Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель в соединениях бериллия

    Соединения бериллия, хрома (оксиды и др.) Ацетат свинца, соединения никеля (сульфид и ДР ) [c.252]

    Химически стойкие и термически устойчивые полимеры получаются при сочетании в металлорганических соединениях ковалентных и координационных связей. Такие полимеры названы клешневидными металлорганическими полимер а-м и. Исходными мономерами могут служить ацетилацетонаты цинка, магния, меди, никеля, кобальта, бериллия и других металлов. Ацетилацетонаты взаимодействуют с тетракетонами с отщеплением [c.506]


    Для аналитических определений нами применен также многокамерный электродиализатор, дающий возможность как непосредственного определения, так и разделения примесей катионов в ряде веществ. Кроме того, при анализе частично растворимых соединений (например, для определения примеси щелочных и щелочноземельных металлов в окиси никеля, окиси бериллия в углекислом железе) установлено, что только искомые примеси достигают катодной камеры, а основное вещество задерживается в промежуточных секциях. [c.67]

    Осаждение бериллия коричнокислым аммонием было проведено И. Дема [43], который показал возможность отделения таким путем бериллия от ряда металлов, в частности, от марганца и никеля что же касается кобальта и цинка, то данных по их отделению в цитированной работе нет. Относительно состава выделяющегося соединения бериллия автор указывает, что вследствие неоднородности осадка его необходимо прокаливать до окиси бериллия. [c.43]

    Фотометрическим методом с применением нитрозо-К-соли определяют кобальт в биологических материалах [1, 51, 52], почве и кормах [24, 43], рудах и минералах [3, 49, 53, 54], цементах [55], чугуне и стали [55], алюминиевых сплавах [56], соединениях бериллия [57], никеле [И, 21, 58], висмуте 12], уране [7], цирконии ]59, 60], титане [59], вольфраме [61], морской воде [23]. [c.211]

    Соединения бериллия Метод основан на прямом определении никеля диметилглиоксимом без предварительного выделения его экстракцией. [c.609]

    Электрохимические процессы широко используются в современной технике, в аналитической химии, в научных исследованиях. Так, электрохимическим методом в промышленности получают металлы (алюминий, цинк, никель, магний, натрий, литий, бериллий и др.), хлор, гидроксид натрия, водород, кислород, ряд органических соединений, рафинируют металлы (медь, алюминий). Электрохимические методы широко используют для нанесения металлических покрытий, для полирования, фрезерования и сверления металлов. С каждым днем все больше применяются химические источники электрической энергии — гальванические элементы и аккумуляторы — в технике и научных лабораториях. В аналитической практике и научных исследованиях широко применяют такие электрохимические методы исследования, как потенциометрический, полярографический и т. п. Электрохимические системы в виде так называемых хемотронных приборов с успехом применяют в электронике и вычислительной технике. [c.313]


    Хелатные соединения. Ацетилацетон образует с медью, никелем, бериллием, а также алюминием, хромом, железом и др. соединения следующего строения  [c.217]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Определение хрома с применением дифенилкарбазида проводят при анализе алюминия (предел обнаружения Сг 1-10 %, относительная ошибка 20%) [151, 828], бериллия высокой чистоты [965], никеля [251, германия и его соединений (предел обнаружения Сг 3-10 % при навеске 2 г) [298], титана особой чистоты [301], иодидов и хлоридов щелочных металлов [281], соединений молибдена [1120], тантала (предел обнаружения Сг 1 -10 %) [299], олова [347], сурьмы (предел обнаружения Сг 1-10 %) [300], редкоземельных элементов повышенной чистоты [108], рения и его соединений [384], металлической ртути (предел обнаружения 5- [c.45]

    Она образуется при смешивании водного раствора солей двухвалентного кобальта с водным раствором цианата калия. Реакция лучше удается при добавлении к исследуемому раствору сухого цианата калия. Чувствительность обнаружения возрастает при добавлении ацетона (можно обнаружить 0,02 мг Со) или при экстракции окрашенного соединения изоамиловым спиртом. Цианат позволяет обнаруживать кобальт в присутствии ионов трехвалентного железа, которые не дают окрашенных соединений с реагентом. Не влияют на чувствительность обнаружения ионы ртути, мышьяка, сурьмы, олова, золота, родия,, палладия, осмия, платины, селена, теллура, молибдена, вольфрама, ванадия, алюминия, хрома, урана, титана, бериллия, цинка, марганца, рения, никеля, щелочных и щелочноземельных металлов. Несколько затрудняют обнаружение кобальта большие количества ионов с собственной окраской— меди, ванадия, хрома, платины. Ионы серебра, свинца, висмута, кадмия, редкоземельных элементов, церия, циркония и тория образуют осадки белого цвета. [c.49]

    При добавлении к спиртовому раствору ацетоуксусного эфира ацетатов меди(П), бериллия, железа(П и 1П), алюминия, никеля(П и П1), кобальта(11 и III) и некоторых других металлов с валентностями II, III и IV, образуются внутрикомплексные соединения, называемые хелатами  [c.477]

    При анализе порошкообразных металлов и некоторых неорганических соединений проводили прямое измерение объема водяного пара [186]. Воздух в замкнутом пространстве над образцом вытесняли сухим азотом, сосуд с образцом помещали в кипящую водяную баню и азот вместе с выделившимися из образца парами воды прокачивали через ловушку, охлаждаемую жидким азотом. Затем ловушку охлаждали сухим льдом для удаления диоксида углерода, после чего нагревали, чтобы вода могла конденсироваться в калиброванную колбу. По объему конденсата определяют влажность анализируемого образца. Этим методом были выполнены анализы образцов урана, ниобия, ванадия, железа, никеля, бериллия, оксида урана и карбида кремния [186]. Предел обнаружения метода — около 50 мкг составляет примерно 0,1% при содержании воды в пределах 500 млн . [c.549]


    Хлористый алюминий с галогенидами (лития, бериллия, титана, ванадия, хрома, марганца, железа, кобальта, никеля) Органические комплексные соединения (бензоил. ацетил) [c.8]

    Для определения алюминия обычно используют дуговое возбуждение. Проба интенсивно испаряется и спектральные линии хорошо возбуждаются. Искру применяют сравнительно редко (при анализе растворов и брикетов). У алюминия невысокие энергия ионизации (5,98 эв), а также энергия возбуждения чувствительных линий. Поэтому с введением в пробу щелочных элементов чувствительность анализа резко повышается. В качестве внутреннего стандарта при определении алюминия хорошие результаты дают соединения магния, кремния и кальция. Однако эти элементы широко распространены в природе и их использование затруднительно. Удовлетворительные результаты получают, используя бериллий, барий, хром, кобальт и никель. [c.194]

    Оксиматы. Д1Шетилглиоксим остается наиболее распространенным реактивом для отделения и фотометрического определения никеля с помощью экстрагирования. Экстракция диметилглиок-симата никеля и фотометрирование полученного экстракта применены для определения никеля в кобальте и его солях [202], в черных и цветных металлах [203], в металлическом уране [204, 205], в свинцовых и свинцово-оловянных бронзах [206]. Описаны методики, по которьш фотометрическое определение никеля заканчивают после реэкстракции и окисления диметилглиоксима-та никеля иодом. Этот принцип использован при определении никеля в металлическом бериллии, соединениях бериллия, цирконии и цирколое [207] и в растворах для получения электролитического цинка (комплекс окисляют бромом) [208]. Предложены и другие варианты фотометрирования никеля 1209 210]. [c.244]

    Все карбонаты и оксикарбонаты растворимы в органических и минеральных кислотах. Оксикарбонат цинка растворяется в NaOH, образуя при этом цинкат. Оксикарбонаты цинка, кобальта и никеля растворяются в NH OH с образованием комплексных соединений—аммиакатов. В растворах солей аммония растворимы только карбонаты и оксикарбонаты двухвалентных цинка, железа, кобальта и никеля. Оксикарбонат бериллия и уранилкар-бонат натрия растворяются в концентрированном растворе Na. Og. [c.287]

    Гидроконденсация окиси углерода с олефинами и их гидрополимеризация под действием малых количеств окиси углерода протекает в присутствии катализаторов, содержащих в качестве обязательного компонента кобальт [11]. Катализаторы на основе никеля и железа, имевшие высокую активность в синтезе углеводородов из СО и Нг, не вызывают гидроконденсацию олефинов с окисью углерода [12]. В их присутствии отмечалось лишь незначительное включение олефинов в растущие углеводородные цепи [13—15]. Из Со-катализаторов наиболее активным и стабильным оказался катализатор Со—глина (1 2), полученный осаждением поташом из раствора нитрата кобальта в присутствии носителя, прогретого при 450° С в атмосфере воздуха в течение 5 час. [16—21, а также кобальт, осажденный на гидрате окиси алюминия, промотированный гидроокисью или карбонатом щелочного или щелочноземельного металла [22]. Введение в катализатор Со—глина меди, МпОг, ВаО, NiO, VgOg в количестве до 20% снижает его активность SiOa, СггОз, активированный уголь и соединения бериллия и магния не оказывают влияния, а окислы цинка, кальция и алюминия обладают некоторым промотирующим действием. Однако совместным осаждением из растворов нитратов кобальта и магния получен катализатор Со—MgO, активность которого в реакции гидрополимеризации этилена не уступает катализатору Со—глина [23]. [c.37]

    Большинство полимеров, образованных металлами с координационным числом 4, содержит в своем составе ноны бериллия, меди, цинка или никеля. Бериллий обладает некоторыми преимуществами, так как он пе подвергается окислению или восстановлению его координационное число неизменно равно 4, и связь бериллий—кислород приближается к истинно ковалентному типу. С другой стороны, серьезным препятствием является токсичность соединений бериллия. Что касается быс-хелатпых группировок, чаще всего используются группировки 1,3-дикетонов, 8-оксихи-нолинов, шиффовых оснований, фосфинатов и анионов а-амино-кислот. Почти во всех случаях бис-клешневидные агенты симметричны, но это лишь вопрос удобства и легкости синтеза. Две хелатные группы могут быть соединены любым способом. Например, в случае р-дикетонов имеются две основные структуры [c.19]

    Неорганические и ряд металлоорганических веществ характеризуются в основном только величинами ПДК , поскольку эти вещества, как правило, не влияют на работу биологических сооружений (например, не способствуют пенообразованию, не изменяют растворимости кислорода и т.п.). Наименьшие ПДК имеют тетраэтилсвинец — 0,001 мг/дар соединения бериллия, титана, ртути, хрома шестиваленпюго (все в пересчете на соответствующий элемент) и оксид углерода—0,01 мг/дм соединения бора (в пересчете на бор)—0,05 мг/ дм соединения висмута, ванадия, кадмия, никеля (в пересчете на элемент) — 0,1 мг/дм сульфат меди (в пересчете на медь) — 0,2 мг/дм цианистый калий [c.403]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    Вышли первые пять томов восьмитомного справочника по термодинамическим свойствам соединений цветных металлов Я. И. Герасимова, А. Н. Крестовникова и А. С. Шахова . В отличие от названных выше изданий в нем приводятся не избранные, а все данные, имеющиеся в литературе, о термодинамических свойствах этих веществ и различных реакций, в которых они принимают участие. Вышедшие тома охватывают соединения цинка, меди, свинца, олова, серебра, вольфрама, молибдена, титана, циркония, ниобия, тантала, алюминия, сурьмы, магния, никеля, висмута, кад.мия, ванадия, ртути и бериллия. [c.78]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Элементы, образующие в слабокислой среде устойчивые 1 0милек-сонаты, не мешают определению (медь, никель, алюминий и др.). При определении бериллия в сплавах иа ниобиевой основе ниобий маскируют тартратом, а другие ионы — комплексоном III. В этих условиях окрашенное соединение с алюминоном дают только иоиы бериллия. [c.372]

    Исходя из свойств некоторых органических соединений, применяемых в анализе, перспективными для качественного обнаружения ионов металлов метод адсорбционно-комплексообразовательной хроматографии являются (в скобках указаны определяемые элементы) ализарин С (алюминий, циоконий, торий) алюминон (алюминий, бериллий) арсеназо III (цирконий, гафний, торий, уран, редкоземельные элементы) диметилглиоксим [никель, кобальт, железо (II), палладий (И)] 2,2 -дипиридил [железо (И)] дитизон (серебро, висмут, ртуть, свинец, цинк) дифенил-карбазид [хром (VI)] 2-нитрозо-1-нафтол (кобальт) нитро-зо-Н-соль (кобальт) рубеановая кислота [железо (III), [c.248]

    Применение меди, серебра, золота и их соединений. Больше других металлов этой додгруппы, как наиболее доступный металл, используется медь. Электролитически рафинированная медь с содержанием 99,90—99,95% меди используется для изготовления кабелей, проводов, контактов и пр. Сплавы меди с добавками цинка (латунь), никеля (мельхиор, нейзильбер), олово (бронза), бериллия, алюминия и др. находят самое разнообразное применение в судо-, авто-, авиа-и аппаратостроении, для изготовления литых изделий, посуды и пр. [c.357]

    Важнейшие новые твердые катализаторы, ведущие к образованию стереорегулярных полимеров, можно классифицировать на четыре группы предварительно формованные окислы металллов перемеппой валентности на носителях с большой удельной поверхностью промотированные окиснометаллические катализаторы твердые катализаторы, приготовленные осаждением непосредственно в реакционной зоне из солей металлов переменной валентности и ме-таллорганических соединений предварительно обработанные осажденные катализаторы. Предварительно приготовляемые окиснометаллические катализаторы включают никель на угле [79], окись молибдена на окиси алюминия [79], молибдат кобальта на окиси алюминия [108] и окись хрома на алюмосиликате И8]. Активность этих катализаторов можно изменять в широких пределах введением различных промоторов, в частности, металлов I, II и III групп периодической таблицы, их гидридов и металлорганических производных [35]. Из осажденных важнейшими являются катализаторы, приготовляемые взаимодействием четыреххлористого титана с алкильными производными алюминия, бериллия, магния илп цинка [107]. Предварительно обработанные осажденные катализаторы включают соли металлов переменной валентности, восстановленные до низшей валентности, например, треххлористый титан, в сочетании с металлорганическими соединениями. [c.285]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Разделение 1-нитрозо-2-нафтолом. Кобальт можно осадить или экстрагировать 1-нитрозо-2-нафтолом из растворов, содержащих ртуть, никель, хром, марганец, свинец, цинк, алюминий, кадмий, магний, кальций, бериллий, сурьму и мышьяк для удержания в растворе сурьмы необходимо прибавить винную кислоту [1467]. Кобальт отделяется вполне удовлетворительно от катионов ртути (II), олова (II), свинца, кадмия, мышьяка, сурьмы, алюминия, марганца, кальция, магния, висмута и никеля [755]. Однако в присутствии больших количеств никеля и олова, особенно если в растворе находится также висмут, осадки содержат большие или меньшие количества этих элементов. Пред-ттолагается, что мешающее влияние олова обусловлено образованием соединения, содержащего одновременно олово и кобальт. Полностью или частично осаждаются вместе с кобальтом медь (pH 4—13), железо (pH 0,95—2,0), ванадий (pH 2,05— 3,21), палладий (pH 11,82) и уран (pH 4,05—9,4). (Указанные границы pH осаждения взяты из работы [1402].) [c.74]

    Разделение ацетилацетоном. Ацетилацетон реагирует практически со всеми металлами, образуя устойчивые внутрико.мп-лексные соединения, не растворимые в воде, но растворимые полярных органических растворителях [1101]. Предложен метод отделения небольших количеств кобальта от железа экстракцией ацетилацетоната кобальта четыреххлористым углеродо.м из аммиачных растворов, содержащих этилендиаминтетрауксусную кислоту [20]. Вместе с кобальтом в неводный слой переходят также ацетилацетонаты меди, никеля, свинца, кадмия, цинка и марганца. Отделение бериллия от кобальта и многих других элементов основано на том, что из водного раствора с pH 9, содержащего ко.мплексон III и ацетилацетон, хлороформом извлекается только ацетилацетонат бериллия [19]. Экстрагирование ацетилацетоната трехвалентного кобальта описано в работе [225]. Разработана методика определения кобальта, основанная на предварительной экстракции ацетилацетонатов железа и кобальта [512]. Предложен способ выделения следовых количеств кобальта и других элементов из золы биологических материалов экстрагирование.м ацетилацетоно.м [680]. [c.78]

    Образование твердых растворов замещения в случае ионных соединений возможно, если замещающий и замещаемый ионы имеют одинаковую валентность и образуют кристаллическую решетку одного типа, а их размеры не отличаются более чем на 15%. Для ВеО характерна гексагональная сингония и структура типа ZnO, а для MgO, СаО, SrO — кубическая сингония и структура Na l. Радиусы ионов рассматриваемых окислов равны (А) для никеля — 0,78 бериллия — 0,34 магнпя — 0,78 кальция — 1,06 стронция — 1,27 бария—1,43 А. Таким образом, всем трем условиям образования твердых растворов удовлетворяет только система MgO—NiO, Это обстоятельство и затруднения при восстановлении никеля в данной системе позволяют заключить, что в принятых нами условиях из всех испытанных систем типа МеО—NiO только MgO—NiO проявляет способность к образованию твердых растворов ее компонентов. [c.46]


Смотреть страницы где упоминается термин Никель в соединениях бериллия: [c.96]    [c.164]    [c.128]    [c.149]    [c.180]    [c.201]    [c.156]    [c.390]    [c.18]    [c.18]    [c.31]    [c.552]    [c.189]    [c.203]    [c.130]    [c.177]   
Колориметрические методы определения следов металлов (1964) -- [ c.609 ]




ПОИСК





Смотрите так же термины и статьи:

Никель соединения



© 2025 chem21.info Реклама на сайте