитель (напр., азот, гелий, аргон). Анализ применяется для количественного определения кислорода, азота, водорода, окиси и двуокиси углерода, сернистого газа и др. В газожидкостном X. а. применяют установки (рис.), где используют различие в распределении анализируемых газообразных соединений между неподвижной жидкой фазой (нанр., силиконовым или вазелиновым маслом, дибутилфталатом), нанесенной на твердый сорбент, и газом-носителем, не взаимодействующим химически с жидкой фазой и с компонентами анализируемой смеси. При капиллярном газожидкостном [c.696]

    На рис. 162 представлены кривые зависимости логарифма чувствительности детектора (в качестве газа-носителя использован аргон) от напряжения при различной активности источника излучения Pra Участки этих кривых, параллельные оси абсциСс, соответствуют чувствительности детектора в режиме тока насыщения. [c.302]


    При использовании детектора по теплопроводности и применении в качестве газа-носителя гелия или водорода изменение значений относительных коэффициентов чувствительности на различных хроматографах незначительно и составляет около 3—6% [62]. Трудности возникают при применении в качестве газа-носителя азота (аргона, воздуха), теплопроводность которого близка к теплопроводности анализируемых веществ. Так, для низкокипящих углеводородов относительные коэффициенты чувствительности заметно зависят от температуры и концентрации компонента, что при анализе углеводородов Сг может привести к инверсии пиков. Приводимые в литературе значения коэффициентов чувствительности для низкокипящих углеводородов справедливы лишь в узкой области температур 20—50 °С. [c.35]

    Лучшим газом-носителем является гелий. Его теплопроводность во много раз больше теплопроводности всех компонентов, входящих в состав дымовых газов (за исключением водорода), что позволяет проводить разделение с большей точностью. Теплопроводности гелия и водорода близки между собой, в результате чего невозможно количественное определение водорода. Это удается сделать при использовании в качестве газа-носителя аргона. Применение аргона позволяет обнаружить даже следы водорода, так как теплопроводности этих двух газов резко различны. Оптимальный расход газа-носителя был выбран в результате исследования влияния скорости его продвижения в разделительной колонке на величину пиков хроматограммы. Было найдено, что оптимальная величина расхода газа-носителя (в нашем случае — гелия), обеспечивающая наибольшую чувствительность прибора, равна 3,97-10 кг/сек. [c.151]

    Для определения наличия некоторых примесей в газе-носителе в различных типах детекторов используются очень разнообразные принципы. Так, действие некоторых детекторов основано на очень точном измерении теплопроводности проходящего газового потока, которая меняется при изменении состава газа. В других детекторах реализуется принцип пламенной ионизации газ-носитель (обычно водород) поджигается, и детектор измеряет концентрацию ионов в пламени. Каждое изменение в составе газа отражается на концентрации ионов в пламени и регистрируется детектором. Широко применяются также детекторы, измеряющие ионизацию в газовом потоке. В этом случае в качестве газа-носителя используют аргон, который до ввода в колонку возбуждают путем облучения р-лучами. Аргон обладает очень высокой энергией возбуждения [c.423]

    При прочих одинаковых условиях внешнедиффузионная скорость массопередачи зависит также от природы газа-носителя. Это видно из рис. 42, на котором изображена зависимость Н от ги (для пропана) для силикагеля с порами диаметра около 100 А со сферическими зернами размером 0,25—0,5 мм в опытах с различными газами-носителями гелием, аргоном и двуокисью углерода. Для более тяжелого газа-носителя (с меньшим коэффициентом диффузии) можно добиться большей эффективности колонок. Однако в этом случае область низких значений Н намного уже, так как из-за небольшой величины коэффициента диффузии газа-носителя заметная задержка массообмена происходит при меньших его скоростях. [c.85]

    На рис. 33 представлена зависимость чувствительности определения от концентрации детектируемого вещества в газе-носителе (аргоне) ири различных напряжениях электрического поля в ионизационном пространстве аргонового ионизационного детектора. До определенной концентрации чувствительность остается постоянной (линейная область), затем она возрастает с концентрацией, достигает максимума и наконец падает при больших концентрациях до малой и даже отрицательной величины. [c.144]

    Разделение смесей легких газов (Н2, N2, СО, СН4, СО2, СгНб, С2Н4) на колонке с активир. углем с использованием различных газов-носителей (гелия, аргона, азота, воздуха, ацетилена). [c.55]

    Газо-адсорбционная хроматография—разделение смеси газов на твердом сорбенте. В качестве сорбента (неподвижной фазы) используют активное дисперсное твердое вещество активный уголь, силикагель, цеолиты и др. В качестве подвижной фазы, в которой содержится разделяемая смесь газов, применяют газ-носитель аргон, воздух, гелий, водород и др. Исследуемая смесь газов, передвигаясь вместе с газом-носителем вдоль колонки, разделяется на отдельные компоненты вследствие различной их адсорбируемости. [c.331]

    Установлено, что использование в качестве газа-носителя азота и аргона более предпочтительно, однако можно применять и гелий, хотя чувствительность при этом, как правило, ниже. Именно в этих газах энергия электронов изменяется в широких пределах, что обеспечивает благоприятные условия для их захвата различными электроноакцепторными веществами. [c.76]


    Отношение АТ)1х можно считать специфичным сигналом и, как показывает уравнение (X. 12), величина его пропорциональна разности температур в ячейке и функции от теплопроводностей газа-носителя и веш ества, заключенной в скобки. При > кд сигнал противоположен но знаку тому, который получается при кд > ка. На рис. Х-6 показано применение этого уравнения для смесей гелий-гептан и аргон-гептан с использованием данных, полученных с помош ью термокондуктометрического детектора с платиновой нитью. Значения АТ рассчитаны по известному температурному коэффициенту сопротивления платины и сопротивлению нити, отвечающему замеренным величинам тока и напряжения при прохождении одного газа-носителя через ячейку. Измерялись площади пиков, полученные при различных значениях АТ для постоянного количества к-гентана и постоянной скорости потока при температуре ячейки 140° С. Полученные данные в обоих случаях показывают сильное искривление графиков, обусловленное нелинейным характером изменения теплопроводности, теплоемкости и электрических факторов ячейки с повышением темпера туры нити. Однако, мгновенный наклон таких кривых должен соответствовать рассчитанным значениям величины к 1к, — 1). Экспериментально получены, как показывает рис. Х-6, наклоны = 1 и = 0,021, дающие отношение, равное 47. Экстраполируя значения теплопроводности для Не, Аг и и к-гептана, приведенные в табл. Х-3, до 140° С, получим отношение 8 8 = 40, что вполне соответствует эксперименту. Этот результат является [c.216]

    Делитель потока для введения пробы отличался двумя важными особенностями. Во-первых, газ-носитель (аргон) до входа в делитель потока нагревался, и, во-вторых, расстояние между местом ввода жидкой пробы и местом разделения потоков для впуска в капиллярную колонку было большим. Такая система впуска работала удовлетворительно при введении проб различного состава, когда а) общее количество вводимой жидкой пробы было меньше 0,004 мл и б) отношение потоков менялось в пределах от 50 1 до 150 1. Ионизационный аргоновый де- [c.286]

    Для количественного анализа в обычной области концентрации толька в том случае можно довольствоваться одним калибровочным коэффициентом, когда теплопроводности газа-носителя и компонента сильно различаются, например, в случае органических компонентов в гелии или водороде. Точные результаты можно и не получить, если использовать один и тот же коэффициент для различных температур. Нельзя пользоваться одним коэффициентом в случае, когда теплопроводности газа-носителя и компонента лишь слабо различаются, например, в случае органических компонентов в азоте, этане или аргоне. При этих условиях необходимо проводить калибровку в ожидаемом диапазоне концентраций и для каждой температуры. Чем ниже температура, тем менее вероятны серьезные отклонения от линейности, при которых даже калибровка не является достаточной. [c.188]

    Гелиевый ионизационный детектор. В работе Ловелока было сказано, что, кроме аргона, можно применять и другие редкие газы, если они отвечают требованиям экономичности и чистоты. Как известно, с неоном было проведено немного работ. Однако Берри [8] недавно опубликовал весьма обнадеживающие результаты с микродетектором, где в качестве газа-носителя использовался гелий, который пропускался через химическую очистительную систему, состоящую из молекулярных сит при —196 и 20° С, титана при 1000° С и гопкалита (смесь окиси меди, кобальта, марганца, серебра) при 400° С. Получены высокая чувствительность и положительная разрешающая способность для различных соединений в пробе с пределом обнаруживания около 10 молей компонента на 1 мл газа-носителя. [c.17]

    Для повышения чувствительности ионизационных детекторов при анализе перманентных газов предложены различные методы. Так, при использовании в качестве газа-носителя гелия при соответствующем режиме в детекторе можно ионизировать кислород, аргон и другие компоненты и определять их содержание при концентрации порядка 10 —10 % [275]. Другие методы основаны на введении в аргон весьма малых количеств органических веществ, что также способствует ионизации молекул благородных газов. [c.244]

    Второй и наиболее важный тип помех наблюдается при изменении скорости, описанной выше, когда для калибрования хроматографа применяют чистые вещества. Рассмотри , например, анализ 10 см смеси 10% водорода с окисью углерода при использовании аргона в качестве газа-носителя и системы молекулярных сит. В процессе калибрования 1 см только одного водорода скорость потока в колонке несколько увеличивается. Уменьшение же скорости потока в начале анализа смеси является результатом адсорбции окиси углерода. Нормальный газовый пик, полученный для водорода в смеси, будет отличаться от пика, полученного при калибровании, так как условия на колонке совершенно различны . [c.88]

    На рис. VI.47 показана зависимость чувствительности Аг-ИД от концентрации анализируемого органического соединения в газе-носителе (аргоне) при различной напряженности поля в ионизационной камере детектора. До некоторой определенной концентрации чувствительность остается постоянной (линейная область), затем происходит лавинообразное возрастание ионизационного тока и, наконец, при больших концентрациях вследствие торможения электронов в результате столкновений с молекулами пробы — снижение тока. [c.454]

    Атомно-эмиссионное детектирование основано на том, что хроматографический элюат вводят в плазму, подцерживаемую в инертном газе, где проходит полная атомизация, а атомы и ионы, образующиеся в плазме, возбуждаются и излучают свет. Для варьирования селективности используют различные типы плазмы. Среди них плазма, индуцированная микроволновым полем (МИП), поддерживаемая в гелии или аргоне, прямая проточная аргоновая плазма (ППП), индуктивно-связанная аргоновая плазма (ИСП), емкостно-связанная плазма и емкостно-стабилизированная плазма. Из всех этих вариантов гелиевая плазма, индуцированная микроволновым полем, наиболее предпочтительна по следующим причинам. Эта плазма работает при атмосферном давлении, что сильно упрощает соединение с ГХ-системой. Требуемые скорости потока находятся в диапазоне 30-300 мл/мин, т. е. значительно ниже, чем, например, в случае ИСП. Использование гелия в качестве газа для плазмы также удобно, поскольку он обычно выступает в качестве газа-носителя в ГХ и особенно потому, что он обеспечивает более простой спектральный фон и значительно более высокую энергию возбуждения, чем аргон (энергия ионизации [c.614]

    Существуют также детекторы по теплоте сгорания (термохимические), по плотности газов (денситометрические) и др. Наиболее чувствителен аргоновый детектор Ловелока. В нем в качестве газа-носителя применяется аргон, а для ионизации молекул — какой-либо источник радиоактивного излучения. Детекторы, даже работающие по одному принципу, имеют различные конструктивные особенности. Например, детектор по теплопроводности может быть двух- и четырехплечевым. Чувствительность четырехплечевого детектора в два раза выше, чем двухплечевого. [c.67]

    Первые ферритовые пленки, выращенные методом газофазной эпитаксии, характеризовались значительной концентрационной неоднородностью по толщине, что обусловлено различиями в давлениях насыщенных паров галогенидов, находящихся при одинаковой температуре. Позже Линаресом создана установка, обеспечивавшая разделение пространств с различными хлоридами. Пары воды и кислород доставлялись непосредственно в зону образования феррита (феррограната). Пространства с парами РеС1з и С1з были изолированы в них поддерживались разные температуры РеСЦ —330°С С1з— 1050°С. Образование феррита происходило в зоне с температурой 1100°С. Газом-носителем являлся аргон в смеси с хлороводородом. Другие модификации этого метода в основном сводятся к достижению условий более полного разделения паров хлоридов. [c.168]

    Осаждение пленок из паровой фазы осуществляют различными способами с применением разнообразной аппаратуры. Наиболее простой способ — подача паров пленкообразующих веществ или паров их растворов в инертном растворителе под стеклянный колпак, где размещают детали, подлежащие покрытию пленкой. Под колпаком создается определенная упругость водяных паров [1, 155]. В большинстве случаев при получении пленок SiO2 или ТЮг используют пары индивидуальных легколетучих соединений. При помощи инертного газа-носителя (азота, аргона) эти пары [c.33]

    Влияние природы газа-носителя на времена удерживания газов на порапаке Р исследовалось Гуламом, Рабба-ни, Рузеком и др. [65]. При использовании в качестве газа-носптеля водорода, азота, аргона это влияние очень мало, хотя и наблюдается некоторое уменьшение удерживаемых объемов различных газов (Кг, СО2, ЫгО, этан, этилен, аце- [c.15]

    Для определения ртути в рудах, особенно малых содержаний, широко используется метод атомной абсорбции [121, 225, 296, 319, 511, 581, 723, 10391. При использовании метода беспламенной атомной абсорбции для определения ртути в геологических пробах зачастую используют методики, основанные на разложении анализируемого материала кислотами, переводе ртути в элементное состояние восстановителями и отгонке ее из раствора в кювету для фотометрирования в токе газа-носителя (воздух, азот, аргон). В качестве восстановителя наиболее широко используют Sn lu [121, 251, 252, 760, 791, 803, 835, 1006, 1037, 1039, 1260]. Однако различные авторы рекомендуют разные условия проведения восстановления (табл. 20). [c.150]

    Эксперименты проводили на газовом хроматографе, изготовленном на народном предприятии Laboratorni pristroje в Праге. Прибор оборудован воздушным термостатом, обеспечивающим работу при температурах до 350°. Он включает пламенноионизационный детектор с двумя платиновыми электродами. Электроды расположены на расстоянии 1—3 мм от горелки и отстоят друг от друга на 5—7 мм. Напряжение на собирающем электроде составляет около 150 в полученный сигнал усиливается и подается на самопишущий милливольтметр с пределами измерений О—0,20 мв. В опытах использовались различные газы-носители, включая азот, гелий, аргон и в некоторых специальных случаях водород или воздух. Скорость потока газа колебалась в пределах 1,2—1,8 жл/се/с, а для водорода, подаваемого в детектор для горения, она составляла около [c.498]

    Поскольку основным продуктом десорбции в нашем случае являлась вода, склонная к сильной конденсации в газовых путях, для исключения размывания ТПД картины участок нути от реактора до детектора был обогреваемым и по возможности коротким. Для предотвращения конденсации влаги из воздуха в перерывах между опытами система обычно находилась под небольшим избыточным давлением газа-носителя. Кроме того, в конструкции установки предусмотрена газовая линия, обходящая реактор, для продувки системы перед опытом до прекращения дрейфа нулевой линии самописца. В качестве газа-носителя использовались гелий, аргон или азот. Продукты десорбции анализировались хроматографически на набивной колонке с полисорбом-1. Калибровку катарометров в области микроколичеств воды проводили, вводя в испаритель микрошприцом различные дозы 1,0 и 0,05 %-го растворов воды в изопропиловом спирте. После разделения этой смеси на колонке с полисорбом получали соответствующие впущенным количествам площади пиков воды. [c.22]

    Оригинальная конструкция атомизатора описана в работе [390] для раздельного определения в бензине различных свинец органических соединений гибридным методом (газовый хроматограф — атомно-абсорбционный СФМ). Использован хроматограф Микротек , модель ОС-2000-К с колонкой из нержавеющей стали диаметром 3,2 мм и длиной 760 мм, заполненной хромосорбом W с 20% фазы трикрезилфосфат. Газ-носитель — аргон, расход 150 мл/мин, температура колонки 95°С, температура испарителя 100 °С, температура трубки, связывающей хроматограф с атомизатором, 95 °С. [c.272]

    Кажущееся сродство к электрону можно определить с помощью соответствующей ионизационной камеры, состоящей из источника излучения (радиевого источника а-излучения) и устройства для измерения тока, проходящего через камеру при изменении приложенного напряжения. Газом-носителем могут быть водород, азот или гелий, но не аргон, поскольку последний при облучении образует метастабильные атомы, способные ионизировать органические молекулы (гл. X). Кривая зависимости между напряжением и силой тока для азота (как газа-носителя) и смеси азота с некоторыми соединениями, имеющими функциональные группы, показана на рис. Х1-5. Такие кривые для соединений различных классов были построены на основании данных, полученных прп многократном введении в колонку смеси этих соединений и измерении тока, производимого элюируемыми компонентами в результате изменения потенциала ионизационной камеры после каждого введения пробы. Реакция этого детектора, согласно имеющимся сообщениям, не зависит от концентрации [41]. [c.268]

    Одним из авторов и Семкиным определены значения В для 21 органического соединения различной молекулярной структуры при использовании в качестве газов-носителей аргона и двуокиси углерода. Работа проводилась на приборе с пламенно-ионизационным детектором. Колонку длиной 1,5 м, внутренним диаметром 3 мм заполняли хромосорбом W, пропитанным динонилфталатом в количестве 30% к весу носителя. Экспериментальные значения Ig Fg для всех сорбатов, нанесенные на график против соответствующего среднего давления в колонке PJit), отклоняются от прямой в среднем не более чем на 0,005 лог. ед. (диапазон средних давлений — до 16 атм). [c.63]


Смотреть страницы где упоминается термин Газы-носители различные аргон: [c.208]    [c.262]    [c.208]    [c.102]    [c.280]    [c.50]    [c.22]    [c.104]    [c.213]    [c.67]    [c.114]    [c.76]    [c.128]    [c.114]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аргон



© 2024 chem21.info Реклама на сайте