Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсия кривые аномальные

Рис. 12.1. Типы аномальных кривых дисперсии, дисаерсня оптического вращения 2—круговой дихроизм. Рис. 12.1. Типы <a href="/info/1054919">аномальных кривых дисперсии</a>, дисаерсня <a href="/info/18621">оптического вращения</a> 2—круговой дихроизм.

    Очень чувствительным методом исследования конформаций белков и полипептидов является спектрополяриметрия. В неупорядоченной конформации характер оптического вращения белков определяется прежде всего аминокислотным составом, причем кривые дисперсии оптического вращения имеют плавный характер. Когда белок принимает конформацию а-спирали, то появляется большой дополнительный вклад этой спиральной структуры, дисперсия оптического вращения может стать аномальной, появляется эффект Коттона [c.637]

    Уравнение выражает сумму вкладов всех полос поглощения. Вид кривой начинает становиться более интересным в области длины волны, соответствующей полосе поглощения оптически активного хромофора. Первоначально монотонный вид резко изменяется, появляются два экстремума, образуется так называемая кривая аномальной дисперсии. В этой области спектра можно также наблюдать различное поглощение правовращающего. и левовращающего поляризованных лучей, т. е. циркулярный дихроизм, приводящий к трансформации первоначально циркулярно поляризованного света в эллиптически поляризованный. Зависимость, иллюстрирующая изменение разности обоих поглощений (так называемая эллиптичность), имеет вид изолированной полосы поглощения, и -отличные от нуля значения достигаются только в той части спектра, в которой поглощает оптически активный хромофор. Обе аномалии вместе называются эффектом Коттона. Точка перегиба кривой, эффект Коттона, расположена вблизи пика кривой циркулярного дихроизма и, как правило, вблизи. максимума соответствующей полосы в электронном спектре (рис. 6) .  [c.63]

    Как было уже упомянуто, области практического применения обоих методов в значительной степени перекрываются. Поэтому следует обобщить достоинства и недостатки этих двух методов. Основное достоинство метода дисперсии оптического вращения состоит в том, что дисперсия измеряется в большой области длин волн (700—180 нм). Ее также можно использовать для исследования веществ в области недоступной эффекту Коттона (или вследствие того, что исследуемое вещество поглощает слишком интенсивно, или вследствие того, что эффект Коттона проявляется при столь коротких длинах волн, что не может быть измерен с помощью имеющейся аппаратуры). После математической обработки плавных кривых можно получить информацию, например, о пространственном строении полипептидов. Кривые аномальной дисперсии можно дифференцировать по их виду. Визуальное сравнение двух или нескольких кривых дисперсии оптического вращения выполнить легче, чем сделать аналогичное сравнение кривых циркулярного дихроизма. Наконец, аппаратура для измерения дисперсии оптического вращения проще [c.71]


    Если кривая оптической вращательной дисперсии вблизи ка-кой-либо полосы поглощения имеет форму, показанную на рис. 1, то эту полосу поглощения называют оптически активной полосой поглощения , а форму кривой аномальной вращательной дисперсией , или эффектом Коттона [14]. Следует отметить, что при определенных длинах волн оптическая вращательная дисперсия отдельной энантиоморфной формы некоторого оптически активного комплекса может проходить через нуль. Таким образом, при этих длинах волн данная энантиоморфная форма не будет давать оптического вращения. [c.42]

    Однако известно довольно большое число белков, которые дают кривые аномального вида, если к ним попытаться применить уравнение (7.68). По-видимому, это явление объясняется сложной дисперсией, которая описывается двучленным уравнением, впервые предложенным Моффитом  [c.437]

    На рис. 49 приведены дисперсионные кривые двух типов для синтетического полипептида, растворенного в различных растворителях (см. раздел Г-1). Нижние две кривые относятся к нормальным дисперсионным кривым, а также являются простыми, поскольку они подчиняются уравнению (111-7). Верхние пять кривых аномальные и, следовательно, сложные они описываются уравнением (111-8) [8]. Следует отметить, что даже при соответствии экспериментальных данных одночленному уравнению Друде картина совсем не так проста, как кажется. Часто обнаруживают, что в узкой области длин волн дисперсия описывается одночленным уравнением Друде, но измерения, проведенные в области более коротких волн, помогают вскрыть сложную природу дисперсионной кривой. [c.94]

    В наших более ранних работах [1] было показано, что 1) для некоторых окрашенных и оптически активных соединений наблюдается аномальная вращательная дисперсия 2) аномальный ход дисперсионной кривой не обусловливается влиянием растворителя, так как это явление существует и в отсутствие растворителя, когда исследуемое соединение представлено в расплавленном состоянии 3) вид кривой дисперсии весьма близок к кривой абсорбции. [c.416]

    В 1896 г. Коттон сделал фундаментальное открытие, что для окрашенных оптически активных соединений кривые вращательной дисперсии имеют аномальный характер данное явление находится в причинной связи с открытым Коттоном циркулярным дихроизмом вышеуказанных веществ. [c.430]

    В этом случае сильный подъем кривой дисперсии в видимой области спектра соответствовал бы началу типичной кривой аномальной дисперсии, которая, согласно фундаментальным исследованиям Коттона [2], должна подниматься до максимума, а затем снова спускаться. [c.433]

    Факт замедленного установления конечных условий свидетельствует, вероятно, п о наличии фазовых переходов в битумах. Исследование дисперсии диэлектрической проницаемости смол [7] показало, что в смолах имеет место аномальная дисперсия. Это явление характерно для высоковязких полярных веществ. Отмечается наличие максимума па кривых е=/(0 уже при частоте 60 гц с ростом частоты максимум сдвигается в область высоких температур. [c.184]

    Зависимость е" = 8(о5) называется абсорбцией. Коэффициент диэлектрических потерь (е") в областях квазистатической и высокочастотной диэлектрических проницаемостей (вне области аномальной дисперсии) близок к нулю, резко возрастает в области аномальной дисперсии и достигает максимума в точке перегиба дисперсионной кривой или критической частоте кр. Появление максимума объясняется наличием резонанса между частотой поля и связью электрона с ядром. Момент индукции в этой области исчезает. [c.250]

    Когда среда имеет полосу поглощения, кривая дисперсии имеет характеристичную форму вблизи этой полосы. На рис. 15.13 показана зависимость показателя преломления п и молярного коэффициента поглощения 8 от длины волны для идеального случая, когда имеется отдельная полоса поглощения. Показатель преломления обычно увеличивается при смещении в сторону более коротких длин волн когда же он начинает уменьшаться, приближаясь к полосе поглощения с длинноволновой стороны, то говорят, что дисперсия аномальна. Сильная полоса поглощения обусловливает большой эффект, а слабая полоса поглощения — малый эффект. Как показывает рис. 15.13, влияние на показатель преломления простирается в гораздо более широкой области длин волн, нежели влияние на поглощение. [c.484]

    Нормальные и аномальные кривые дисперсии вращения  [c.269]

    Для классификации кривых дисперсии вращения предложены два дополнительных термина — нормальные и аномальные кривые. Нормальная,кривая характеризуется отсутствием максимума (или минимума), нулевого значения и точки перегиба аномальная же кривая имеет одну или несколько указанных особенностей [178]. Следует подчеркнуть, что термины нормальная и плавная кривые не являются синонимами, и в понятие нормальной кривой входит плавная кривая. Точно так же не идентичны термины аномальная и сложная кривые. Термин сложная кривая шире и включает в себя понятие аномальной кривой. [c.269]


    Кривые с простым эффектом Коттона. Для структурных и стереохимических исследований наибольший интерес представляют аномальные кривые дисперсии вращения, для которых характерны два типа (см. рис. 4 и 9). На рис. 4 показаны типичные кривые с простым эффектом Коттона [84]. Каждая такая кривая имеет один геометрический максимум и один геометрический минимум . Участок кривой, включающий максимум и минимум, более или менее точно совпадает с полосой поглощения. Кривую называют кривой с положительным или отрицательным эффектом Коттона в зависимости от того, находится ли участок кривой в начале волны при движении в сторону более коротких длин волн над или под осью абсцисс. Чтобы термины максимум и минимум кривой дисперсии вращения не спутать с максимумами и минимумами поглощения в видимой и ультрафиолетовой областях спектра, целесообразно пользоваться терминами пик и впадина. [c.271]

    Вблизи полосы поглощения наблюдается аномальная дисперсия оптического вращения (АДОВ) и одновременно круговой дихроизм (КД). Модельные кривые для право- и левовращающего вещества показаны на рис. 5.15. Соответствующие кривые для преломления и поглощения аналогичны кривым АДОВ и КД для правовращающего вещества. АДОВ принято называть эффектом Коттона, хотя Коттон открыл именно К Д. [c.152]

    Аномальная кривая дисперсии вращения (рис. 12.1). Важнейшей характеристикой дисперсной полосы является то, что иН  [c.190]

Рис. 11. Кривая аномальной вращательной дисперсии 1-Кз[Со(С204)з] (кривая а) и спектор поглощения рацемата Кз[Со(С20<)з] (кривая б) Рис. 11. Кривая <a href="/info/1851728">аномальной вращательной дисперсии</a> 1-Кз[Со(С204)з] (кривая а) и спектор поглощения рацемата Кз[Со(С20<)з] (кривая б)
Рис. 12.1. Типы аномальных кривых дисперсии. Рис. 12.1. <a href="/info/1354663">Типы аномальных</a> кривых дисперсии.
    Как видно из рнс. 178, кривая ДОВ статистического клубка (нормальная дисперсия) не имеет максимума, который появляется при переходе к спиральной конформации (аномальная дисперсия). Так как подобная картина наблюдается у других оптически активных полимеров, это явление позволяет судить о наличии у них макромолекул той илп иной конформации. [c.558]

    Для дисперсий же МПАВ, в которых концентрация выше (в области аномальной вязкости), солюбилизация вызывает прямо противоположный и очень резко выраженный эффект сильно повышенная (предельная) вязкость т]о резко понижается в результате солюбилизации, как это видно из рис. 11, б, 12, б по кривым истечения. [c.22]

    Экспериментально эффект Коттона удобнее всего наблюдать, измеряя вращение плоскости поляризации при различных длинах волн. Показатель преломления среды зависит от длины волны в отсутствие поглощения наблюдаемая зависимость вращения плоскости, поляризации от длины волны изображается кривой без экстремумов, подобной кривой А на рис. 8.7. Вблизи полосы поглощения показатель преломления резко изменяется, вследствие чего эффект Коттона приводит к аномальной кривой, изображающей дисперсию оптической активности (кривая Б на рис. 8.7). [c.234]

    Анализ экспериментальных результатов (рис. 1) показывает, что для безводных сырых нефтей диэлектрическая проницаемость зависит от частоты. Эта зависимость обнаруживается в области частот 50кГЦ-100 МГц, в которой диэлектрическая проницаемость нефтей уменьшается, а затем с частоты 100 МГц остается постоянной, причем для различных нефтей она несколько отличается. Таким образом, в диапазоне частот 50 кГц-100 МГц для нефтей обнаруживается область дисперсии диэлектрической проницаемости и тангенса угла диэлектрических потерь. Значения tg5 для нефтей с ростом частоты сначала уменьшаются, а затем эта зависимость приобретает характер размытой резонансной кривой (рис. 1). Максимальные значения для различных исследованных нефтей находятся вблизи частоты 10 Гц. Такая зависимость диэлектрической проницаемости и тангенса угла диэлектрических потерь обусловливается до частот 10 Гц наличием сквозной проводимости, а в мегагерцовом диапазоне (10 -10 ) Гц — явлениями ориентационной поляризации. Поэтому мы считаем, что такая зависимость 1 5 от частоты вблизи 10 Гц объясняется наличием в нефти тяжелых полярных компонентов, которые имеют область аномальной дисперсии в этом диапазоне. [c.143]

    Медные комплексы аминокислот. Прекрасный пример установления конфигурации по кривым с эффектом Коттона содержится в классических исследованиях Пфейфера и Кри-стелейта [215, 216], посвященных аномальной дисперсии вращения окрашенных в голубой цвет медных комплексов аминокислот, которые поглощают в видимой части спектра. Авторы установили, что три группы природных аминокислот, генетическая связь которых в то время еще не была установлена, дают кривые дисперсии одного и того же общего типа, и сделали вывод об одинаковой конфигурации изученных кислот у а-углеродного атома. Кривые дисперсии вращения медных комплексов /( + )- и < (—)-валина и (—)-фенилаланина, полученные Пфейфером и Кристелейтом, показаны на рис. 12. [c.336]

    На рис. 5 показаны кривые аномальной дисперсии для ызо-амилбромида [3] в стеклообразном состоянии значительно ниже его нормальной точки замерзания. Эти кривые, полученные при понижении температуры, полностью воспроизводятся при ее повышении, если вещество охлаждается лишь на несколько градусов ниже области дисперсии, а затем нагревается. Однако при дальнейшем понижении температуры и выдерживании ее на протяжении некоторого времени начинается кристаллизация, которая при повышении температуры фактически завершается до достижения точки плавления. При кристаллизации стекла диэлектрическая проницаемость его падает до значения, характерного для кристаллического вещества. Таким образом, измерение диэлектрической проницаемости представляет чувствительный метод исследования процессов расстекловывания. Органические стекла дают искаженные кривые графика Коулов [8, 23], а не симметричные, как это обычно наблюдается. Многие полиоксисоединения, по-видимому, из-за водородных связей и образования структур неправильной формы дают переохлажденные жидкости и стекла с описанной выше аномальной дисперсией [8, 98]. [c.649]

    На фиг. 18 показаны спектры поглощения суспензий hlorella и хл оропластов шпината, а также кривые рассеяния (в относительных единицах). Эти кривые удивительно похожи, несмотря на То что использовался разный растительный материал, а измерение рассеяния проводилось под разными углами. Мак-сикаяьное рассеяние наблюдается на длинноволновой стороне максимумов поглощения, минимальное — на коротковолновой. В этом отношении кривые рассеяния напоминают кривые, описывающие изменение показателя преломления в зависимости от длины волны в области полосы поглощения пигмента (кривые аномальной дисперсии) [201]. Такая зависимрсть между макси- [c.40]

    Диэлектрическая постоянная и частота. Если частота -колебанип за ряда а пластинах конденсатора будет непрерывно возрастать, то будет достигнута такая частота, при которой ни молекулы растворенного вещества, ни молекулы растворителя не могут уже вращаться со скоростью, ооогветствующей этим колебаниям. Бели (размер молекулы растворенного вещества больше размера молекулы растворителя, то зависимость диэлектрической постоянной раствора от логарифма частоты выразится кривой (рис. 9). Такая кривая называется кривой аномальной дисперсии. [c.90]

    Если молекулы диэлектрика не являются идеальными сферами, а оказываются вытянутыми, т. е. имеют эллипсоидальную форму, то уравнение (У.7) не применимо, и для каждой из трех осей эллипсоида имеется свое время релаксации Тг или набор времен релаксации. Аналогичное явление происходит в случае многокомпонентного раствора, состоящего из молекул различного вида. Когда эти времена релаксации различаются значительно, то на дисперсионных кривых хорошо видны три области аномальной дисперсии. Если отдельные времена релаксации близки, что наблюдается наиболее часто, то дисперсионная облает оказывается размытой. Аналогичное явление наблюдается и для сферических молекул с жесткими диполями появляются межмолекуляриые электрические взаимодействия, или междипольные связи. [c.251]

    Спектрополяриметрический метод был использован для изучения изменений конформации, вызываемых введением дополнительных пептидных цепей в молекулу инсулина по трем его свободным аминогруппам [15]. Исходный инсулин спирален на 25%, модифицированный лизином — на 32—33%, модифицированный глутаминовой кислотой — на 3—16%. Если к растворам синтетической полиглутаминовой кислоты добавить некоторые красители (акридин оранжевый, псевдоизоцианин) и измерить дисперсию оптического вращения в области 560—360 нм, то при pH 5,5 кривая ДОВ имеет плавный характер (полимер в неупорядоченной конформации) при pH ниже 5,1, когда полимер приобретает спиральную конформацию, дисперсия оптического вращения становится аномальной, причем величина вращения резко возрастает. Это связано с адсорбцией красителя на спиральной полипептидной цепи, в результате чего полоса поглощения красителя становится оптически активной [16]. Дальнейшее развитие спектрополяриметрического метода позволило перейти к прямому измерению эффекта Коттона в области 185—240 нм, непосредственно связанного со спиральностью молекул белков и полипептидов (обзор см. [17]). [c.638]

    Изученные /-аминокислоты можно подразделить на три группы, каждой из которых соответствует кривая на рис, 3 (по Паттерсону и Броуду [211]) в координатах ЛДф] —Я. Кривая А (хлоргидрат /-лейцина) является Типичной нормальной положительной кривой дисперсии вращения, которая пересекает ось абсцисс сверху (200 ммк)К Большинство неароматических /-аминокислот и их солей дают аналогичные кривые. Кривая Б [/-лейцин (VUI) в воде] представляет собой нормальную отрицательную кривую дисперсии вращения, которая пересекает ось абсцисс снизу ) (160 juaik ) Такие кривые характерны примерно для 10 аминокислот и оксиаминокислот из числа исследованных соединений. Кривая В представляет собой аномальную кривую дисперсии вращения [/-фенилаланин (IX) в растворе едкого натра] вращение изменяется от отрицательной величины до положительной при уменьшении длины волны. Подобная картина наблюдается в случае некоторых ароматических аминокислот. [c.280]

    Кетоны. Результаты подробного анализа стероидных кетонов (стр. 288—322, табл. 5) навели Джерасси на мысль использовать кривые дисперсии вращения этих соединений для установления их абсолютной конфигурации. Для этого был исследован ряд бициклических кетонов известной абсолютной конфигурации, аналогичных обычным типам стероидных соединений (см. табл. 5). Оказалось, что полученные кривые с простым эффектом Коттона имеют тот же знак, что и кривые дисперсии стероидных аналогов (исключение составляет 9-метил-гранс-декалон-1, стероидный аналог которого ведет себя аномально). На основании полученных данных был сделан вывод, что характерные особенности кривых дисперсии алициклических монокетонов в целом обусловлены структурой и стереохимией групп, расположенных в непосредственной близости от карбонильной группы . Следовательно, обобщенный метод инкрементов молекулярного вращения [150, 151, 157] можно распространить на кривые дисперсии вращения. Джерасси [7] следующим образом сформулировал принципы метода инкрементов применительно к дисперсии вращения  [c.338]

    ЧИНЫ [М в при замещениях 3-оксигруппы были аномальными.. Кривые дисперсии родственных лофенолу кетонов указывают на отсутствие аномалии в стереохимии мест сочленения колец, что заставляет предположить наличие каких-то иных структурных превращений в непосредственной близости к оксигруппе в положении 3. [c.343]

    Леонард, Джерасси и др, [20] обнаружили интересный пример трансаннулярного взаимодействия азота е < арбо-нильной группой в восьмичленном цикле, приводящего к аномальной дисперсии оптического вращения. Кетон СХЬУП характеризуется отрицательным эффектом Коттона, который налагается на положительную плавную кривую его аналог с открытой цепью дает плавную кривую. [c.358]

    Под дисперсией оптического вращения (ДОВ) понимают изменение оптической активности в зависимости от волнового числа плоскополяризованного света, проходящего через слой хирального соединения. Круговой (циркулярный) дихроизм (КД)—это превращение плоскополяризованного света в эл-липтически-поляризованный при его прохождении через хи-ральное вещество вследствие дихроичного поглощения, характеризуемого разностью коэффициентов поглощения света, цир-кулярно поляризованного влево и вправо. КД и наблюдающиеся в растворах некоторых хиральных веществ аномальные кривые ДОВ представляют собой различные проявления так называемого эффекта Коттона [121—124]. Необходимым условием для возникновения эффекта Коттона является поглощение све- [c.444]

    Как разность кривых 1 и 3 получается кривая 4, отвечающая вращению без уча ст и я группы N3. Здесь исчезает аномальная дисперсия вращения, вызываемая группой N3. Это указывает на правильность произведенного анализа кривой вращения. Доля учасУия этой группы преобладает не только внутри этой слабой полосы поглощения, но еще и в видимой области спектра (при 6000А) составляет 45 /о всего вращения. [c.141]

    Аномальная кривая, на которой проявляется эффект Коттона при одной длине волны, имеет максимум и минимум. Ср1еднее значение длин волн, соответствующих этих двум экстремумам, примерно соответствует максимуму ультрафиолетового поглощения данного хромофора. Расстояние по вертикали между максимумом и минимумом на кривой дисперсии оптической активности называется амплитудой. Горизонтальное расстояние между этими точками (в нм) представляет собой ширину кривой эффекта Коттона. Обычно эффект Коттона измеряют, регистрируя оптическую активность во время измерений при больших (589 нм) и малых длинах волн. Кроме того, по мере уменьшения длины волны регистрируют значения оптической активности в точках максимума, минимума и перегиба. Кривая, которая регистрируется при множественном эффекте Коттона, обладает двумя и более максимумами с соответствующим числом минимумов- [c.234]


Смотреть страницы где упоминается термин Дисперсия кривые аномальные: [c.301]    [c.642]    [c.63]    [c.216]    [c.501]    [c.503]    [c.180]    [c.343]    [c.24]   
Дисперсия оптического вращения и круговой дихроизм в органической химии (1970) -- [ c.11 , c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсия кривая



© 2025 chem21.info Реклама на сайте