Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трипсин, гидролиз пептидов

    Гидролиз пептидов (и белков) приводит к освобождению аминокислот, участвовавших в их построении. Расщепление проводят, как правило, кипячением с соляной или серной кислотами. При этом все аминокислоты выделяются в виде солей, например хлоргидратов. Исключение составляет триптофан, который разрушается в ходе гидролиза, и поэтому для его определения требуются иные способы. Щелочи также гидролизуют пептиды (и белки), но этот процесс протекает менее гладко и приводит к значительной рацемизации аминокислот. Гидролиз полипептидов до аминокислот можно проводить и при помощи ферментов (трипсин, эрепсин). [c.383]


    Дальнейшее превращение белков пищи осуществляется в тонкой кишке, где на белки действуют ферменты панкреатического и кишечного соков. Трипсин и химотрипсин действуют на белки аналогично пепсину, разрывают другие внутренние пептидные связи оба фермента наиболее активны в слабощелочной среде (pH 7,2—7,8). Благодаря гидролитическому действию на белки всех трех эндопептидаз (пепсин, трипсин, химотрипсин) образуются различной длины пептиды и некоторое количество свободных аминокислот. Дальнейший гидролиз пептидов до свободных аминокислот осуществляется под влиянием группы ферментов—пептидаз. Помимо панкреатической карбоксипептидазы, на пептиды действуют кишечная аминопептидаза и разнообразные дипептидазы. Эта группа ферментов относится к экзопептидазам и катализирует гидролиз пептидной связи по схеме  [c.425]

    Трипсин гидролизует пептидные связи, образуемые основными аминокислотами, т. е. связи, в которых участвуют остатки лизина и аргинина. Пептидные связи Лиз-Про и Арг-Про устойчивы к гидролизу. Частичной устойчивостью к трипсиновому гидролизу обладают также некоторые другие пептидные связи, например в структуре. .. Лиз-Лиз-Х... связь Лиз-Лиз или связи в пептидах Арг-Арг, Арг-Лиз и Лиз-Арг. Скопление основных аминокислот в определенных участках пептида обусловливает частичную устойчивость его к гидролизу. То же самое справедливо и для пептидных связей Лиз-Глу и Арг-Глу. [c.35]

    Полный гидролиз белка до аминокислот не может быть осуществлен только одним ферментом для этого необходимо совместное действие нескольких ферментов. Различают две большие группы ферментов протеиназы, к которым относятся пепсин, трипсин и химотрипсин, гидролизующие природные белки пищи до больших пептидов, и пептидазы, содержащие карбоксипептидазы, аминопептидазы и дипептидазы, гидролизующие пептиды до аминокислот. [c.426]

    Трипсин гидролизует не только белки илп высокомолекулярные полипептиды, но как показали опыты с синтетическими пептидами, содержащими только три пептидных связи, он способен расщеплять и некоторые низкомолекулярные пептиды, содержащие определенные аминокислоты (например, аргинин или лизин). Это, впрочем, относится также к действию пепсина и химотрипсина. [c.316]

    Пепсин действует в кислой среде (pH = 1—2). Активность пепсина очень велика 1 г кристаллического пепсина за 2 часа расщепляет и переводит в раствор 50 кг денатурированного яичного белка. Трипсин гидролизует белки и продукты его распада в слабощелочной среде (pH = 8—9). Пептидазы действуют при pH = 7,1—7,6. Известны три группы пептидаз карбоксипептидазы и амино-пептидазы, гидролизующие пептиды, содержащие не менее трех аминокислотных остатков (стр. 687), и дипептидазы, расщепляющие дипептиды. [c.703]


    Электрофоретическое разделение НЬА и НЬ8 по методу подвижной границы показывает, что разница между зарядами этих молекул составляет один элементарный заряд на половину молекулы. Вполне возможно, что эта разница обусловлена заменой всего лишь одной аминокислоты в а- или р-цепи. Для того чтобы дать точный ответ, нужно было бы иметь данные полного анализа аминокислотной последовательности в обеих цепях. Однако установить участок, в котором два вида молекул гемоглобина различаются по аминокислотному составу, можно и без полного определения последовательности аминокислот. Протео-литический фермент трипсин гидролизует пептидные связи, в образовании которых участвуют карбоксильные группы остатков лизина и аргинина. И лизин, и аргинин имеют сравнительно длинные неразветвленные боковые цепи с положительным зарядом на конце. В каждой половине молекулы гемоглобина на 287 аминокислотных остатков приходится около 26 остатков лизина и аргинина. Таким образом, трипсиновый гидролизат половины молекулы гемоглобина должен содержать около 28 пептидов (поскольку в каждой половине имеются две различные цепочки), каждый из которых содержит в среднем немногим больше 10 остатков. В действительности при таком гидролизе отщепляется устойчивое ядро , содержащее около четверти аминокислотного состава половины молекулы. Анализ состава этого ядра , отделенного центрифугированием от прочих пептидов, показывает, что в НЬА и в НЬЗ оно имеет одинаковый аминокислотный состав и, вероятно, одинаковую последовательность аминокислотных остатков. [c.223]

    Расщепление белков пищи начинается в желудке, где они гидролизуются под действием пепсина желудочного сока с образованием смеси пептидов. У младенцев жизненно важную роль выполняет фермент рен-нин, который способствует свертыванию белков молока и таким образом удерживает их в желудке, что необходимо для действия пепсина. У взрослого человека функцию реннина выполняет химотрипсин панкреатического сока. В двенадцатиперстной кишке трипсин и химотрипсин быстро гидролизуют пептиды и некоторые нативные белки до простых пептидов и аминокислот. [c.394]

    Трипсин проявляет высокую специфичность, расщепляя лишь пептидные связи, в образовании которых принимают участие основные аминокислоты, такие, как лизин и аргинин. Наряду с пептидными трипсин гидролизует амидные и сложноэфирные связи, образованные лизином и аргинином, причем амиды расщепляются быстрее пептидов, а сложные эфиры — еще быстрее. [c.305]

    Вопрос о том, одинаковы или различны аминокислотные последовательности субъединиц, можно выяснить путем определения числа пептидов в ферментативном гидролизате белка. Наиболее широко используемый для этой цели протеолитический фермент — трипсин, гидролизующий только те пептидные связи, которые образованы карбоксильными группами лизина или аргинина. По суммарному содержанию лизина и аргинина в белке можно примерно предсказать число триптических пептидов, которые должны образоваться при полном гидролизе трипсином. Для белка, состоящего из одной полипептидной цепи, число триптических пептидов равно числу остатков лизина и аргинина в молекуле плюс 1. Вдвое меньшее число пептидов образуется из белка, содержащего две субъединицы с одинаковой аминокислотной последовательностью. Пептиды разделяют на бумаге или других подходящих носителях (гл. 5), используя обычно электрофорез в одном направлении и хроматографию в другом с последующим обнаружением пептидов по реакции с нингидрином. Чрезвычайно маловероятно, чтобы два триптических пептида с различной аминокислотной последовательностью обнаружились в виде одного пятна. Более серьезные возможные осложнения обусловлены тем, что значительная часть триптических пептидов оказывается нерастворимой и не проявляется на пептидных картах, как это иногда случается при исследовании крупных белков. Обычно же число обнаруживаемых пептидов довольно близко к ожидаемому. Следовательно, метод пептидных карт в сочетании с определением молекулярной массы достаточен для того, чтобы выяснить, являются ли аминокислотные последовательности субъединиц одинаковыми или различными. [c.172]

    Высокий процент в большинстве белков лизина и аргинина приводит при гидролизе трипсином к появлению сравнительно большого числа относительно мелких пептидов. Их анализируют методом пептидных карт на бумаге или в тонком слое, а также с помощью хроматографии на колонках и электрофорезом. [c.140]

    Трипсин Гидролизует пептиды, амиды, сложные эфиры и т. п. по месту связей, в которых участвуют карбоксильные группы L-аргипина и L-лизипа [c.193]

    Единственная химическая реакция, которая здесь будет рассматриваться, —это гидролиз. Он может осуществляться как ферментативным, так и химическим путем. Горячая разбавленная минеральная кислота медленно расщепляет амидные связи с образованием с учайных фрагментов, в конечном итоге приводя к простым аминокислотам. Контролируемый кислотный гидролиз разрушает белок с образованием смеси пептидов. Возможен также ферментативный гидролиз протеолитические ферменты очень разнообразны по своему специфическому действию. Некоторые из них, такие, как папаин или фицин, фактически неспецифичны и расщепляют белки до свободных аминокислот, в то время как другие — трипсин, химотрипсин и пепсин— гидролизуют только особые связи в белковых молекулах (ср. мальтаза, эмульсин и т. д., разд. 17.6 и 17.7). Так, пепсин расщепляет амидную связь между карбоксильной группой ди-карбоновой ь-аминокислоты и аминогруппой ароматической ь-аминокислоты при условии, что вторая карбоксильная кислотная группа дикарбоновой аминокислоты не связана. Химотрипсин менее специфичен и расщепляет амидную связь с карбонильной стороны ароматической ь-аминокислоты. Трипсин гидролизует амидные связи, включающие карбоксильные груп- [c.296]


    Lys и Arg в совокупности обычно представлены в белке значительно большим числом остатков, чем Met, поэтому трипсиновые пептиды мельче. Нередко трипсином гидролизуют BrGN-пентиды иосле их разделения. [c.298]

    При эгом они основывались на специфическом действии ферментов. В пептидах, образовавшихся в результате трипсинного гидролиза, С-концевыми аминокислотами являются аргинин и лизин. Пептиды, выделенные из гидролизата рибонуклеазы химотрипсином, содержат основном в качестве концевых С-аминокислот остатки тирозина и фенилаланина. [c.524]

    После того как установлена первичная структура- какого-либо белка, обычно нет необходимости проводить полное изучение аминокислотной последовательности у гомологичных белков из близких (соответствующих) источников. Быстрый ответ можно получить, используя технику трипсинового фингерпринта . Для этого подвергают гидролизу трипсином белок с известной структурой и параллельно ему гомологичный белок полученные в результате гидролиза пептиды разделяют обычно с помощью двумерного электрофореза или хроматографии. Если разница в последовательностях невелика, то больщинство пептидов должны занимать идентичное положение на двумерном фингерпринте. Те немногие пептиды, которые отличаются по подвижности, необходимо элюи-.ровать и подвергнуть аминокислотному анализу по Эдману. Эта техника особенно полезна при изучении аномальных гемоглобинов, которые отличаются от нормального природой только одного участка. [c.276]

    Переваривание белков представляет собой сложный процесс и совершается в несколько этапов. Начинается этот процесс в желудке под действием фермента пепсина. Дальнейший гидролиз пептидов происходит в тонком кишечнике протеазами поджелудочной железы трипсином, химотропсином, карбоксипептидазами. В переваривании пептидов участвуют также ферменты слизистой кишечника аминопептидаза и дипептидазы. Благодаря последовательному воздействию на белковую молекулу всех ферментов желудочно-кишечного тракта белок распадается на аминокислоты, которые всасываются в кровь. [c.160]

    Аминокислотный состав П. определяют после их гидролиза (кипячение в 6 и. НС1 в течение 20 ч) до составляющих аминокислот, к-рыс анализируют хромато-графич. методом на сульфокатионитах с автоматич. фотометрироваиием окрагиенных продуктов их взаимодействия с нингидрином. Для определения содержания триптофана применяют щелочной гидролиз пептидов (кипячение в 5 н. NaOH в течение 20 ч), т. к. кислотный гидролиз приводит к разрушению триптофана, а также частично серина и треонина. Глутаминовая к-та при гидролизе подвергается значительной рацемизации. Полиаминокислоты с объемистыми алкильными боковыми группами (валин, изовалин, изолейцин, лейцин) гидролизуются значительно медленнее остальных. Гидролиз П. до аминокислот моишо проводить п при помощи ферментов (трипсин, эрепсин). [c.15]

    Энтеропептидаза (гидролизует пептиды превращает трипсиноген в трипсин) [c.47]

    Осуществленный таким способом гидролиз пептидньк связей-это необходимый шаг в определении аминокислотного состава белков и последовательности составляющих их аминокислотных остатков. Пептидные связи могут быть гидро-лизованы также под действием некоторых ферментов, таких, как трипсин и химотрипсин, представляющие собой протеолитические (белок-расщепляю-щие) ферменты, секретируемые в кишечник и способствующие перевариванию, т. е. гидролитическому расщеплению, белков, входящих в состав пищи. Если кипячение пептидов с кислотой или щелочью приводит к гидролизу всех пептидных связей независимо от природы и последовательности соединенных при их помощи аминокислотных звеньев, то трипсин и химотрипсин осуществляют каталитическое расщепление пептидов избирательным образом. Трипсин гидролизует только те пептидные связи, в образовании которьсс участвуют карбоксильные группы лизина или аргинина. Химотрипсин же атакует только те пептидные связи, которые были образованы с участием карбоксильных групп фенилаланина, триптофана и тирозина. Как мы увидим дальше, такой избирательный ферментативный гидролиз оказьшается очень полезным при анализе аминокислотных последовательностей белков и пептидов. [c.130]

    Выяснилось, что ДФФ ингибирует целый класс ферментов, многие из которых способны катализировать гидролиз пептидов или эфирных связей. К этим ферментам относится не только ацетил-холинэстераза, но и трипсин, химотрипсин, эластаза, фосфоглюкомутаза и коко-наза (фермент, вьвделяемый личинкой тутового шелкопряда и используемый ею для гидролиза шелковых нитей и освобождения из кокона). Характерная осо-бетность всех ферментов, ингибируемых ДФФ, состоит в том, что они содержат в активном центре остаток серина, принимающий участие в каталитическом акте (рис. 9-10). [c.244]

    Если бы не было ферментов желудочного сока, организм не смог бы переварить потребляемую пищу. Учащиеся должны знать, что полный гидролиз белков пищи до аминокислот не может быть осуществлен только одним ферментом, для этого необходимо совместное действие нескольких ферментов желудочного сока — пепсина, трипсина, химотрипсина, гидролизующих природные белки пищи до больших пептидов и затем пептидазов, гидролизующих пептиды до аминокислот. Преподаватель дает определение ферментативному гидролизу белка — процесс превращения белков пищи в аминокислоты, протекающий в желудке. [c.148]

    Ферментативный гидролиз проходит обычно ступенчато. Высокомолекулярные белки расщепляются под действием пепсина до пептонов (смесь соединений с молекулярным весом 700—2000). Пептоны и не подвергшиеся расщеплению белки гидролизуются в кишечнике трипсином до пептидов, аминокислот и дикетопиперазинов, Пептиды расщепляются пептидазами до аминокислот. [c.703]

    Карбоксипептидазы А и В образуются при гидролизе трипсином соответствующих прокарбоксипептидазных предшественников, синтезируемых в поджелудочной железе [187J. Из этих двух ферментов более подробно изучена карбоксипептидаза А, и проведено ее детальное исследование методом рентгеноструктурного анализа [29, 188, 189]. Карбоксипептидаза А быка (КПА) представляет собой фермент, содержащий 307 аминокислот в единственной полипептидной цепи, которая прочно связывает 1 г-ион Zn(II) на 1 моль фермента. Необходимость Zn(ll) для ферментативной активности была впервые продемонстрирована тем, что КПА, свободная от иона металла, неактивна, но активность восстанавливается при добавлении Zn(II) [190, 191]. По-видимому, фермент, не содержащий металла, в основном сохраняет структурные свойства активной КПА [191]. Позже на основе данных рентгеноструктурного анализа [29] было четко установлено, что роль иона Zn(ll) при гидролизе пептидов заключается в связывании субстрата. При протеолизе фермент проявляет стереохимическую специфичность, отщепляя С-конце-вую аминокислоту от пептидной цепи только в том случае, если С-концевая карбоксильная группа свободна и если аминокислота имеет L-конфигурацию [192, 193]. Обычно наблюдается более высокая активность, если остаток С-концевой аминокислоты содержит ароматическую группу или разветвленную цепь [194]. [c.76]

    Поскольку зеин не содержит лизина, можно считать, что все его свободные аминогруппы находятся только в а-положении соответствующие тщательные исследования показали, что в зеине имеется только одна или две свободные аминогруппы [173] и, следовательно, молекула зеина содержит только одну или две пептидные цепи. В молекуле зеина имеется только один остаток цистина [173]. При гидролизе зеина пепсином образуются пептиды, имеющие на концах аминогруппы глутаминовой кислоты, при гидролизе же зеина трипсином получаются пептиды, содержаище в концевых положениях аланин [173]. [c.197]

    Работы Бергмана и его сотрудников показали, что для ферментативного гидролиза пептидов необходимо наличие боковых цепей определенной структуры. Так, например, для протеолитического действия трипсина необходимо наличие в пептидах щелочных боковых цепей, пепсин же проявляет свое действие при наличии боковых цепей, содержащих ароматические или кислые аминокислоты. Ниже на примере тетрапептида тирозил-лизилглутамилтирозииа показаны отдельные группы, необходимые для действия различных ферментов [13]. [c.364]

    Пептоны и нераспавшиеся белки из желудка поступают в кишечник. В тонком отделе его гидролиз белков и пептидов происходит при участии ферментов панкреатического и кишечного соков. В соке поджелудочной железы содержатся трипсин, химотрипсин, карбоксипептидазы, аминопептидазы. Последовательное действие этих ферментов обеспечивает полный распад белков и пептидов с образованием смеси аминокислот. Трипсин, подобно пепсину, вырабатывается поджелудочной железой в неактивном состоянии — в форме трипсиногена, который при участии гормона слизистой энтерокиназы переходит в активный трипсин. Трипсин гидролизует пептидные связи, образованные карбоксилами лизина и аргинина. В отличие от пепсина этот фермент переваривает гистоны и протамины. Понятно, что белковая молекула под влиянием трипсина распадается на несколько пептидов, как и при действии пепсина, но в этом случае возникают пептиды иного состава. [c.119]

    Воссоздание всей последовательности по фрагментам известной структуры. Из пептидных фрагментов с расшифрованной структурой мысленно складывают исходную полипептидную цепь. Ход такого воссоздания целого из различных частей можно видеть на довольно простом примере установления структуры -меланофорстимулирующего гормона гипофиза свиньи Этот пептидный гормон разрушается химотрипсином на четыре пептидных фрагмента. Трипсин гидролизует его с образованием трех пептидных фрагментов. После установления аминокислотной последовательности всех этих пептидов можно легко выявить перекрывающиеся пептиды из триптического и химотриптического гидролизатов и найти всю последовательность (см. стр. 86). [c.87]

    По сравнению с другими иротеолитическими ферментами (трипсин, химотрипсин) пенсии менее специфичен и обладает большим диапазоном действия Пепсин гидролизует пептиды и не действует на сложные эфиры и амиды. Наиболее легко расщепляются пептидные связи между ароматическими и дикарбоновыми Z-аминокислотами. [c.304]

    Волнение, вызванное выявлением того факта, что белки, связывающие кислород,— гемоглобин и миоглобин — имеют одинаковую третичную структуру и выполняют одинаковые функции, вновь овладело учеными, когда было установлено, что аналогичная ситуация имеет место в случае сериновых протеаз млекопитающих. Эти ферменты названы так потому, что они имеют уникальный по своей активности сериновый остаток, который необратимо реагирует с фосфорорганическими соединениями, например с диизопропилфторфосфатом. Основные панкреатические ферменты — трипсин, химотрипсин и эластаза — кинетически весьма близки и гидролизуют пептиды и синтетические сложные эфиры. Их активность имеет оптимум при рН= 7,8 и определяется состоянием ионизации групп с р/(а = = 6,8. Во всех трех случаях в процессе реакции образуется ацилфермент , в котором карбоксильный фрагмент субстрата образует сложноэфирную связь с гидроксильной группой активного серина. [c.27]

    Основное различие между трипсином, химотрипсином и эла-стазой состоит в их специфичности. Трипсин специфически гидролизует пептиды, состоящие из лизина и аргинина, и эфиры этих аминокислот химотрипсин расщепляет полипептидную цепь по фенилаланину, тирозину и триптофану, имеющим большие гидрофобные боковые цепи специфичность эластазы проявляется в ее действии на такие небольшие гидрофобные молекулы, как аланин. Установление структуры кристаллических ферментов показало, что полипептидные остовы всех трех ферментов при наложении их друг на друга практически совмещаются, за исключением участков, где добавлено или пропущено несколько аминокислот (рис. 1.11). Различие же в специфичности этих ферментов обусловлено небольшими изменениями в строении кармана , связывающего боковую цепь аминокислоты. В молекуле химотрипсина имеется четко выраженный карман, связывающий большие гидрофобные боковые цепи [35]. В молекуле трипсина на дне аналогичного кармана вместо 5ег-189 находится аспартат [36]. Отрицательно заряженная карбоксильная группа Азр-189 образует ионную связь с положительно заряженной аммонийной или гуанидиниевой группами на конце цепи лизина или аргинина. Два глицина, расположенные у входа в карман химотрипсина, в случае эластазы замещены Валином (Уа1-216) и треонином (ТЬг-226) [37]. Это предотвращает проникновение в карман больших боковых цепей и обеспечивает связывание небольшой по размерам боковой цепи аланина (рис. 1.12). [c.27]

    Различают экзопептидазы, расщепляющие связи вблизи С- или N-конца цепи (соотв. карбоксипептидазы и аминопептидазы) и эндопептидазы (протеиназы), гидролизующие связи, удаленные от концевых остатков (напр., трипсин). Лишь ограниченное число П. ф. обладает строгой субстратной специфичностью. К ним относят, напр., ренин, гидролизующий связь между остатками лейцииа в положениях 10 и 11 в ангиотензиногене (предшественник ангиотензина пептида, участвующего в регуляции кровяного давления), или энтеропептидазу отщепляющую N-концевой гексапеп- [c.112]

    Наиболее специфичным из ферментов является трипсин. Он расщепляет только пептидные связи, образованные карбоксилом аргинина и лизина. Его действие можно еще более ограничить, если динитрофени-лировать в-аминную группу лизина. Химотрипсин расщепляет связи, образованные ароматическими аминокислотами. Недавно было обнаружено, что он гидролизует и лейциновые пептиды. Менее специфичны папаин, пепсин и субтилизин. Последний позволяет, однако, получать смесь низкомолекулярных пептидов, что часто оказывается удобным прн исследованиях. [c.516]

    Мур, Штейн и Хирс подвергли рибонуклеазу окислению надмуравьиной кислотой и затем гидролизу химотрипсином, трипсином и пепсином. Образовавшуюся смесь пептидов они разделили на препаративной автоматической колонке на смоле даузкс = 50х2. Аминокислотный состав пептидов был определен на смоле дауэкс = 50x4. Всего было получено 32 пептида (см. стр. 521). [c.521]

    Параллельно с определением последовательности аминокислотных остатков в рибонуклеазе проводилось и определение положения дисульфидных мостиков. Спакман, Мур и Штейн нашли, что рибонуклеазу можно гидролизовать трипсином и химотрипсином без предварительного окисления дисульфидной связи, если проводить гидролиз в 2-мо-лярном растворе хлоргидрата гуанидина. Ими было получено-6 пептидов, которые затем подвергались окислению надмуравьиной кислотой и исследовались. Таким образом было установлено, что 5—8 мостики расположены в положениях 1—б, 2—7, 3—8 и 4—5. [c.524]

    Ферментативные методы гидролиза особенно ценны благодаря присущей им во многих случаях специфичности. Трипсин, представляющий собой так называемую эндопептидазу, быстро расщепляет пептидные связи лишь в том случае, если карбонильная группа расщепляемой амидной связи принадлежит одной из основных аминокислот — лизину или аргинину. Таким образом, трипсин превращает белок в сравнительно малое число триптических пептидов, которые можно разделить и охарактеризовать. Трипсин расщепляет только денатурированные белки, причем для получения хороших результатов нужно предварительно разорвать дисульфидные мостики. [c.166]


Смотреть страницы где упоминается термин Трипсин, гидролиз пептидов: [c.426]    [c.383]    [c.406]    [c.120]    [c.179]    [c.185]    [c.398]    [c.483]    [c.594]    [c.206]    [c.182]    [c.524]   
Белки Том 1 (1956) -- [ c.5 , c.18 , c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Трипсин



© 2025 chem21.info Реклама на сайте