Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород модель

    Метод электронных пар, будучи основой теории химической связи, оказывается беспомощным в попытках объяснить существование вполне устойчивых, не склонных к ассоциациям молекул, например N0 и О 2, имеющих неспаренные электроны. Так, в молекуле кислорода оба его атома связаны лишь одной электронной парой. При этом у каждого из атомов остается по одному неспаренному электрону, которые обусловливают парамагнитные свойства кислорода. Модель молекулы кислорода может быть представлена следующим образом  [c.100]


    ТАБЛИЦА У1П-1. УСЛОВИЯ ЗАГОРАНИЯ В КИСЛОРОДЕ МОДЕЛЕЙ ОБОЙМ ЛАБИРИНТНЫХ УПЛОТНЕНИЙ КОМПРЕССОРОВ ПРИ ТРЕНИИ О НИХ ГРЕБНЕЙ  [c.331]

    Понятие о канале применимо к колшлексам тиомочевины, как и комплексам мочевины. Однако вследствие большего размера атома серы в тио-мочевине сравнительно с размерами кислорода в мочевине канал имеет большее поперечное сечение. Постоянные ячеек комплексов тиомочевины, бо-видимому, меняются в зависимости от природы комплексообразующей молекулы, в результате чего будут изменяться и размеры канала. Опубликованные данные рентгеноструктурных анализов комплексов тиомочевины недостаточны для надежного вычисления размеров капала. Метод, использованный Шисслером [15] для измерения молекулярных размеров моделей углеводородов, способных и не способных к комплексообразованию, по-видимому, наиболее пригоден для измерения поперечных размеров каналов комплексов тиомочевины, которые, вероятно, должны быть порядка 5,8 [c.215]

    Повышенное или пониженное значение плотности прочно связанной воды по сравнению с обычной жидкой водой будет зависеть от того, какой из двух факторов — усиление энергии связи или разупорядочивающее влияние подложки — окажется преобладающим. Для слоистых силикатов (см. табл. 2.2),кремнезема [87], цеолита NaX [88] плотность адсорбированной воды выше единицы. Это обусловлено высокой энергией связи при относительно небольшом разупорядочивающем влиянии подложки. Последнее объясняется хорошим структурным соответствием между узором поверхностных атомов кислорода (и гидроксильных групп в случае кремнезема) слоистых силикатов и кремнеземов, с одной стороны, и элементами структуры воды — с другой. Недаром получившая широкое распространение первая модель структуры адсорбированной слоистыми силикатами воды представляла собой плоский вариант структуры льда [89]. Н. В. Белов подметил идентичность формы и размеров полостей цеолита X и крупных додекаэдрических молекул воды Н20 20а<7 и на основе этого предположил, что [c.35]

    Рассмотрим результаты расчета некоторых свойств объемной фазы воды для двух моделей. В модели межмолекулярного потенциала ST2 [340] используются четыре точечных заряда, расположенных в вершинах тетраэдра. Электростатическое взаимодействие плавно выключается при малых расстояниях между молекулами. Короткодействующие силы отталкивания учитываются потенциалом Леннарда — Джонса 6-12 между атомами кислорода. Дипольный момент. молекулы воды равен 2,35 Д, а абсолютный минимум энергии.-димера воды составляет 28,4 кДж/моль при расстоянии 0,285 нм между атомами кислорода. [c.120]


    Модель межмолекулярного потенциала SP [338] использует три заряда, расположенных на атомах водорода и кислорода. Так же как и в модели ST2, между молекулами воды действует потенциал 6-12, центрированный на атомах кислорода. Для определенных параметров модели выполнялась серия пробных расчетов с целью минимизировать отклонение рассчитанных величин от данных экспериментальных измерений. В результате получен дипольный момент, равный 2,27 Д, энергия водородной связи равна 27,6 кДж/моль при равновесном расстоянии 0,276 нм между атомами кислорода в димере воды. [c.120]

    Резонансному гибриду шести эквивалентных структур [-VI для 80 должен отвечать средний порядок связи сера—кислород, равный 1 . С такой моделью, предсказывающей для ЗО частично двоесвязный характер, согласуется тот факт, что наблюдаемая длина связей в 80 (1,49 А) на [c.480]

    Простая модель образования ковалентной связи, предложенная Льюисом, несмотря на все недостатки, позволяет дать физическое объяснение относительной кислотности соединений, в которых центральный атом связан только с отдельными атомами кислорода или с атомами кислорода, входящими в состав гидроксидного иона либо воды. Например, [c.485]

Рис. 13-14. Простая модель образования связей в Н2О, в которой используются только 2р-орбитали кислорода. Согласно такой модели, валентный угол Н—О—Н должен быть равен 90°. Рис. 13-14. <a href="/info/822542">Простая модель</a> <a href="/info/7225">образования связей</a> в Н2О, в <a href="/info/1768031">которой используются</a> только 2р-<a href="/info/1182139">орбитали кислорода</a>. Согласно такой модели, <a href="/info/7183">валентный угол</a> Н—О—Н должен быть равен 90°.
Рис. 13-15. Электронное строение Н2О в рамках модели локализованных орбиталей, образованных с участием гибридных зр -орбиталей кислорода. Эта модель предсказывает для угла Н—О—Н значение 109,5°. Рис. 13-15. <a href="/info/7375">Электронное строение</a> Н2О в <a href="/info/581824">рамках модели</a> локализованных орбиталей, образованных с <a href="/info/1663849">участием гибридных</a> зр -<a href="/info/463086">орбиталей кислорода</a>. Эта модель предсказывает для угла Н—О—Н значение 109,5°.
    По мере перехода к молекулам, центральный атом в которых имеет все большие размеры, электроны на валентных орбиталях в среднем располагаются все дальше друг от друга. Поэтому межэлектронные отталкивания оказывают все меньшее влияние на форму молекул. Например, атом серы имеет больший эффективный размер, чем атом кислорода, а атомные спектры свидетельствуют о том, что межэлектронное отталкивание для валентных орбиталей серы значительно меньше, чем для валентных орбиталей кислорода. По-видимому, по этой причине валентный угол Н—S—Н в молекуле сероводорода H S равен 92°, что намного ближе к значению 90% предсказываемому в рамках модели связывания, основанной на перекрывании (Зр + lsl-орбиталей (рис. 13-17). Очевидно, отталкивание двух связывающих электронных пар в H2S значительно меньше отталкивания двух связывающих электронных пар в HjO. [c.564]

    Дайте в рамках модели локализованных орбиталей описание ст- и п-связей в молекуле озона, О3. Какова гибридизация центрального атома кислорода в О3 Сколько л-связей имеется между каждой парой атомов кислорода  [c.598]

    Электрохимический метод исследования кинетики жидкофазных каталитических реакций основан на том, что, измеряя потенциал катализатора и используя кривые заряжания для данного металла в данном растворителе, можно с достаточной точностью определить концентрацию сорбированного газа (водорода, кислорода) на поверхности катализатора. Знание этой концентрации и зависимости ее от таких параметров, как парциальное давление газа, концентрации реагентов и продуктов, природа растворителя, pH среды и т. п., дают хорошее обоснование для модели процесса и структуры кинетических уравнений. [c.75]

    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]


    Ооа(О) — начальное количество кислорода. Математическая модель, кроме уравнений материального баланса, включает в себя уравнения теплового баланса. [c.171]

    Математическая модель нестационарного процесса регенерации будет включать уравнения балансов по кислороду, коксу и температуре и представлять собой систему нестационарных дифференциальных уравнений, как это показано в главе П. [c.296]

    Модель нестационарного процесса (IX.2)—(IX.5) позволяет исследовать влияние возмущений в условиях регенерации на ее результаты. Такое исследование выполнено в работе [10], по результатам высказаны соображения об управлении процессом регенерации. Они в основном совпадают с приведенными выше результатами расчетов и указывают на целесообразность постепенного повышения температуры и концентрации кислорода. Подробнее способ управления слоем зерен будет проиллюстрирован ниже. [c.304]

    При этих допущениях математическую модель рассматриваемого процесса можно представить системой уравнений материального и теплового балансов для элементарного объема трубчатого реакторного устройства. С этой целью выделим элементарный объем трубы, заполненный катализатором, на расстоянии от I до / + (И. Обозначим массовый поток кислородсодержащего газа с плотностью у г и теплоемкостью через Fo, текущую концентрацию кислорода в нем — С, содержание кокса на катализаторе — р, насыпную плотность катализатора — у, теплоемкость его —с,,, долю свободного объема в слое — е, сечение трубы — 8, температуру процесса — Т, скорость реакции, измеренную по кислороду и отнесенную к единице реакционного объема — ю, соотношение скоростей реакции по кислороду и коксу — Р, тепловой эффект реакции (положителен для эндотермического процесса) — д, коэффициент теплопередачи через стенку — к- , поверхность трубы на единицу длины ее слоя — 5 01 температуру наружного воздуха — Гн. [c.306]

    При этих упрощениях математическую модель промышленного регенератора можно представить в виде системы дифференциальных уравнений, описывающих для элементарного слоя материальные балансы по кислороду и коксу и тепловой баланс. [c.325]

    В настоящее время разработан унифицированный ряд центробежных компрессоров, пригодных для сжатия большой части промышленных газов (кислорода, азота, азотноводородной смеси, фреона, различных углеводородов). На основе его изготовляют и внедряют в производство унифицированные центро-бежнЕ,1е компрессорные машины (УЦКМ). УЦКМ состоят из нормализованных корпусов, редукторов (зубчатых мультипликаторов) и вспомогательной аппаратуры — охладителей. Нормализованный ряд корпусов с закладными деталями и колесами состоит из пяти геометрически подобных базовых моделей, основные размеры которых приведены в табл. 5.3. В соответствии с числом базовых корпусов сжатия предусмотрено пять диаметров рабочих колес D. В пределах каждого диаметра имеются четыре типа исходных колес, имеющих выходные углы лопаток, равные 60, 45, 32 и 22,5°. [c.187]

    Следует отметить, что приведенные крайние типы механизма хемосорбции не абсолютны. Возможны другие переходные формы. Пои определенных условиях одни и те же молекулы могут быть донорами или акцепторами электронов. Или же на поверхности Катализатора может иметь место одновременно оба типа механизма хе мосорбции на одних участках поверхность является донором, а на других — акцептором элктронов. В качестве примера можно привести упрощенную схему реакции окисления СО при избытке кислорода на платине (модель Ридиля)  [c.94]

    Нойес и Ламп [93] изучили поведение К п аллилиодида А1 в растворе, содержащем ингибитор (растворенный кислород), который реагирует с атомами I и таким образом конкурирует с рекомбинацией. Они показали, что квантовый выход реакции расходования или А1, который характеризует реакцию с ингибитором, увеличивается с уменьшением молекулярного веса растворителя и с увеличением температуры в соответствии с моделью клеточного эффекта. К сожалению, такие результаты сами по себе недостаточны для однозначного выделения клеточного эффекта из других возможных видов влияния растворителя на фотолиз. [c.466]

    Модель противоизносного действия сернистых соединений, в частности дисульфидов, предполагает адсорбцию присадки на поверхности металла и последующую диссоциацию молекул по связям 5—5 с образованием достаточно прочных соединений с металлом. Эффективность противозадирного действия характеризуется образованием сульфидов и дисульфидов металлов. Органические сульфиды имеют худшие противозадирные свойства по сравнению с соответствующими дисульфидами. Сульфиды, как и другие соединения с прочно связанными атомами серы, образуют с металлами комплексы донор но-акцепторного типа за счет участия неподеленной Зр -пары электронов атома серы. Образование таких комплексов облегчает воздействие кислорода (ПО месту присоединения углеводородных радикалов к сере. Для сульфидов предполагается также постадий-ное взаимодействие серы с железом с образованием сульфидов железа. [c.263]

    Ниже приводится кинетическая модель окислительного дегидрирования бутенов на висмут-молибденовом катализаторе на силиказоле, описывающая скорость химических превращений как в присутствии, так и в отсутствие кислорода в реакционной смеси [16]  [c.688]

    Джавери и Шарма исследовали абсорбцию кислорода растворами дитионита натрия (N328204). Было установлено, что реакция имеет первый порядок по дитиониту при содержании последнего менее 0,08 моль л и второй порядок — при более высоких его концентрациях. При всех концентрациях дитионита реакция имеет нулевой порядок по кислороду. Скорость реакции такова, что ее удобно изучать в лабораторных моделях с механически перемешиваемой жидкостью или с ламинарной струей, причем скорость абсорбции единицей поверхности в условиях режима быстрой реакции /п-го порядка можно определить по уравнению (V,59в). [c.259]

    Для описания межмолекулярного взаимодействля в расчетах методом Монте-Карло использовали потенциал Роулинсона [343]. В модели Роулинсона (Р УЬ) на атомах водорода воды располагаются положительные заряды, отрицательные заряды помещаются на линии, проходящей через атом кислорода перпендикулярно плоскости молекулы. Дипольный момент молекулы в этой модели равен 1,85 Д. Энергия связи димера воды 22,6 кДж/моль при равновесном расстоянии 0,269 нм. [c.122]

    Различные конфигурации тетрамеров были рассмотрены авторами работы [384]. В рамках примененной ими модели наиболее выгодным оказался, как и у большинства других авторов, гомодромный цикл с зеркально-симметричными связями, в котором атомы кислорода расположены по вершинам почти правильного квадрата. [c.135]

    Все белки являются полимерами аминокислот. Общая формула такого полимера показана в нижней части рис. 21-1, а модель отдельной аминокислоты-на рис. 21-12. Ферменты представляют собой один из классов белков, причем, видимо, наиболее важный. Ферменты имеют компактные молекулы с молекулярной массой от 10000 до нескольких миллионов и диаметром от 20 А и выше. Они выполняют роль катализаторов, регули-руюидах биохимические реакции. Другие компактные молекулы белков, например миоглобин и гемоглобин, выполняют роль переносчиков и накопителей молекулярного кислорода (см. рис. 20-25, 20-26). Цитохромы-это белки, способные к окислительно-восстановительным реакциям и играющие роль промежуточных звеньев при извлечении энергии из пищевых продуктов (см. рис. 20-23). Молекулы гамма-глобулинов с молекулярной массой порядка 160000 представляют собой так называемые антитела, защитное действие которых заключается в том, что они присоединяются к вирусам, бактериям и другим чужеродным телам в живом организме и осаждают их из жидких сред. Все перечисленные белки относятся к глобулярным белкам. [c.313]

    Второй вид обратной связи может осуществляться вследствие изменения константы скорости реакции при изменении числа свободных центров на поверхности катализатора в ходе реакции. Математическая модель такого типа иследована в [133] на примере окисления окиси углерода на Р1, Р(1, 1г и показано, что роль буфера, хотя он и реагирует с адсорбированной окисью углерода, может играть растворенный в приповерхностном слоем кислород. Если над растворенным в приповерхностном слое кислородом не происходит адсорбции реагирующих веществ или она исчезающе мала, то изменение концентрации растворенного кислорода может приводить к изменению числа свободных мест на поверхности катализатора и к резкому изменению скорости реакции необходимому для возникновения колебаний. [c.318]

    Механизм 1. Импульсом для создания математических моделей реальных гетерогенных каталитических систем, в которых возможно возникновение сложных и хаотических колебаний, послужила работа [146], в которой исследован механизм возникновения хаотических колебаний, состоящий из двух медленных и одной быстрой переменной. Большинство математических моделей, описывающих автоколебания скорости реакции на элементе поверхности катализатора, двумерны, поэтому они не пригодны для описания хаотического изменения скорости реакции. Механизм возникнования хаоса из периодического движения для кинетической модели взаимодействия водорода с кислородом на элементе поверхности металлического катализатора предложен и проанализирован в работе [147]. Модель учитывает основные стадии процесса адсорбцию реагирующих веществ, взаимодействие адсорбированных водорода и кислорода, растворение реагирующих веществ в приповерхностном слое катализатора. Показано, что сложные и хаотические колебания возникают в системе с кинетической моделью из трех дифференциальных уравнений, два из которых описывают быстрые процессы — изменение концентраций водорода и кислорода на поверхности катализатора, и третье уравнение описывает медленную стадию — изменение концентрации растворенного кислорода в приповерхностном слое катализатора. Система уравнений имеет вид [c.322]

    Для однозначного реш.ения поставленной задачи использована программа поиска, реализующая метод Дэвидона— Флетчера— Поуэлла (ДФП) и осуществляющая квадратичную аппроксимацию. Применение метода ДФП для определения констант модели дало хорошие результаты — максимальная относительная ошибка отклонения расчетных данных от экспериментальных по коксу и кислороду не превышает 7%.. [c.98]

    Так, в работе [135] авторы исследуют химический процесс, предполагая независимость акорости реакщии от концентрации кислорода и температуры, что ни а коей мере не соответствует действителыности. Более строго сформулирована модель в работах [136, 137], однако и здесь сделаны ео босно-ванные допущения и не проведено исследование решения. Естественным результатом произвольных допущений является плохая сходимость расчета и эксперимента, как это наблюдается в работе [138]. [c.136]

    Система уравнеиий (8.15) — (8.17) представляет собой математическую модель регенератора. Если принять, что выжиг кокса описывается стехиометрическим уравнением С -Ь Ог -> СОг, то нетрудно найта соотнолиение, связывающее величины fд.r и 1в. Количество прореагировавоиаго кислорода, от,несенное к единице длины рабочей зоны регенератора, составляет 1д.гу—1вУо- [c.177]

    Изучению кинетики регенерации промышленных катализаторов от углеродистых отложений окислением последних кислородом воздуха посвящено большое число расчетных й экспериментальных работ. Несмотря на то, что ряд частных задач решен, общая математическая модель нестационарного и неизотермического процесса регенерации, удовлетворительно описывающая экспериментальные данные, как правило, не используется при расчете процесса. Кроме того, фо]рмулируя приближенные модели, авторы ряда работ делают неоправданные допущения. [c.304]

    Найти эксперилюнтально эффективный режим раздельной подачи кислорода практически невозможно, особенно учитывая опасность чрезмерного разогрева катализатора. По математической модели нами исс.педованы режимы раздельной подачи кислорода н каждый реактор. Некоторые результаты расчетов приведены на рнс. 1Х-8. [c.322]

    В работе [27] математическое описание испрльзовано для определения полей масс и температур в промышленном регенераторе. При этом необходимо иметь в виду, что начальные условия и коэффициенты модели меняются по длине аппарата. Так, змеевики первых трех верхних секций отключены полностью, т. е. для этих секций А,1 = 0. Отвод тепла осуществляется с 4 по 11 секцию (А,1 0). Кроме того, горячие дымовые газы (Г = 693 К) из нижних трех секций, содержащие —17% кислорода, направляются в распределительные короба верхних трех секций. Значение и Гв для верхних секций (с 1 поЗ) составляют соответственно 0,17 и 693 К, а для нижних (с 4 по 11), в которые подается холодный воздух, составляют 0,23 и 300 К. [c.327]

    Таким образом, тюмимо того, что в модели допущен ряд упрощений, в ней не учитываются усложняющиеся факторы перекристаллизация, окисла, диффузия по границам зерен, вторичные реакции восстановления Ме + Ме О, растрескивание пленки окисла, влияние примесей посторонних газов к кислороду и т. п. [c.89]


Смотреть страницы где упоминается термин Кислород модель: [c.124]    [c.263]    [c.76]    [c.124]    [c.515]    [c.562]    [c.563]    [c.571]    [c.111]    [c.314]    [c.134]    [c.136]   
Основы общей химии Т 1 (1965) -- [ c.77 ]

Основы общей химии том №1 (1965) -- [ c.77 ]




ПОИСК







© 2024 chem21.info Реклама на сайте