Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы равновесные двойные

    В физической теории устойчивости лиофобных коллоидов система взаимодействующих двойных слоев в первом приближении рассматривается как равновесная. При сближении одинаково заряженных частиц в растворе электролита происходит их отталкивание. Последнее не является кулоновским, так как заряд поверхности частиц полностью компенсирован зарядом противоионов. Силы отталкивания появляются при перекрытии диффузных ионных атмосфер (периферической части ДЭС) при этом концентрация ионов в зоне перекрытия возрастает по сравнению с невзаимодействующими слоями. Избыточная концентрация ионов в этом слое создает локальное осмотическое давление, стремящееся раздвинуть поверхности, т. е. приводит к возникновению так называемой электростатической компоненты расклинивающего давления. Расчет этой силы отталкивания на основе теории двойного слоя Гуи — Чепмена и теории сильных электролитов Дебая — Хюккеля был впервые выполнен Дерягиным [9], а затем другими исследователями. [c.14]


    Выход здесь заключается в том, чтобы начальную систему расслоить в отстойнике на два равновесных жидких слоя, раздельно их подогреть до точки кипениями в дальнейшем каждый слой в отдельности ввести в надлежаще подобранное сечение ректификационной колонны. При этом задача расчета ректификации рассматриваемой начальной системы сводится к разработке метода анализа ректификационной колонны с двойным питанием. [c.118]

    При любом объеме системы между значениями Ма и У , например при Ух, наименьшая величина изохорного потенциала системы определяется точкой на двойной касательной. Величина f д. меньше значения потенциала непрерывно изменяющей свой объем фазы. это изохорный потенциал равновесной смеси (1—х) частей жидкости и х частей насыщенного пара  [c.368]

    В данной работе следует изучить равновесие между жидкостью и паром и построить равновесную диаграмму состав — температура кипения двойной жидкой системы. [c.202]

    Константы равновесия для двойных смесей, содержащих метан в качестве наиболее летучего компонента, могут быть рассчитаны по критическим давлениям для этих двойных смесей этот способ расчета является точным и строгим. Из рассмотрения экспериментальных данных следует, что коррелирующее давление для тройных смесей может быть функцией равновесного давления. Это подтверждается примером рис. 4, на котором показаны экспериментальные константы равновесия для метана при 37,8° С в двойных системах метан—пропан [37], метан — -бутан [36] и в тройной системе метан — этан — / -пентан [3]. Критическая температура тройной смеси равняется 37,8° С, критическое давление 95,6 ата. Это критическое давление совпадает с критическим давлением метан-пропановой смеси при 37,8° С. Значения константы равновесия метана на гра- [c.102]

    При понижении равновесного давления в тройной смеси ниже критического (95,6 ата) константы равновесия для метана приближаются к соответствуюш,им константам в двойной системе, имеющей критическое давление 135 ата. [c.103]

    Двойная система является частным случаем сложных систем. Если критическое давление при любой заданной температуре используется как коррелирующее давление для констант равновесия метана в двойных системах, то последнее совпадает с критическим давлением двойных систем и будет функцией свойств фаз и равновесного давления. [c.103]

    Разность потенциалов, установившаяся между электродом и раствором при образовании двойного электрического слоя, называется электродным потенциалом ф. Он характеризует равновесное состояние системы электрод — раствор, и поэтому является ее термодинамическим свойством. Электродный потенциал зависит от материала электрода, природы окружающей его среды (раствора), температуры и концентрации ионов, которыми электрод обменивается с раствором. Эта зависимость выражается уравнением Нернста [c.235]


    Как уже указывалось, измерению доступны только изменения потенциала в плотной части двойного слоя, найденные из измерений потенциала электрода при постоянной ионной силе. Поэтому целесообразно принять в качестве точки отсчета равновесный потенциал системы фр. Это удобно в связи с тем, что при фр прямая и обратная (сопряженная) реакции протекают с одинаковой скоростью. Ток обмена определяется следующим выражением  [c.341]

    С позиций термодинамики любая система стремится перейти в равновесное состояние с минимумом свободной энергии. В двойной системе с ликвацией зависимость свободной энергии Р от состава [c.64]

    Из соотношения (47.10) видно, что чем больше ток обмена, тем меньше отклонение потенциала от его равновесного значения при данной плотности тока и наоборот. На основе уравнения (47.10) можно дать более строгое определение понятиям идеально поляризуемого и идеально неполяризуемого электродов. Так, идеально поляризуемый электрод — это такой электрод, плотность тока обмена на котором равна нулю о=0. Если бы не было двойного слоя, любой сколь угодно малый ток вызвал бы бесконечно большое смещение потенциала. Ртутный электрод в растворах, тщательно очищенных от примесей деполяризаторов, приближается по свойствам к идеально поляризуемому электроду именно потому, что ток обмена реакции выделения водорода (из молекул Н2О) на этом электроде чрезвычайно мал, а стандартный потенциал для системы Hg +/Hg имеет большое положительное значение (+0,79 В против н. в. э.). [c.239]

    I типа. Напомним, что это соответствует неограниченной растворимости в жидком состоянии и полному отсутствию растворимости — в твердом. Температуры плавления чистых компонентов обозначены на ребрах призмы буквами А, В и С (рис. VHI.18). На гранях призмы изображены кривые затвердевания бинарных систем — это кривые Ае В , Се А и Се В. Точки е , и вд — двойные эвтектические точки. Жидкая система, изображаемая точкой ei, может существовать в равновесии с твердыми компонентами А и В. При добавлении к такой системе некоторых количеств компонента С, температура, сосуществования жидкого расплава с компонентами А и В понижается — соответствующая кривая е Е направлена внутрь призмы и ВНИЗ . Иначе говоря, точки на эвтектической кривой е Е выражают состав тройной жидкой смеси, равновесной с компонентами А и В. Аналогичные эвтектические кривые берут начало из точек и е . Таким образом, точка на каждой из эвтектических кривых е Е, е Е и е Е выражает состав и температуру систем, равновесных соответственно с твердыми компонентами АиВ,СиА, СиВ. Здесь система обладает одной условной степенью свободы (давление постоянно). Потеря теплоты ведет к кристаллизации двойной эвтектики, понижению [c.306]

    Правило рычага. При расчетах фазовых равновесий необходимо определять, каким будет количество компонента в каждой из равновесных фаз при заданном общем составе. Для решения этих и других подобных задач (в том числе и задач, относящихся не только к фазовым равновесиям) удобно пользоваться правилом рычага и диаграммой. При равновесии жидкость — пар в двойной системе необходимо (рис. 87) определять количественное соотношение между жидкостью и паром при различных температурах. Рассмотрим исходную жидкую смесь состава Xq по компоненту В при Хо — содержание компонента В в паре Хт — содержание компонента В в жидкости. Пусть исходная жидкая смесь состоит из т моль обоих компонентов. Через у обозначим количество образовавшегося пара, через пг—у — количество оставшейся жидкости, через Хо — общее количество компонента В в исходной смеси х — молярная доля). Составим материальный баланс по компоненту В  [c.198]

    Диаграммы состав — давление пара. Совокупность равновесных состояний в двойной жидкой системе обычно изображается изотермической диаграммой, на которой наносятся кривые зависимости общего давления пара как от состава жидкости, так и от состава пара. На рис. [c.187]

    Ограниченная растворимость двух жидкостей. В зависимости от своей природы жидкости в разных соотношениях смешиваются друг с другом — от практической нерастворимости в любых условиях до неограниченной взаимной растворимости. Рассмотрим сДучай ограниченной взаимной растворимости на примере двойной системы анилин—вода. Если при постоянной температуре путем длительного и энергичного встряхивания перемешать произвольные, но достаточно большие количества анилина и воды, получится неустойчивая эмульсия. С течением времени она расслаивается на два сопряженных раствора верхний — насыщенный раствор анилина в воде и нижний — насыщенный раствор воды в анилине. При постоянной температуре оба раствора имеют строго определенный равновесный состав, который (в известных пределах концентраций) не изменяется при добавлении новых порций анилина и воды, изменяются лишь относительные количества растворов. [c.197]


    Благодаря высокой электролитической упругости растворения цинка, часть ионов цинка перейдет в раствор и в результате металл зарядится отрицательно (накопление на пластинке электронов), а окружающий пластинку слой раствора зарядится положительно. В системе, на границе раздела твердой и жидкой фазы, возникает двойной электрический слой, которому в равновесном состоянии отвечает определенное напряжение или потенциал, называемый электродным потенциалом. [c.204]

    Если компоненты двойной системы и химическое соединение, образуемое ими, ограниченно растворимы между собой, то получается тип диаграммы, приведенный на рис. 8.6. На этом рисунке заштрихованные участки являются гомогенными областями твердых растворов (ограниченных). Область I—твердый раствор соединения А В и кристаллов А И и П1—твердый раствор компонентов А и В соответственно и кристаллов A ,B IV—твердый раствор А В и кристаллов В. В областях а и Ь равновесно сосуществуют жидкие и твердые растворы. [c.88]

    Система КгО—8Юг—НгО. Фазовые равновесия этой систем во многом отличаются от натриевой, несмотря на то что двойны безводные системы близки между собой. Отличие определяете особенностями гидратации ионов калия. Как известно, по сравне нию с солями натрия соли калия редко образуют кристаллоги/1 раты. При обычных температурах для рассматриваемой систем они вообще не характерны, и поэтому там, где в натриевой систем равновесной донной фазой является тот или иной кристаллогиД рат, в калиевой системе равновесной фазой остается кремнезем В натриевой системе область существования безводных силикато в равновесии с растворами начинается примерно от 80 °С, хотя онг и труднодостижима из-за малой скорости образования силокса новых связей. В системе КгО—510г—НгО образование равновес ной донной фазы с силоксановыми связями между кремнекисло родными тетраэдрами начинается выше 200 °С. Ниже этой температуры равновесные с водными растворами силикаты калия вооб  [c.30]

    Равновесная смесь при обратимой изомеризации тетраметилаллена и 2,4-диметилпентадиена-1,3 содержит около 85% первого. Такое образование производного аллена из производного пентадиена-1,3 — первый случай превращения диена с сопряженной системой двойных связей в систему с соседними (куммулированными) двойными связями или в алленовую систему  [c.111]

    Кроме присоединения по двойным С = С-связям равновесная система ССЬ/СС1з обладает другими богатыми синтетическими возможностями, которые будут рассмотрены в этом разделе. [c.320]

    По своему фазовому поведению система СО2— HjO относится к тому же типу, что и ранее рассмотренная система Н2О — СН4. Она также имеёт разорванную критическую кривую. Ее двойная гомогенная критическая точка лежит при 266Х (рис. 28). Правая ветвь критической кривой (на рисунке показана пунктирной линией), определенная по составам сосуществующих равновесных газовых и жидких фаз, выходит из критической точки чистой воды(Сн2о). идет в сторону более низких температур и более высоких давлений и достигает минимума критических температур при 266°С, давлении 2498 кгс/см и критическом составе 0,415 мольные доли СО2 и 0,685 мольные доли Н2О. При дальнейшем повышении давления критическая кривая вновь направляется в сторону более высоких температур. Левая ветвь критической кривой, выходя из критической точки чистой [c.55]

    Определение параметров уравнений Вильсона и NRTL. Параметрами уравнений являются константы, характеризующие энергетические эффекты взаимодействия между молекулами в жидкой фазе. Они обычно не поддаются непосредственному измерению или расчету по теоретическим моделям, а определяются по экспериментальным равновесным данным жидкость—пар в бинарных системах, образующих многокомпонентную смесь. Для этого используются уравнения (2-6) и (2-7), записанные для двойных систем. Уравнение Вильсона [c.108]

    Прямые АА, ВВ, СС . .. соединяют составы двух равновесных слоев. Они называются, как и в случае двойных систем, связующими прямыми (или коннодами). Если бы ацетон распределялся поровну между хлороформом и водой, то связующие прямые располагались бы параллельно основанию треугольника. Но так как концентрация его в слое хлороформа при равновесии выше, чем в слое воды, то они располагаются в этой системе наклонно. [c.336]

    К сожалению, недостаточно лзучен механизм воздействия противоиона и его влияние а изомеризационные превращения карбокатионов. В работе (56, с. 3323] показано, что алкилирование бензола 1-додеценом и т/ анс-5-додеценом, как и соответствующими Са-Сю олефинами при контакте с безводным фторидом водорода при О и 55°С приводит к образованию разных по составу изомеров фенилалканов. В этих е условиях гексен-1 и гексен-3 дают одинаковое соотношение 2- и 3-ф ил-гексанов. Добавление к катализатору ВРз эначительно изменяет изомерный состав образующихся продуктов с явно прослеживающейся тенденцией при повышении температуры к равновесному распределению. При 0°С изомеризация подавляется, и состав получаемых продуктов определяется положением двойной связи в исходном олефине. Авторы связывают эти результаты ие с изменением активности системы, а с изменением состава противоиона благодаря введению в ионные пары Вр4 . Добавление щелочных металлов, действующих как основание, способствует понижению функции активности Гаммет-та и приводит к росту содержания 2-фенил-изомера, т. е. кислотность не приводит к понижению выхода данного продукта. [c.223]

    Если константа скорости пептизации значительно больше константы скорости коагуляции (энергия активации пептизации значительно меньше, чем при коагуляции), то в системе будут преобладать мелкие первичные частицы. С увеличением константы скорости коагуляции (уменьшением ее потенциального барьера) число двойных, тройных и т. д. частиц в равновесной системе возрастает. Если коагуляция вызвана взаимодействием между частицами через прослойки среды, то энергия притяжения незначительна, и минимум энергии состемы характеризуется малым отрицательным значением. Поэтому небольшие изменения в системе (колебания pH, ко1щентрацпи электролита), вызывающие увеличение силы отталкивания частиц (уменьшение силы нх притяжения), приводят к пептизации системы иод действием броуновского движения. К системам, способным к подобным превращениям, относится большинство лиозолей (гидрозолей), стабилизированных различными способами, в том числе с помощью электролитов, ПАВ и ВМС. В этом отношении интересны гидрозоли оксида кремния, которые [c.287]

    На рис. 12 приведены кривые, выражающие зависимость константы равновесия метана от коррелирующего давления при нескольких значениях равновесного давления. Сплошными гфужками представлены данные по двойным смесям метана. Другие точки отвечают данным по трехкомпонентным системам [1,9, 10] и одной пятикомпонентной системе [14]. Данные хорошо согласуются с проведенными кривыми (в пределах ошибки опыта в кая дом случае). [c.106]

    Ноды, проведенные на рис. X. 2 (а—а и др.), соединяют точки, отвечающие составам равновесных (сопряженных) растворов. Ноды не параллельны стороне треугольника, так как вещество, добавленное к ограниченно смещивающейся двойной системе, неодинаково распределяется между жидкими фазами. [c.118]

    Влияние неравновесных электроповерхностных сил. Выше были рассмотрены равновесные поверхностные силы, действующие у межфазной границы и способные препятствовать сближению двух одноименно заряженных частиц. В послед- ие годы Б. В. Дерягин и С. С. Духин проанализировали действие электропо- верхностных сил в системах, в которых имеют место нарушения термодинамического равновесия. Они установили, что деформация двойного электрического слоя, вызванная внешним электрическим полем или конвективным движением жидкости, приводит к образованию такого электрического поля, радиус действия которого часто на несколько порядков превосходит радиус действия не-дефммированного слоя в тех же условиях. [c.197]

    Уксусная кислота, как и другие карбоновые кислоты, в органическом растворителе находится в виде двойных молекул или даже в более высокой степени агрегации за счет водородных связей. В воде уксусная кислота диссоциирует незначительно и ее диссоциацией. можно пренебречь. При экстрагировании в бензольной растворе устаиавли заегся равновесие ди мер — мономер, а мокд/ бензо 1Ы1Ым и водным растворами идет обмен только молекулами мономера. В системе уксусиая кислота — бензол — вода отношение равновесных концентраций кислоты в воде сц.о и в бензоле сс,н, снижается с повышением их концентрации и коэффициент распределения рассчитывается по уравиению (Vn.5). [c.84]

    В электролитической ванне (электролизере, электролитической ячейке) под влиянием приложенного внешнего электрического поля и в замкиутом гальваническом элементе нарушается равновесие, изменяются электрические характеристики системы. Катод (анод) и раствор электролита обмениваются заряженными частицами. Частные токи, отвечающие анодному и катодному процессам, не равны току обмена — количеству электричества, проходящему в е(Диницу времени в условиях равновесия от раствора к электроду и обратно. Состав системы количественно и во многих случаях качественно изменяется. Плотность заряда двойного электрического слоя и потенциалы электродов не равны равновесным значениям и зависят не только от активности веществ, участвующих в электрохимическом процессе, температуры и давления, 1Но и от силы тока. Напряжение на электролизере лри данном токе больше, чем равновесная э. д. с. гальвап ического элемента, в котором осуществляется обратная электрохимическая реакция. В замкнутом, генерирующем ток гальваническом элементе (аккумуляторе) напряжение на клеммах меньше, чем равновесная э. д. с. Если система под током достигает стационарного состояния, не зависящего от времени, то неравновесные потенциалы устанавливаются и принимают стационарные значения. Оцениваются эти поляризационные явлеиня поляризацией электродов и э. д. с. поляризации. [c.200]

    На диаграмме кипения обычно показаны температуры кипения и равновесные составы двойных смесей при постоянном давлении (табл. И/4, ряды IV и V, см. приложение, стр. 579). В системе координат с г в качестве ординаты и хв в качестве абсциссы наноспм кривую кипения 1 и кривую конденсации 2, концы которых совпадают. На рис. 44 приведена диаграмма кипения смеси бензол—толуол. Для всех точек выше кривой конденсации 2 смесь находится полностью в парообразном состоянии. Для точек, расположенных между обеилш кривыми, система состоит частично из жидкости и частично из пара, а шш<е кривой кипения 1 находится только жидкость. Предположим, что мы нагреваем смесь состава она начинает кипеть при температуре и паровая фаза будет иметь состав у. Жидкая фаза хв находится в равновесии с паровой фазой у при температуре t. Диаграмма кипения экспериментально определяется так же, как и кривая равновесия (см. главу 4.63) аналогичным путем ее можно использовать для определения необходимого количества теоретических тарелок. На рис. 45 приведена кривая равновесия смеси бензол—толуол, полученная на основании диаграммы кипения. Точки А я В расположены теперь одна над другой. Преимущество диаграммы кипения [c.79]

    Зависимость положения равновесия от строения таутомеров наиболее полно изучена для кето-енольных таутомерных систем и их близких аналогов, и мы ограничимся этими примерами. Равновесные соотношения между кето- и енольными формами часто могут быть оценены химическими методами, однако такого рода измерения обычно легче и удобнее провести спектроскопически, Значительное содержание енольной формы в кето-енольной системе при достижении таутомерного рг новесия может иметь место обычно только при наличии одного или нескольких заместителей, способных стабилизовать енол за счет делокализации я-электронов его двойной углерод-углеродной связи  [c.262]


Смотреть страницы где упоминается термин Системы равновесные двойные: [c.264]    [c.253]    [c.146]    [c.320]    [c.367]    [c.93]    [c.81]    [c.227]    [c.21]    [c.233]    [c.307]    [c.162]    [c.19]    [c.34]   
Метод физико-химического анализа в неорганическом синтезе (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

РАВНОВЯСПЫЕ IITKWI.I Главапервая ДВОЙНЫЕ РАВНОВЕСНЫЕ СИСТЕМЫ

Система равновесная

Химия равновесной системы двойной



© 2025 chem21.info Реклама на сайте