Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Шестой атом определение

    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]


    Для вычисления энергии локализации вычисляют энергию двух структур исходной и переходной. Так, например, желая вычислить энергию локализации на определенном атоме в молекуле бензола при атаке нуклеофильным реагентом, находят энергию шести я-электронов в остове, состоящем из пяти атомов углерода (переходная структура), и вычитают эту энергию из энергии бензола при этом выключается именно тот атом, на котором надо определить энергию локализации. Если атака производится электрофильным реагентом, стремящимся присоединиться к более отрицательному атому бензола, то надо найти энергию четырех электронов, распределенных между пятью атомами углерода, и энергию двух электронов у изолированного атома и затем вычесть сумму этих величин из энергии бензола. [c.165]

    Моносахариды — это гетероциклические соединения, содержащие чаще всего пять (пентозы) или шесть (гексозы) атомов углерода. В пятичленных или шестичленных циклах моносахаридов всегда имеется один атом кислорода. Моносахариды с пятичленным кольцом называются фуранозами (из-за сходства с гетероциклом фураном), а моносахариды с шестичленным кольцом — пиранозами (из-за сходства с гетероциклом пира-ном). Пентозы и гексозы могут существовать в виде как фура-ноз, так и пираноз, хотя у определенного моносахарида часто преобладает одна из этих форм, обычно пиранозная. [c.201]

    Направляющее влияние заместителей (правила замещения в бензольном ядре). В незамещенном бензоле реакционная способность всех шести атомов углерода в реакциях замещения одинакова заместители могут становиться взамен водорода к любому углеродному атому. Если же в бензольном ядре уже имеется заместитель, то под его влиянием состояние ядра изменяется и положение, в которое вступает любой новый заместитель, зависит от природы первого заместителя. Из этого следует, что каждый заместитель в бензольном ядре проявляет определенное направляющее (ориентирующее) влияние и способствует введению новых заместителей лишь в определенные по отношению к себе положения. [c.334]

    До сих пор рассматривались я-связи, возникшие между определенными атомами и поэтому являюш,иеся локализованными (пара электронов, обеспечивающих и-связь, принадлежит двум определенным атомам). Иным оказалось распределение электронной плотности в молекулах бензола и его производных. Спектральный анализ позволил выяснить, что молекула бензола имеет ось симметрии шестого порядка (об элементах симметрии см. гл. IV). Она представляет собой плоский правильный шестиугольник, в вершинах которого находятся атомы углерода. Каждый атом С имеет трех соседей в этом [c.98]


    Энергия, характеризующая стадию (1), была вычислена и оказалась равной 0,084 ат.ед. Следовательно,открывается возможность определения изменения энергии корреляции при присоединении шестого /-электрона к иону Мп-+3с . Чтобы определить потенциал перехода [c.75]

    Как показывает изучение моделей, чтобы шесть сахарных колец субстрата были прочно связаны ферментом, кольцо, содержащее тот атом углерода, у которого происходит замещение, должно быть выведено из своего нормального состояния, соответствующего конформации кресла , и перейти в форму полукресла , необходимую для реализации механизма с участием карбоний-иона [15, 16]. Таким образом, в результате связывания полисахаридной цепи субстрата на шести различных центрах фермента происходит искажение конформации определенного цикла и возникает новая конформация, подобная конформации переходного состояния. Это, возможно, и является наиболее характерным аспектом ферментативного катализа. [c.99]

    Структура кристаллического аммиака может быть описана как искаженная кубическая плотнейшая упаковка. Вместо 12 эквидистантных ближайших соседей каждый атом азота имеет 6 соседей на расстоянии 3,35 А и б значительно более удаленных — на расстоянии 3,88 А, что указывает на образование атомом азота шести водородных связей. Прецизионное определение положения атомов О в N03 выполнено методом дифракции нейтронов [1]. С этой упорядоченной структурой естественно сравнить структуру обыкновенного льда (лед Ь). [c.30]

    Молекула с п атомами должна иметь столько же степеней свободы, сколько их имеют все п атомов вместе. Свободный атом имеет три степени свободы, соответствующие его поступательному движению, и поэтому общее число степеней свободы, которыми располагает молекула, равно Зп. Из них шесть требуется для описания поступательного и вращательного движения молекулы, а оставшиеся степени свободы (Зп — 6) относятся к колебательному движению. В линейных молекулах вращение вокруг межъядерных осей происходит только совместно с определенными колебаниями и не выступает отдельно поэтому вращение у них наделено только двумя [c.39]

    Представляют определенный интерес данные но относительной полноте абсорбции в каждой из шести соединенных последовательно распыливающих колонн [27]. В первой из этих колонн газ движется сверху вниз, во второй — снизу вверх и т. д., и, наконец, выходит с верха последней колонны. Вода в количестве 0,86 м Ы на каждую колонну подается в систему через 24 распыливающих сопла (по четыре на колонну) под избыточным давлением 0,56 ат. Сечение колонны 2,1 X 2,1 м, высота 8,55 м. Полученные в этой работе результаты приведены в табл. 6.10. [c.130]

    Глины — полимине ральные, полидиснерсные алюмосиликат-ные соединения, способные при контакте с водой переходить в пластическое состояние. По высыхании они сохраняют приданную им форму и приобретают высокую прочность, а после обжига получают твердость камня. Глины, в составе которых преобладают минералы монтмориллонитовой группы, называются бентонитами. Кроме минералов указанных шести групп глины всегда содер-и.ат определенную часть пеглинистых минералов, чаще кремнезема. [c.6]

    Строение молекулы можно формализовать при помощи теории графов, как это делают Валентинуцци, и получить количественные характеристики структурных параметров. Структурною формулу можно рассматривать как плоский граф, содержащий определенное количество вершин (атомов) и ребер (связей). В первом приближении вершины берутся как бескачественные абстрактные точки, различающиеся лишь числом ребер и своим положенцем на графе. В графе могут встречаться группы однотипных вершин, тождественных по своим характеристикам. Можно рассчитать вероятность нахождения в данном молекулярном графе вершины определенного типа. Так, граф молекулы бензола содержит 12 вершин, из них по шести тождественных для углеродов и водородов. В таком случае вероятность того, что данная вершина окажется атомом углерода, будет Рс = =- . Это же значение имеет вероятность встретить, в вершине атом водорода рн  [c.147]

    Наиболее принято определение кислот и оснований, предложенное Бренстедом. Согласно этому определению кислотой называется любая частица, способная отдавать протон, а основанием — любая частица, способная принимать протон. Кислотами являются соединения, у которых атом Н связан с элементом, существенно превосходящим его по электроотрицательности. Это прежде всего все галоге-новодороды Н—Hal, а также гидриды элементов шестой группы, главной подгруппы — HjO, H2S, HaSe, HgTe. Эти соединения — более слабые кислоты, чем соответствующие галогеноводороды, Одна-. ко способность ОН-группы передавать свой протон усиливается, если кислород участвует в р — л-сопряжении, что происходит у большинства кислородных кислот. При участии ъ р — я-сопряже-нии атома азота кислые свойства проявляет и связь N — И, как то, например, наблюдается в молекуле пиррола [c.232]


    Представление о зонной теории. Металлы, полупроводники, изоляторы. Валентные отношения в твердом теле с координационной структурой определяются иными законами, чем в молекулах. Само представление о валентности как о способности атома присоединять определенное количество партнеров в применении к твердому телу теряет смысл, так как здесь реализуется возможность коллективного взаимодействия. Так, валентности натрия и хлора в молекуле Na l равны единице, а в твердом состоянии каждый атом натрия окружен шестью атомами хлора, и наоборот. [c.307]

    Однако в те времена многих клавишей не хватало. Было известно 63 элемента из 92 естественно существующих. Многие клавиши издавали фальшивые звуки . Так, Д. И. Менделееву пришлось изменить атомные массы урана и тория, которые тогда принимали равными 116 и 120 (вместо 232 и 240) и атомную массу циркония, принимавшуюся в то время равной 138 (вместо 91). Д. И. Менделеев сумел увидеть (вернее, предвидеть) основной закон, согласно которому многие свойства элементов (валентность, атомные объемы, коэффициенты расширения и др.) изменяются периодически с возрастанием атомной массы элементов. Открытие периодического закона затруднялось из-за его сложности. Размеры периодов не одинаковы. Если в первом периоде (Н, Не) содержится всего два элемента, то во втором (Е1—Ые) — восемь, в третьем (Ма—Аг) — снова восемь, в четвертом (К—Кг)—восемнадцать, в пятом (КЬ—Хе)—тоже восемнадцать, в шестом (Сз—Кп)—тридцать два и, наконец, седьмой период оказывается недостроенным. Отметим, что числа элементов в периодах (2, 8, 8, 18, 18, 32) подчиняются общему закону 2п . При п = это выражение дает 2 при л = 2—8, при я=3—18 и при =4— 32. Кроме того, в середине периодической таблицы элементов находится 14 редкоземельных элементов, многие свойства которых (например, валентность) практически не изменяются, несмотря на увеличение атомной массы Трудность открытия периодического закона заключа лась и в том, что истинной независимой переменной, оп ределяющей свойства элементов, должна быть не масса а число электронов в атоме, т.е. заряд ядра. Д. И. Мен делеев, естественно, принял массу за такую переменную так как в механике она в значительной степени опреде ляет движение частиц. Атом был электрифицирован много позднее. Если бы были известны изотопы (атомы с одинаковым зарядом ядра и разными массами, например, водород и тяжелый водород), то, располагая их в ряд по величине массы, вряд ли можно было бы открыть периодический закон. Это удалось потому, что между массовым числом и зарядом ядра имеется определенная связь. Так, в начале таблицы элементов массовое число приблизительно в два раза больше заряда ядра. Атомная масса элемента определяется также его изотопным составом. При расположении элементов по их массовым числам Д. И. Менделееву при составлении таблицы при- [c.312]

    До снх пор рассматривались я-связи, возникшие между определенными атомами и поэтому являющиеся локализованными (пара электронов, обеспечивающих я-связь, принадлежит двум определенным атомам). Р1ным оказалось распределение электронной плотности в молекулах бензола и его производных. Спектральный анализ позволил выяснить, что молекула бензола имеет ось симметрии шестого порядка (об элементах симметрии см. гл. IV). Она представляет собой плоский правильный шестиугольник, в вершинах которого находятся атомы углерода. Каждый атом С имеет трех соседей в этом случае происходит sp -гибридизация трех его электронных облаков. Три гибридных облака образуют а-связи под углом 120° с двумя соседними атомами углерода и с атомом водорода,, У каждого атома С остается по одному негнбридизироваиному р-электрону, об- [c.121]

    Изотопный эффект. Колебательные изотопные сдвиги в электронных спектрах нелинейных т ногоатомных молекул предсказать не так легко, как у двухатомных молекул (см. [ПП, стр. 181). Однако наблюдение этих сдвигов часто имеет очень большое значение для однозначного определения носителя спектра. Наличие изотопного сдвига при замещении какого-либо атома на его изотоп в исходном соединении говорит о том, что данный атом входит в состав исследуемого радикала. Таким путем было точно установлено наличие одного (и только одного) атома углерода в носителях спектров, которые, как теперь известно, обусловлены радикалами СНг, N N, HN N и др. Если в радикале содержится несколько одинаковых атомов, то замещение половины всех атомов на изотопную модификацию приводит к появлению нескольких изотопных полос вместо одной полосы для обычного изотопа. Так, при использовании смеси изотопов и в отношении 50 50 в основной полосе радикала Сз (стр. 19) около 4050 А появляется вместо одного шесть кантов. Это однозначно свидетельствует о том, что в радикале — носителе спектра должно быть три атома углерода. Аналогично у полосы 2160 А радикала СНз наблюдаются четыре канта, если применяется смесь водорода с дейтерием в отношении 50 50 отсюда следует, что в соответствующей молекуле имеется три атома водорода. Подобным же образом было точно установлено наличие двух атомов водорода в спектрах, относимых в настоящее время к радикалам СНгиЫНг, или наличие двух атомов азота в спектре радикала N N. [c.162]

    Существенную роль в реакции этерификации играют стерические эффекты, поскольку атом углерода карбонильной группы кислоты в переходном комплексе П переходит из плоской тригональной структуры (sp -гибридизация) в тетраэдрическую структуру sp -тибридизация). Для определения влияния стерических эффектов иа скорость этерификации алифатических кислот полезно правило шести Ньюмена, но лучшим способом оценки стерических факторов является изучение моделей [17]. При применении обычных методов этерификации влияние оказывают также за. 1естнтелн, находящиеся в о/огао-положении ароматических кислот. В случае о,о-ди-алкилзамещенных можно проводить этерификацию, приливая раствор кислоты в 100% -ной серной кислоте к спирту [18] Успех этой реакции, по-видимому, зависит от образования плоского иона кар- [c.284]

    Высказываются предположения, что молекулы иода образуют комплексы с атомами кислорода амилозы, а интенсивная окраска раствора - следствие образования комплекса с переносом заряда [74]. В качестве модельных интересны характеристики молекулярных комплексов иода с циклодекстринами [75, 76]. Молекулярная геометрия кристаллических комплексов "гость-хозяин"-а-циклодекстрин-иод [76], определенная методом рентгеноструктурного анализа, показала, что один атом иода расположен около отверстия полости и связан с нею силами ван-дер-ваальса, а другой окружен шестью атомами кислорода, при этом силы взаимодействия больше, чем ван-дер-ваальсовы. Кооперативный характер связей в комплексах иода с полимерами приводит к тому, что ряд атомов иода ведет себя как одномерный металл, проявляя такие свойства, как слабый парамагнетизм и электронная проводимость [71,77]. [c.35]

    Структуры С несколькими парами соседних слоев типа Л. Если все слои находятся точно друг под другом (например, все типа А), то все пустоты занимают позиции Ь и с и окружены шарами, расположенными тригонально-призматически. В кристаллах с преимущественно ионным типом связи такого типа координация не должна осуществляться в кристаллах других типов она возможна по ряду причин 1) атом может иметь со-ответствуюш,им образом направленные связи 2) возможно существование определенного взаимодействия между шестью атомами, образующими тригонально-призматическую группу, которое делает ее более устойчивой, чем обычная октаэдрическая группа 3) специфическое взаимодействие осуществляется между атомами, расположенными в пустотах, и в результате координация этих атомов подчиняется другим требованиям к типу связывания или упаковки. Возможно, что именно это имеет место в структуре АШг. Очевидно, что довольно трудно (если вообще возможно) различить случаи (1) и (2). В двух структурах, схематически представленных на рис. 4.8,а и б (структурные типы С и Ы1Аз), между атомами соседних слоев осуществляются связи металл — металл. МЬ8 кристаллизуется в обоих структурных типах. Другое, более привычное, описание структуры Ы1Аз дано в разд. 17.1.3 (т. 2). [c.185]

    Каждый кристаллогидрат можно выразить схемой, показывающей распределение зарядов на структурных единицах. Так, на рис. 364 показана такая схема для N1804-ТНгО по Биверсу и Шварцу (1935 г.). Каждый атом N1 окружают 6 молекул воды, причем 4 имеют треугольную координацию (тип А), а 2 — тетраэдрическую (тип В). Если заряд атома N1, равный двум, поделить между шестью молекулами воды так, что треугольные получают в два раза больше, чем тетраэдрические , то 4 молекулы воды получают по 2 части и 2 — по одной. Иначе, для определения части заряда, приходящегося на 1 долю связи, надо поделить заряд атома N1 на 10 частей. [c.373]

    Первая стадия, образование так называемого л-комплекса, включает взаимодействие между электрофильным реагентом Х+ и де-локализованными л-электронами ядра. Эта стадия осуществляется быстро и всегда обратимо. При этом происходит лишь незначительное нарушение л-электронного облака бензольного кольца. Вторая стадия состоит в перестройке л-комплекса в карбениевый ион, так называемый а-комплекс, в котором реагент Х+ связан с определенным углеродным атомом ядра. В а-комплексе ароматический секстет нарушен четыре л-электрона делокализованы в сфере воздействия пяти углеродных атомов. Шестой углеродный атом переходит при образовании а-комплекса из состояния 8р в состояние гибридизации. Третья стадия реакции — отщепление протона и образование молекулы замещенного бензола. Отщеплению протона помогает основание В", в роли которого может выступать растворитель или комплекс [ -Катализатор1 . [c.65]

    В этих примерах мы перешли от простой четырехчленной молекулы Ь12С12 к четырехчленным циклам, в которых атомы X включаются в дополнительные связи с атомами М, и последние три примера представляют кристаллические тела, в которых связи М-—X распространяются на весь кристалл [трехмерный комплекс). До некоторой степени аналогичная проблема возникает в конечных молекулах (или комплексных ионах), если имеются связи между атомами X, присоединенными к центральному атому. Идеальную стереохимию атома металла, образующего шесть связей, можно ожидать в тех случаях, когда он связан с шестью идентичными атомами в конечную группу МХб. Если два или более атомов X составляют части полиден-татного лиганда (т. е. они сами связаны вместе определенным [c.32]

    В ряде случаев белки проявляют свою активность при наличии в их составе определенных компонентов, связанных с белковой молекулой. Это можно продемонстрировать на примере уже упоминавшегося тема. Известно большое число комплексов белков с гемом и некоторыми его структурными аналогами, которые объединяются под общим названием гемопротеиды. Центральный атом железа в геме способен образовывать шесть связей. Четыре из них расположены в плоскости гема и соединяют атом железа с четырьмя атомами азота плоской структуры порфиринового кольца, а пятая и шестая находятся перпен.. икулярно по обе стороны плоскости порфиринового цикла и могут давать дополнительные связи с определенными лигандами. Атом железа в геме может менять степень окисления и быть либо в ферроформе Ге , либо в ферриформе и таким образом играть роль переносчика электронов и участвовать в окислительно-восстановительных процессах. Атом кислорода, принимая участие в процессе окисления, может изменить степень окисления железа до Ге (IV) или Ге(У). Если гем связан в комплекс со специфичным белком, это приводит к резкому усилению одной из выполняемых гемом функции. Например, образование комплекса с белком глобином (ге-моглобин) усиливает координирующую способность гема, в особенности способность координировать молекулу О2. Гемоглобин обратимо связывает кислород, который выступает в качестве одного из лигандов, и таким образом служит переносчиком кислорода в многоклеточных организмах. У высших позвоночных гемоглобин находится в специальных красных кровяных клетках (эритроцитах), которые сорбируют кислород в легких и доставляют его ко всем органам и тканям с током крови. [c.16]


Смотреть страницы где упоминается термин Шестой атом определение: [c.348]    [c.295]    [c.417]    [c.55]    [c.206]    [c.233]    [c.239]    [c.405]    [c.32]    [c.88]    [c.392]    [c.17]    [c.260]    [c.435]    [c.195]    [c.252]    [c.88]    [c.392]    [c.17]    [c.260]    [c.435]    [c.166]   
Пространственные эффекты в органической химии (1960) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Шестой

Шестой атом



© 2025 chem21.info Реклама на сайте