Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры изменение вязкости

    Для аномально вязких систем характер изменения вязкости при разных напряжениях различается (рис. 6.2). При малых напряжениях зависимости т)=/(Р) отвечают закону Ньютона, характерному для нормальных низкомолекулярных жидкостей. В отличие от последних коэффициент т1о (называемый наибольшей ньютоновской вязкостью) для полимеров и дисперсных систем в этой области напряжений весьма высок (10 —10 Па-с). С увеличением напряжения сдвига происходит разрушение малопрочной пространственной структуры (сетки) системы и скорость течения аномально возрастает, пока при относительно больших напряжениях структура не будет разрушена полностью и в процессе течения не будет успевать восстанавливаться. Поэтому при больших напряжениях система характеризуется также ньютоновским законом течения, но коэффициент т)т (называемый наименьшей ньютоновской вязкостью) намного меньше, чем т о. [c.151]


    Весьма характерно изменение вязкости растворов полимеров с увеличением их концентрации. На рис. XIV, 12 показана схематически зависимость т]уд от с для водных растворов сахара и казеината натрия. Как можно видеть, для раствора сахара эта зависимость выражается прямой линией. Соверщенно иначе ведут себя растворы. полимеров, например водный раствор казеината [c.464]

    Согласно модельным представлениям о механизме течения расплавов полимеров изменение вязкости с температурой определяется температурной зависимостью коэффициента трения между сегментами макромолекул в процессе их взаимной диффузии при течении. В ограниченном температурном интервале эта зависимость имеет следующий вид  [c.277]

    Характерной особенностью растворов высокомолекулярных соединений является то, что их вязкость значительно превышает вязкость чистого растворителя. Изменение вязкости связано с молекулярной массой растворенного полимера зависимостью, установленной Штаудингером  [c.172]

    Растворы полимеров с вытянутыми цепями характеризуются внезапным или очень резким изменением вязкости массы при увеличении концентрации полимера в точке, где начинается жидкокристаллический порядок (рис. 2.21). В левой части рис. 2.21 вязкость возрастает обычным образом, характерным для изотропных растворов, однако затем в точке критической концентрации система будет принимать дополнительное количество полимера лишь в том случае, если может образоваться жидкокристаллическая фаза. Когда это происходит, то вязкость уменьшается, содержание упорядоченной фазы увеличивается. Если такая смесь фаз не является особенно вязкой, фазы при стоянии или в центрифуге могут быть отделены друг от друга. Упорядоченная, анизотропная фаза, более обогащенная полимером, чем изотропная фаза, находится внизу, когда плотность растворителя меньше плотности полимера. [c.65]

    Подобным же образом изменяются другие полимеры и эластомеры [93—98]. Минеральные масла, загустевшие в результате смешения с мылами, и консистентные смазки (тавоты), так же как и парафиновые нефти, обнаруживают аномальные изменения вязкости при сдвиге. Капиллярные и ротационные вискозиметры дали довольно устойчивые результаты [99]. [c.179]

    Изменение вязкости загущенных масел в результате механической деструкции полимера при 20° С в ротационном приборе [c.574]

    Влияние свойств и состава растворителя на качество растворов. В качестве растворителя используют пресные и минерализованные воды с различной степенью кислотности pH и минерализации. Растворы технического полиакриламида и других полимеров в воде проявляют свойства полиэлектролитов, поэтому их вязкость зависит от наличия низкомолекулярных электролитов. Соли, имеющиеся в растворителе, обычно снижают вязкость раствора (рис. 4.5, 4.6, 4.7). Вероятность содержания хлорного железа, хлористого кальция и хлористого натрия и соответствующих ионов в закачиваемых растворах полимеров на практике достаточно высока. Например, ионы железа в водные растворы ПАА могут попадать как на стадии их приготовления, так и в процессе движения раствора по промысловым коммуникациям и в нагнетательных скважинах. Уменьшение вязкости растворов при использовании в качестве растворителя минерализованной воды вместо пресной наблюдается и для других типов полимеров. Например, даже незначительная минерализация, которой обладает водопроводная и озерная вода, способствует существенному снижению вязкости гипана (рис. 4.8). Кривые вязкости и pH растворов для кислых сред (рН<7) имеют четкую взаимозависимость (см. рис. 4.5). Это в определенной степени объясняет закономерности изменения вязкости в минерализованных растворителях. По мнению исследователей этой проблемы в кислой среде происходит подавление диссоциации карбоксильных групп полимера, и цепочка молекулы сворачивается в клубок . С возрастанием pH раствора в результате усиления диссоциации карбоксильных групп происходит увеличение вяз- [c.106]


    Каучук СКД выпускается в СССР в промышленном масштабе. В зависимости от марки каучука его вязкость по Муни при 100°С может меняться от 30 до 60. Каучуки СКД отличаются и технологическими свойствами — вальцуемостью. Требуемые технологические свойства обеспечиваются условиями получения полимера, изменения которых позволяют варьировать коэффициент его полидисперсности в пределах от 1,5 до 5,0. [c.189]

    Это в определенной степени объясняет закономерности изменения вязкости в минерализованных растворителях. В кислой среде происходит подавление диссоциации карбоксильных групп полимера, и цепочка молекулы сворачивается в клубок . С ростом pH раствора в результате усиления диссоциации карбоксильных групп происходит увеличение вязкости, но до определенного предела, так как увеличение концентрации ионов, экранирующих заряды карбоксильных групп, приводит, наоборот, к снижению вязкости раствора полимера (рис. 55). [c.115]

    Присадка к смазочным маслам, обычно представляющая собой высокомолекулярный полимер, которая служит для загущения масла и снижает тенденцию к изменению вязкости масла с изменением температуры. [c.5]

    Точный механизм действия вязкостных присадок не установлен. Их способность предотвращать резкое изменение вязкости масла в широком температурном диапазоне связывают со способностью макромолекул полимера изменять свою конфигурацию с температурой сворачиваться в клубки при высокой температуре и вытягиваться в длинные линейные образования при низкой. [c.309]

    Растворы жесткоцепных полимеров характеризуются резким изменением вязкости при достижении концентрации, равной Скр (рис. 3.16). [c.152]

    Изменение вязкости, индекса вязкости и температуры застывания полимеров в зависимости от длины и строения исходного олефинового углеводорода [1] [c.480]

    Одним из характерных сво/ктв растворов ВМВ является их старение, которое проявляется в постепенном самопроизвольном изменении вязкости растворов ири стоянии. Старение вызывается действием на цепи полимеров кислорода и примесей. В результате происходит разрушение макромолекул или их агрегация. [c.468]

    Под влиянием ряда факторов — введения электролитов, изменения температуры — в растворах полимеров может происходить помутнение, уменьшение осмотического давления, изменение вязкости, т. е. явления, сходные с теми, которые наблюдаются при скрытой коагуляции типичных коллоидных систем. Однако эти явления не следует отождествлять с коагуляцией, так как природа указанных изменений высокополимеров совершенно иная. [c.364]

    Небольшое добавление нейтральных электролитов к водным растворам высокомолекулярных соединений иногда вызывает Помутнение растворов, изменение вязкости и осмотического давления. Иными словами, возникают явления, внешне сходные со скрытой коагуляцией типичных коллоидов. Эти явления часто вызываются химическим взаимодействием между отдельными группами полимера и ионами добавленного электролита. Кроме того, электролит способствует ассоциации и структурированию в растворах высокомолекулярных соединений. [c.208]

    Нижняя температурная граница применения неподвижных фаз определяется их температурами плавления и слишком высокой вязкостью. В твердом состоянии неподвижная фаза уже не обладает хорошей разделительной способностью, поэтому ее можно применять лишь при температурах выше температуры плавления. Имеется сообщение Филлипса (1958) о том, что он работал при температурах па 25° ниже температуры плавления использованного им в качестве неподвижной фазы стеарата цинка, однако число теоретических тарелок при этом было вдвое меньше, чем при работе с жидкостью. Аналогичное положение наблюдается при применении неподвижных фаз с очень высокой вязкостью. Лишь при повышении температуры и связанном с этим уменьшении вязкости можно достигнуть хорошей разделительной способности. При высокой вязкости неподвижной фазы равновесие между парообразной и жидкой фазами обычно устанавливается недостаточно быстро. Но сопротивление массопередаче в жидкой фазе не всегда зависит от ее вязкости. При применении силиконовых масел, например, стократное изменение вязкости оказывает слабое влияние на разделительную способность (Дести, 1958). Мартин (1958) принимает, что для линейных полимеров (а силиконовое масло как раз представляет собой линейный полимер) увеличение длины цепи оказывает очень слабое влияние на коэффициент диффузии небольших молекул. [c.94]

    Большую часть упомянутых выше смазок в настоящее время с успехом заменяют силиконовые полимеры. Преимущество их состоит в абсолютной несмешиваемости с водой или водными растворами, низкой упругости паров и главным образом в незначительном изменении вязкости в зависимости от температуры. При этом температура воспламенения силиконов гораздо выше, а горючесть несравненно меньше, чем у аналогичных смазок на основе углеводородов. При смазывании трущихся поверхностей (ось мешалки и т. д.) вместо минерального масла или глицерина можно употреблять различные сорта силиконового масла, а силиконовые смазки более густой консистенции заменяют вазелин и другие консистентные смазки. [c.44]


    С увеличением количества вспученного перлитового песка в полимерной композиции пластическая вязкость расплава возрастает. Однако закономерность в изменении вязкости при различном наполнении полимера вспученным перлитовым песком отсутствует, что [c.68]

    КОСТЬ расплавов (и растворов) полимеров перестает быть константой и резко уменьшается. На этом участке нарушения пропорциональности между скоростью сдвига у и напряжением сдвига т, где Y увеличивается быстрее, чем т, вязкость расплава (и раствора) полимера зависит не только от температуры, но и от режима деформирования. Явление изменения вязкости т] жидких [c.35]

    Каучуки при обработке подвержены деструкции. При этом превращения, протекающие в них, могут быть не связаны с изменением химического строения мономерных звеньев или возникновением большого числа разветвлений (полиизопреновые каучуки). При деструкции существенно уменьшается средняя молекулярная масса полимера, его вязкость и вязкость его растворов. [c.70]

    Изменение вязкости расплавов полимеров с температурой может быть описано экспоненциальным уравнением Аррениуса г = В этом соот- [c.80]

    Изучение процесса вытеснения с помощью математических мбделей. Полная математическая модель для изучения нефтеотдачи при закачке полимерных растворов включает помимо обычно используемых при расчете заводнения уравнений неразрывности, движения отдельных фаз, а также уравнения кинетики и адсорбции полимера, изменения вязкости и реологических свойств раствора от концентрации и зависимость для фактора сопротивления. [c.122]

    Вискозиметрический метод. Характерной особенностью растворов высокомолекулярных соединений является то, что их вязкость значительно превышает вязкость чистого растворителя и пропорциональна изменению молекулярной массы полимера. Изменение вязкости с изменением молекулярной массы растворенного полимера определяется уравнением Штаудин-ггра  [c.207]

    С течением времени в растворах происходит постепенное упрочнение межмолекулярных контактов, вязкость растворов повышается (рис. 26.6). Подробные исследования этого явления [55, 60] показали, что вязкость растворов повышается тем быстрее, чем больше начальная вязкость, т. е. чем хуже растворитель, ниже температура приготовления и хранения раствора, выше концентрация, молекулярный вес и стереорегулярность полимера. Изменение вязкости растворов ПВХ во времени обусловливает осложнения, возни-каюш ие при проведении технологического процесса получения волокон. Наиболее простым технологическим приемом увеличения стабильности вязкости прядильных растворов является повышение температур приготовления и хранения растворов. Однако повышение температуры ограничено ускорением деструкции ПВХ. Поэтому на практике максимальные температуры растворения (для полимеров повышенной синдиотактичности) не превышают 120—140 °С, а температуры, при которых проводится последуюш ая обработка [c.387]

    Аномалия вязкости при обычных температурах характерна для масел, в состав которых входят вязкостные присадки (по-лиолефины, полиметакрилат и др.). Такие вещества с молекулярной массой от 3000—5000 до 100 ООО вводят в маловязкие масляные основы для повышения их вязкости и, что особенно выгодно, для уменьшения зависимости вязкости от температуры по сравнению с равновязкими нефтяными маслами. У масел с полимерными присадками обнаружена аномалия вязкости. При высоких скоростях в потоке под воздействием гидродинамических сил клубки полимерных молекул раскручиваются (разворачиваются), их ориентация вдоль оси потока возрастает. В результате вязкость масла снижается. Такое изменение вязкости вполне обратимо. При уменьшении скорости течения вязкость масла будет вновь возрастать в связи с самопроизвольным свертыванием в клубки линейных полимеров, а также из-за их дезориентации в потоке при уменьшении гидродинамического воздействия. Аномалия вязкости загущенных масел с повышением температуры уменьшается. [c.270]

    При переходе на ВКР предъявляются дополнительные требоиа-ния к содержанию твердой фазы, которая должна быть минимальна. Кроме того,если ранее применяемый буровой раствор содержит большое количество УЩР или акриловых полимеров, то его необходкмо значительно освежить для снижения концентрации последних до заданного уровня, определяемого опытным путем. В обоих случаях в момент перехода возможно загущение бурового раствора. Чтобы избежать этого, после разбавления необходимо в первую очередь вводить реагент-понизитель вязкости и только затем остальные компоненты, а в случае необходимости в последующем вводить утяжелитель, нефть или дизельное топливо. По(5ле первичной обработки попадание в ВКР выбуренной породы, в том числе глинистой, даже в больших количествах не вызывает существ( нного изменения вязкости и структурно-механических показателей. Система остается устойчивой и при разбуривании сульфаткальциевых пород и цемента. Следует отметить, что при повторных обработках, особенно после длительного применения ВКР, порядок введения компонентов практически не играет роли. [c.185]

    Окисляемость масел и связанные с ней загустевание и коррозию уменьшают прибавлением антиоксидантов, например алкилированных фенолов или производных к-фенилеидиамина, обычно в комбинации с комплексообразователями. Антикоррозионными средствами являются и органические фосфаты. Так называемые детергенты (нафтенаты алюминия, высокоалкилированные феиолосульфиды) удерживают образующуюся сажу в коллоидном состоянии. Вещества, снижающие вязкость, препятствуют кристаллизации твердых углеводородов, а добавки полиизобутилена или полимеров додецилметакрилата обеспечивают равномерное изменение вязкости в широком интервале температур. [c.93]

    РЕЛАКСАЦИЯ МЕХАНИЧЕСКАЯ В ПОЛИМЕРАХ — изменение напряженного состояния полимера при переходе от неравновесного расположения элементов его структуры (цепных макромолекул, пачек макромолекул, микрокристаллов и др.) к равновесному. Р. вызывается механически и, в зависимости от режима действия, развивается в том или ином направлении. Вследствие Р. нарушаются законы Гука для упругих полимерных тел и закон вязкости Ньютона для текучих полимерных тел. В связи с этим, изучение явлений Р. имеет большое теоретическое и практическое значение. [c.213]

    Диметил- и метилфенилполисилоксаны — наиболее часто применяемые неподвижные фазы. Это объясняется несколькими причинами. Благоприятное изменение вязкости с температурой, которое выражается в низких значениях VT , позволяет применять силиконы как при очень низких (нанример, —50°), так и при сравнительно высоких (до 320 ) температурах, поскольку различия в вязкости при этом не так велики, как для соединений других классов. К тому же при использовании этих линейных полимеров разделительная способность менее подвержена влиянию вязкости. Гораздо более низкое давление пара по сравнению с другими органическими соединениями близкой вязкости и повышенная устойчивость к нагреванию также способствуют широкому использованию силиконов в газовой хроматографии. Эти преимуш,ества особенно заметны в хроматографии с программированием температуры и в изотермических условиях при средних и высоких температурах. [c.193]

    Влияние влаги на свойства полиамидов было подробно описано в гл. 3. При литье под давлением очень важно, чтобы влагосодержание полимера, поступающего в загрузочный бункер, не превышало 0,2% в противном случае формование затрудняется, а на формующих поверхностях появляются заметные разводы или блестящие точки. Поэтому материал должен поступать на переработку непосредственно из закрытых контейнеров, которые не следует открывать заранее. Непереработанные материалы должны снова упаковываться в герметичную тару (и вновь подсушиваться перед упаковкой) для уменьшения влагосодержания до минимально возможного. Опыт показал [2], что отходы в виде литников могут использоваться для повторной переработки без предварительной подсушки при условии, что они будут тут же после изготовления и дробления загружены в машину. В противном случае необходима дополнительная подсушка. Однако иногда необходимо избегать вторичной переработки отходов, например, если обнаружено, что при формовании происходит значительное умеиьи1ение молекулярной массы полимера (определенное, например, по изменению вязкости раствора). Вторичная переработка п таких случаях может привести к ухудшению качества изделий. [c.167]

    Для Н. ж. типа пластичных дисперсных систем эффективная вязкость изменяется от величин порядка 10 — 10 Па с, отвечающих твердообразному состоянию материала и практич. отсутствию течения, до 1—10 Па-с, что соответствует области течения с предельно разрушенной структурой. Для концентриров. р-ров и расплавов полимеров, когда доминирующим является релаксац. механизм неньютоновского течения, вязкость может уменьшаться в 10 раз, причем пределы изменения определяются концентрацией и мол. массой полимера. Ориентац. эффекты обычно приводят к изменению вязкости не более чем в десятки раз. С течением Н. ж. связаны мн. технол. процессы, напр, транспортировка дисперсий (пульпы, строит, и буровых р-Ьов, нефтепродуктов, лакокрасочных материалов), переработка полимеров. [c.372]

    Скэнли сообшил об изучении влияния молекулярной массы и соотношения карбоксилатов и амидов двух видов акриловых полимеров на вязкость и фильтрационные свойства четырех различных композиций буровых растворов. Для одного вида полимера по мере увеличения молекулярной массы с 1800 тыс. до 390 тыс. фильтрация обработанного им раствора снижалась, а вязкость и предельное статическое напряжение сдвига повышались. Пока не сделано никаких общих выводов о влиянии на характеристики бурового раствора соотношения карбоксилатов и амидов. Гидролизованный полиакриламид, имеющий молекулярную массу около 250 тыс., обеспечил самую низкую фильтрацию при содержании карбоксилатов менее 50 % и самые малые изменения вязкости и предельного статического напряжения сдвига при 23%-ном содержании карбоксилатов. [c.477]

    Кроме рассмотренных усреднении по мольной или массовой доле молекул, использ ют другие способы усреднения, опредс-чяемые методикой измерения молекулярных масс. По зависимости гидродинамических свойств полимеров от молекулярно " массы, например по изменению вязкости, коэффициента диф-фу ши и других свойств, определяют среднегидродинамичсс1 ( молекулярные массы. К ним относятся средневязкостная Ж,, срслнсднффузкая Мд и др. В общем виде [c.26]

    Разные вязкостные присадки различаются по сдвнгоустойчи-востп в зависимости от свойств, присущих соответствующему типу полимеров, а также от тина базового масла, в котором полимер растворен, и его концентрации в масле. В общем низкоиндексные базовые масла, содержащие вязкостные присадки, или масла с высокой концентрацией полимеров, обладают меньшей механической устойчивостью. Рис. 51 показывает изменение вязкости и индекса вязкости масла, содержащего полимер, в ходе дорожных испытаний в автоматической трансмиссии легкового автомобиля, имеющей гидравлический привод. Уменьшение вязкости и индекса вязкости вполне подобно тому, что показано на рис. 50 для лабораторных опытов определения сдвигоустойчивостп. [c.211]

    Механизм, с помощью которого неорганические наполнители оказывают противопенное действие в силоксановых жидкостях, был изучен Повичем [690]. Он определил, что по мере добавления кремнезема заметно повышается эффективность этих жидкостей. Кремнезем не понижает давления в пене, но значительное поглощение примесей или изменение вязкости системы оказывается достаточным, чтобы вызвать наблюдаемый эффект. Водный золь кремнезема можно использовать при его эмульгировании в масле, при отгонке воды. Путем проведения реакции кремнезема с полисилоксаном можно гидрофобизовать кремнеземную поверхность [691]. Вместо силиконового масла допустимо применение несмешиваемого с водой оксиэтил ен-оксипропиленового полимера, к которому вместе с эмульгатором добавляется коллоидный кремнезем [692]. [c.604]

    Основными особенностями олигоорганосилоксанов являются малое изменение вязкости с температурой, низкая температура застывания (ниже минус 60—минус /О °С), повышенная термостойкость, химическая инертность (к различным металлам и сплавам, многим органическим полимерам, пластическим массам и эластомерам даже при нагревайии до 150 °С в течение нескольких недель), коррозионно-стойкбсть, высокие диэлектрические показатели. Эти жидкости выдерживают длительное нагревание до 150—200 °С в присутствии кислорода воздуха и до 300 °С и выше в отсутствие кислорода воздуха, а добавление ингибиторов окисления позволяет достигнуть такой же стабильности и в присутствии кислорода воздуха. [c.352]

    Исследование изменения вязкости и pH растворов К-4 в зависимости от квнцентрации показало, что они обладают слабощелочной реакцией, возрастающей ния полимера в растворе [51]. [c.33]

    Общей причиной аномального поведения полимеров при течении является одновременное развитие всех видов деформации [см. уравнение (1.1)] и их релаксационный характер. В первой области скорость накопления высокоэластической деформации меньше скорости релаксации, вследствие чего величина накопленной высокоэластической деформации незначительная и материал течет с постоянной ньютоновской вязкостью х . Увеличение напряжения или скорости деформации приводит к тому, что деформация не успевает релаксировать. Поэтому часть общей деформации носит высокоэластический характер. Увеличение скорости деформации приводит к тому, что между скоростью накопления высокоэластической деформации и скоростью ее релаксации устанавливается динамическое равновесие. Этому режиму деформации полимера соответствует свое значение сопротивления деформации, мерой которого обычно считают величину коэффициента эффективной вязкости. Таким образом, зависимость эффективной вязкости от скорости деформации определяется комплексом релаксационной структуры полимера. Кроме того, нужно иметь в виду изменения структуры полимеров в процессе течения, которые также являются причинами аномалии вязкости. Эти изменения предполагают уменьшение сил взаимодействия между соседними слоями, происходящее, в конечном счете, вследствие очень высоких значений молекулярной массы полимера. Изменение структуры материала может происходить в следующих направлениях анизодиаметричность макромолекул и возможность ориентации их в потоке, межмолекулярное взаимодействие и затраты сравнительно небольших усилий для его нарушения, разрушение [c.18]

    В последнее время имеются указания на то, что в тех случаях, когда изменение вязкости масла в процессе эксплуатации весьма нежелательно, целесообразно пользоваться в качестве загустителей полиметакрилатамп, предварительно искусственно подвергнутыми деструкции. При эксплуатации масел, загущенных такими полиметакрилатами, деструкция масла и вызываемое этим уменьшение вязкости масла значительно меньше. Строение перечисленных групп полимеров может быть выражено формулами  [c.275]

    Наиболее эффективен акрилоид HF-880. Кажущаяся аномалия в ноннженш индекса вязкости нри новьннении концентрации акрилоида, возможно, вызывается некоторыми особенностями шкалы индексов вязкости. При высоких концентрациях присадок многие растворы эфиров проявляют свойства неньютоновских жидкостей. Это может быть вызвано ориентацией линейных молекул полимеров в направлении течения, и в таком случае ненормальное изменение вязкости будет увеличиваться с возрастанием скорости сдвига. [c.277]


Смотреть страницы где упоминается термин Полимеры изменение вязкости: [c.151]    [c.435]    [c.143]    [c.314]    [c.66]    [c.436]   
Основы химии и технологии химических волокон Том 1 (копия) (1964) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость полимеров



© 2025 chem21.info Реклама на сайте