Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород хлористый реакция с этиленом

    Молекулярный хлор может взаимодействовать по гомогенной или гетерогенной схемам с этаном, образуя этилхлорид, который в условиях реакции разлагается с выделением этилена и регенерацией хлористого водорода. Ускорение реакции в присутствии второго катализирующего компонента обусловлено, по-видимому, тем, что хлориды щелочно-земельных элементов, обладая высокой активностью в отношении реакции окисления хлористого водорода, способствуют его цикличному участию в реакции. Аналогичную схему механизма реакции дегидрирования этана в присутствии хлористого водорода можно предложить для результатов, представленных в работе [45]. На катализаторе, состоящем из гидратированных галогенидов Се, N(1, Рг и 0,5% СиСЬ, нанесенных в количестве 10 вес.% на окись алюминия, получен этилен с избирательностью более 80%. Расчеты показывают, что так называемая кратность цикличности, т. е. число повторных циклов молекулы НС1 в про- [c.18]


    Гидрохлорирование этилена осуществляется по технологической схеме, представленной на рис. 12.13. Безводный хлористый водород и сухой этилен (90—95%) смешивают приблизительно в равных мольных пропорциях и направляют в реактор 1. Смесь газов при 35—38 °С поступает в нижнюю часть, реактора и проходит через раствор катализатора — смесь хлористого алюминия с хлористым этиленом или более высококипящим хлорированным растворителем. Тепло, выделяющееся при гидрохлорировании, отводится охлаждающими змеевиками. Для обеспечения жидкофазного состояния продуктов реакции требуется давление около 275 кПа. Избыток жидкости из реактора перетекает в подогреватель, а затем — в испаритель 2. Пары хлористого этила (и растворителя) направляются в систему очистки. Жидкость из испарителя перекачивают в промежуточный бак 4, куда добавляют свежий хлористый алюминий, после чего охлажденная смесь поступает в реактор 1. Пар, выходящий из испарителя, содержит небольшое количество метана, этилена, хлористого водорода и хлорированных углеводородов. Хлористый водород удаляют промывкой водой в скруббере 3, а органические компоненты в виде пара подают в ректификационную колонну 5. При отдувке из колонны удаляются неконденсирующиеся газы, а хлористый этил и воду отбирают как дистиллят. Продукт сушат декантацией и отправляют на склад. [c.407]

    Подобный же ряд превращений протекает, если подвергать хлористый этилен пиролизу при 600° в атмосфере азота при этом получаются хлористый винил и хлористый водород (эта реакция при более низких температурах является, повидимому, обратимой), тогда как при более высоких температурах образуется ацетилен. [c.512]

    Хлористый этил получают путем хлорирования этана в присутствии этилена. Возможно также получение хлористого этила посредством прямого присоединения хлористого водорода к этилену или же путем взаимодействия этилового эфира или этилового спирта с хлористым водородом. Другим методом получения хлористого этила является реакция этилсульфата с хлористым натрием [293, 294]. [c.583]

    Разработан также жидкофазный процесс, который требует применения концентрированного этилена. Например, хлористым водородом действуют на этилен в присутствии хлористого алюминия как катализатора в растворителе, которым может служить либо сам хлористый этил, либо 1,1,2-трихлорэтан [28]. Процесс проводят в интервале от —5 до +55° под давлением 1—9 ата. По другому методу этилен и хлористый водород (молярное отношение 1,07 1) реагируют при 55° и 10 ama в среде хлористого этила в присутствии хлорного железа чтобы реакция не затухала, надо периодически добавлять катализатор [29]. [c.183]


    На первой ступени ацетилен, разбавленный другими газами, избирательно взаимодействует с хлористым водородом, образуя хлорвинил этилен в реакцию не вступает. [c.203]

    Образующийся при хлорировании этилена хлористый водород в смеси с не вступившим в реакцию этиленом и инертными газами (абгазы) по выходе из реактора хлорирования поступает в абсорбционную колонну 2, снабженную выносным холодильником 5, где освобождается от паров дихлорэтана, а затем направляется в абсорбционную колонну 4 для улавливания хлористого водорода водой. Не абсорбировавшиеся инертные газы из колонны 4 выбрасываются в атмосферу. [c.74]

    Подобного рода реакция имеет место и при попытке провести конденсацию этилхлорида с ч с-Дихлорэтиленом. Выделен только продукт взаимодействия дихлорэтилена с 1,1,2-трихлорэтаном, образующимся путем присоединения хлористого водорода к дихлор-этилену [45]  [c.81]

    Реакция этиленоксида с хлористым водородом приводит к этилен-хлоргидрину  [c.61]

    Японской фирмой Тохо Буссан применяется новый экономичный процесс получения винилхлорида (рис. 6). Исходным сырьем в этом процессе служит ожиженная смесь газов пиролиза бензина, причем ее используют без разделения и очистки этилена. Процесс протекает следзто-щим образом на смесь воздействуют хлористым водородом, который выборочно реагирует с ацетиленом с образованием винилхлорида. Последнаий отделяют от остаточного газа затем этилен, имеющийся в остаточном газе, реагирует с хлором с образованием дихлорэтана. Выделенный из смеси дихлорэтан направляют на термический крекинг для получения винилхлорида, а побочный продукт — хлористый водород — на реакцию с ацетиленом. [c.37]

    Таким образом, можно сделать вывод, что для хлористого водорода возможна реакция радикального цепного присоединения к этилену. Однако с замещенными этиленовыми углеводородами реакция затрудняется (за счет увеличения эндотермичности второй стадии). Действительно, уже изобутилен является ингибитором цепного радикального присоединения НС1. Для бромистого водорода возможно цепное радикальное присоединение как к этилену, так и к стиролу. [c.117]

    В присутствии хлористого алюминия, суспендированного в хлористом этиле, этилен и хлористый водород уже при —80° реагируют между собой почти количественно и очень быстро [1861. При —40° реакция в отсутствии [c.424]

    В промышленности гидрохлорирование этилена осуществляют следующим образом. В реактор, содержащий суспензию хлористого алюминия в хлористом этиле или в смеси хлористого этила и дихлорэтана, вводят приблизительно эквимолярные количества совершенно сухих этилена и хлористого водорода. Экзотермическую реакцию присоединения хлористого водорода к этилену проводят при 35—40° и 8 ат. После окончания процесса присоединения хлористый этил отгоняют и очищают фракционированной разгонкой. Остаток состоит из полимерных продуктов. Катализатор непрерывно выводят из реактора, заменяя свежим [187]. [c.425]

    В Германии этиленхлоргидрин получали по непрерывной схеме, пропуская одновременно в воду хлор и избыток этилена [36]. Процесс проводили в колоннах, выложенных изнутри керамиковыми плитками и резиной (гуммированными). Не вступивший в реакцию этилен возвращали в процесс после предварительного отделения его от хлористого водорода с помощью раствора едкого натра и поглощения паров хлорированных углеводородов активированным углем. [c.171]

    В Германии этиленхлоргидрин получали непрерывным методом, пропуская в воду одновременно хлор и избыток этилена [34]. Процесс проводили в колоннах, выложенных внутри керамиковыми плитами и затем гуммированных. Не вступивший в реакцию этилен возвращали обратно в процесс, предварительно отмыв от него хлористый водород раствором едкого натра и удалив пары хлорированных углеводородов адсорбцией активированным углем. Выделяющегося при реакции тепла оказалось достаточно, чтобы нагревать до 45° продукты реакции, вытекающие из колонны. Был подобран такой режим процесса, чтобы получить 4—5%-ный раствор хлоргидрина, который без предварительных концентрирования и очистки перерабатывали непосредственно в окись этилена (стр. 188). По сравнению с периодическим методом при проведении непрерывного процесса приходится работать с меньшей степенью превращения, чтобы выдержать на том же уровне количество побочно образующегося дихлорэтана. [c.185]

    Для поддержания скорости реакции в процессе алкилирования можно также применять небольшие количества хлористого водорода как промотора для хлористого алюминия, путем добавления к этилену небольшого количества хлористого этила. [c.228]

    Что реакция переноса водорода отчасти идет при этилировании в присутствии хлористого алюминия, показывает образование этана в количестве 7% [22]. Из катализаторного слоя был выделен гексаэтилбензол с выходом 14% на этилен. Выделение этого соединения указывает на то. что бензол образовался но реакции переноса водорода так как бензол гораздо легче, чем циклопарафиновые углеводороды, вступает в реакцию с олефинами, то весь образовавшийся бензол был полностью этилирован. [c.339]


    В патенте, выданном в 1953 г. Фишеру, очевидно, нредшествовавшем работам Циглера, поскольку на нем указала дата 1943 г., онисывается метод получения твердых полимеров из этилена и этиленсодержащих газов путем взаимодействия олефина с хлористым алюминием и четыреххлористым титаном в присутствии порошка алюминия — акцептора хлористого водорода. Указанную реакцию следует вести при температуре 130—180° и давлении 30—80 ат [49]. Очевидно, что данная система содержит все необходимые компоненты для получения катализатора Циглера in situ, и несомненно, что при повышенной температуре и под давлением этилен реагирует с порошкообразным алюминием с образованием триэтилалюминия. Вслед за этим алкил алюминия обычным путем взаимодействует с четыреххлористым титаном. Рекомендуемое соотношение Ti/Al составляет 3 1, хотя его можно менять от 1 1 до 10 1. [c.174]

    Значения Ец для реакций замещения водорода в этилене на хлор (с образованием хлористого винила) по радикальному и бимолекулярному механизмам очень близки (45 и 43 ккал/моль соответственно). Однако они заметно больше, чем при замещении атомов водорода в алканах это показывает, что скорость второй реакции намного больше. [c.265]

    Катализаторами реакции присоединения хлористого водорода к этилену при 120-200°С служат треххлористый висмут или треххлористая сурьма. Эти же катализаторы применяются в реакции присоединения хлористого водорода к пропилену при комнатной температуре /35/. [c.343]

    Процесс полимеризации этилена в присутствии хлористого алюминия протекает только при наличии хлористого водорода, введение которого в этилен является первой стадией реакции полимеризации  [c.147]

    Реакция с этиленом. Харрисон и сотр. [81] впервые изучили реакцию бороводородов с непредельными углеводородами на примере тетраборана и этилена. Они нашли, что в присутствии хлористого алюминия этилен замеает два концевых водорода в группах ВНз с образованием 2,4-ди-етилентещтраборана  [c.342]

    НОМ случае иод получается из иодистого водорода, который, следует считать нормальным первичным продуктом пиролиза. В противоположность этилиденхлориду, который ррлагается при 300° и выше в хлористый винил и хлористый водород, бромистый этилиден при 300—315 образует равновесную смесь с его изомером — бромистым этиленом. Для хлоридов эта реакция яввяется хорошим способом получения монохлорэти-лена. При 300—400° дихлориды образуют различные равновесные системы с продуктами разложения, количество которых растет с температурой, но зависит от состояния поверхности стеклянного реактора. Выше 400° разложение в хлорэтилен идет до конца. Таким образом, хлористый винил легко может быть получен пропусканием дихлорэтана через трубку с пемзой при температуре темнокрасного каления. Этилендихлорид также пиролизуется в хлористый винил и хлористый водород. Условия-реакции среда из азота и температура 600°. Полученные газы промываются водой,, высушиваются и сжижаются. Хлористый [c.121]

    Для проверки представлений о катионотропном механизме раскрытия тииранового цикла галогеноводородами А. В. Фокин, А. Ф. Коломиец и Т. И. Федюшина [21, 22] изучили реакции этилен- и пропиленсульфидов с хлористым водородом в растворах уксусного ангидрида. Было показано, что типичные катионотропные превращения, например реакции тетрагидро- [c.242]

    Оксихлорирование осуществляют с использованием новых, разработанных фирмой Pe hiney-Saint-Gobain медных катализаторов в псевдоожиженном слое. Псевдоожиженный слой обеспечивает получение реакторной системи с очень легкой регулировкой, а следовательно и с одинаковой температурой, что сводит к минимуму образование местных перегревов. Реакцию оксихлорирования ведут под давлением и при относительно низкой температуре. Реакторы охлаждаются высокотемпературным жидким органическим теплоносителем. В качестве окислителя используют воздух. Соотношение хлористый водород/этилен поддерживают на требуемом уровне добавлением этилена. [c.412]

    При присоединении хлорноватистой хаюлоты к олефинам, например к этилену, образуются хлоралкоголи — соединения, в которых атом хлора и гидроксильная группа находятся у соседних углеродных атомов. Такие соединения называют хлоргидринами. Реакцией хлоргидринов со щелочами, сопровождающейся отщеплением хлористого водорода, очень легко образуются циклические эфиры, так называемые окисные соединения  [c.183]

    Для получения хлористого этила в промышленных условиях сухой этилен и сухой хлористый водород в примерно эквимолекулярных количествах, при 35° и 2,5—3,0 ат нодают в реактор. Реакция идет в присутствии хлористого алюминия, растворенного в хлористом этиле (рис. 120). Образовавшийся хлористый этил испаряется [33]. [c.198]

    Так, например, хлористый этилен при 300—425° можно хлориро- вать в ржплавленной соляной бане с образованием 1,1,2-трихлор-этана. При более высоких температурах в качестве основных продуктов реакции образуются ди- и трихлорэтилен. Образование этих соединений объясняется отщеплением хлористого водорода от трихлорэтана и тетрахлорэтапа при указанных высоких температурах. Этим же способом можно также проводить хлорирование бензола. [c.155]

    Каталитическое алкилирование изобутана олефинами. Этиленом. Так как 2,3-диметилбутан отличается высокими антидетонационными свойствами и хорошими показателями работы на богатой рабочей смеси, этилирование изобутана стало предметом многочисленных исследований особенно после того, как было показано [16], что реакция в присутствии хлористого алюминия и хлористого водорода при 25—35° или в присутствии фтористого бора и фтористого водорода при 0—5° дает продукты, содержащие 45% гексанов, состоящих из 70—90% 2,3-диметилбутана, 10—25% 2-метилпентана и менее 3% 2,2-диметилпентана. [c.320]

    Прямое хлорирование этилена происходит в жидкой фазе в присутствии хлорного железа в качестве катализатора (рис. IX-1) [110]. Сухие хлор и этилен приблизительно в экви-молярных отношениях подаются через распределительные устройства в реактор — барботажную колонну синтеза I. Реакция хлорирования этилена необратимая и экзотермическая протекает быстро в растворе дихлорэтана. Газовый поток из реактора проходит через сепаратор 2 и скруббер 3, где в результате щелочной очистки из него удаляются непрореагировавшне газы и следы хлористого водорода. После скрубберов несконден-сировавшиеся газы (преимущественно непрореагировавшие этилен и хлор) возвращаются в реактор 1. Поток жидкости из реактора направляется для нейтрализации в декантатор 4 и для промывки в декантатор 5 и далее в дистилляционную колонну 8 для удаления тяжелых остатков, а затем в промывную колонну, где раствором щелочи из него извлекают некоторые примеси. Сырой продукт подается в дистилляционную колонну для очистки, жидкий ДХЭ с концентрацией 99% (масс.) отбирается в верхней части колонны. [c.260]

    В промышленности приняты следующие процессы жидкофазный процесс синтеза этилбензола на катализаторе AI I3. Процесс ведут в стальных колоннах, облицованных специальными антикоррозионными материалами, реакция идет при температуре кипения реакционной смеси (80—100°С) и атмосферном давлении. В качестве сырья используется бензол со степенью чистоты пе -ниже 99%. Твердый хлорид алюминия прибавляется к реакционной смеси и -в реакторе образуется соответствующее комплексное соединение. Бе-нзол-сырье и бензол-рециркулят после предварительной осушки подаются в реактор. Хлористый водород или хлористый этилен также добавляются в реактор. Жидкие продукты из алкилатора охлаждаются и направляются в отстойник, где -каталитический комплекс отделяется и возвращается в алкилатор. Алкилат промывается водой, затем 20%-пой водной щелочью для нейтрализации НС1, после чего разделяется на -индивидуальные компоненты на стадии ректификации. [c.266]

    Получение хлористого этила из этана, хлора и этилена (процесс Shell Development Со Англия). Совмещенный процесс термического хлорирования этана и гидрохлорирования этилена образующимся хлористым водородом осуществляется по следующей схеме (рис. 12.12). Пары хлора, предварительно подогретая смесь этана и возвратного газового потока, содержащего этилен, подают в реактор хлорирования 1. Реакция экзотермична и проводится адиабатически. Хлорирование этана проводят в присутствии этилена при 400 С или выше. [c.406]

    Хлористый водород, образовавшийся при реакции хлорирования, используют в реакции гидрохлорирования. Выходящий из реактора поток охлаждают и подают в ректификационную колонну 2, из которой инертные вещества, непрореагировавщий этан, хлористый водород и некоторую часть хлористого этила отбирают в качестве погона. Основная часть хлористого этила и другие хлорированные побочные продукты выводятся в виде кубового остатка и собираются в емкости 6. Погон колонны 2 и свежий этилен сжимают в компрессоре 3, подогревают и подают в реактор гидрохлорирования 4, заполненный катализатором, где 50— 80% этилена и хлористого водорода реагируют в паровой фазе при повышенной температуре. При гидрохлорировании температура является более важной переменной, чем при хлорировании, поэтому реакцию проводят изотермически тепло отводят циркулирующим маслом. Выходящий из реактора гидрохлориро-вания поток подают в колонну 5, аналогичную колонне 2. Сырой хлористый этил направляется в емкость 6. Дистиллят, состоящий из этана, инертных веществ, непрореагировавших этилена и хлористого водорода, возвращают в реактор хлорирования 1. Часть этого потока сдувают для предотвращения накопления инертных веществ. Сырой хлористый этил направляют на дистилляцию, где сначала отгоняются тяжелые фракции, а затем — легкие. [c.406]

    При реакции гидрохлорирования добав. 1енне свежего этилена к газовому потоку с первой колонны хлористого этилена автоматически регулируется так, чтобы отношение этилен/хлористый водород было 1 1. Поскольку 1 моль этилена реагирует с 1 молем хлористого водорода, отношение этилен/хлористый водород в потоке из реактора, возвращаемом потоке и потоке сдувочного газа составляет также 1 1. [c.407]

    Этилцнклогексильный радикал (I), ио-видимому, отрывает водород от хлористого водорода быстрее, чем от циклогексана эта реакция тоже, вероятно, протекает быстрее, чем присоединение этил-циклогексильного радикала к этилену, приводящее к бутилцикло-гексильному или более высокомолекулярному радикалу. Обрыв цепи может происходить ири конденсации или диоиропорционнро-вании пары свободных радикалов ли в результате какой-либо другой реакции. Продукты, образующиеся при реакции обрыва цепи, не выделены. [c.135]

    При выдерживании н-бутилхлорида при 130—140 °С с этиленом в присутствии грег-бутилпероксида реакция протекала лишь неанач ительно (опыт 21, табл. 4), а в присутствии концент рирО ванной соляной кислоты выход продукта резко возрастал (опыт 22). Продукт состоял в основном из З-метил-1-хлорпентана, получаемого в результате моноэтилирования бутилхлорида по предпоследнему углеродному атому цепи путем отрыва от него водорода атомом хлора, образующимся из НС1. Другим продуктом, полученным с вдвое меньшим выходом, был 3-хлоргексан (последний образуется при алкилировании по углероду, содержащему атом хлора). В продукте присутствовало также незначительное количество 1-хлоргексана, возникающего либо при алкилировании по углероду метильной группы, либо в результате теломеризации этилена и хлористого водорода. [c.142]

    Таким об разом, первичные алкилхлориды вступают в инициируемую пероксидами и промотируемую хлористым водородом реакцию алкилирования этиленом, давая продукты алкилировЗ ния по третичному углероду, по вторичному углероду, предпоследнему в цепи, или по первичному углероду, содержащему атом хлора, В отсутствие соляной кислоты н-бутилхлорид подвергается реакции с этилено-м лишь незначительно, поскольку хлористый водород, вероятно, необходим для развития цепи. Отдавая водород, он образует этилированный продукт и атом хлора, который продолжает цепь, отрывая далее водород от алкилхлорида. [c.146]

    При получении этилбензола наиболее распространенным катализатором является безводная система хлористый алюминий - хлористый водород. Ввиду экзотермического характера взаимодействия между бензолом и этиленом для ограничения верхнего температурного предела (95°С) используют охлаждение. Подавление реакции образования диэтилбензола достигается повышением соотношения бензол этилен. Его всегда похшерживают выше 1, чаще всего оно равно 5 или выше. Большую часть образующегося диэтилбензола возвращают в реактор /12/. Потребление катализатора составляет 10 кг на 1 т этилбензола. [c.147]


Смотреть страницы где упоминается термин Водород хлористый реакция с этиленом: [c.34]    [c.18]    [c.44]    [c.146]    [c.310]    [c.310]    [c.316]    [c.305]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.769 ]




ПОИСК





Смотрите так же термины и статьи:

Водород из этилена

Реакции этилена

Хлористый водород



© 2025 chem21.info Реклама на сайте