Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо определение марганца

    Для платиновых металлов в соединениях характерны практически все степени окисления от О до +8. При этом отмечается тенденция к понижению максимальных степеней окисления в горизонтальных рядах. В вертикальных диадах обычно наблюдается соответствие степеней окисления. Так, элементы первой диады (Ки—Оз) могут проявлять максимальную степень окисления +8 (даже в соединениях первого порядка), элементы второй диады (КЬ—1г) достигают степени окисления +6 (в комплексных соединениях), а палладий и платина имеют типичные степени окисления +2 и +4. Элементы первой диады напоминают по свойствам элементы УПВ-группы — технеций и рений (подобно тому как железо напоминает марганец). Элементы же последней диады проявляют определенное сходство с элементами 1В-группы— серебром и золотом (подобное сходству между никелем и медью). [c.417]


    Определению плутония не мешают уран, молибден, алюминий, бериллий, галлий и, естественно, железо. Мешают марганец и хром, так как перманганат и бихромат, получающиеся в результате окисления двуокисью свинца, прекрасно титруются ионами Fe +. Перманганат может быть предварительно восстановлен щавелевой кислотой до обесцвечивания раствора. Хромат может быть восстановлен до трехвалентного хрома мышьяковистой кислотой, которая не восстанавливает плутоний. [c.239]

    Спектральным методом в принципе не отличающимся от метода, предназначенного для определения примесей в цирконии, описанного на стр. 172, определяют алюминий, хром, гафний, железо, магний, марганец, молибден, никель, кремний, тантал, титан, вольфрам, ванадий и цирконий. Чувствительность при определении многих примесей достаточно высокая, что позволяет расширить область применения метода, если есть возможность приготовить шкалу эталонов. [c.205]

    Определение кальция можно проводить в присутствии больщих количеств Mg, РЬ и Zn, добавляя для их маскирования 2,3-димеркапто-пропанол другие тяжелые металлы могут маскироваться добавкой цианида калия. Железо и марганец могут связываться 1—5 мл триэтаноламина барий и стронций титруются совместно. Титрование может проводиться микрометодом. [c.235]

    Фосфаты, железо (III), марганец мешают определению сульфаты — не мешают [c.137]

    Мешающие влияния. Определению мешают железо (III), марганец и магний в больших концентрациях, так как эти ионы образуют с эриохромцианином окрашенные соединения. Соли железа (III) в малых концентрациях восстанавливают солянокислым гидроксил-амином. [c.257]

    Определению мешают железо (П1), марганец и магний в больших концентрациях, так как эти ионы образуют аналогично окрашенные соединения. Соли железа (П1) в малых концентрациях восстанавливаются солянокислым гидроксиламином, что включено в ход анализа. [c.88]

    Определению мещают катионы, реагирующие с индикатором или с комплексоном III. Устранение этого влияния описано при определении жесткости. Поскольку для анализа применяется фильтрат после выделения кальция в виде оксалата, в растворе отсутствуют железо, алюминий, марганец и стронций. Мешающие влияния кадмия, меди, свинца и цинка устраняются добавлением раствора цианида или сульфида, как это описано при определении жесткости. [c.118]

    Определение кальция в известняке. Важным косвенным окислительно-восстановительным методом анализа является определение кальция в известняке. Компонентами доломитного известняка являются карбонаты кальция и магния, но обычно присутствуют еще в небольших количествах силикаты кальция и магния, а также карбонаты и силикаты таких элементов, как алюминий, железо и марганец. Кроме того, большинство образцов содержит также в небольших количествах титан, натрий и калий. [c.325]


    Для определения 0,005—0,5% стронция работают с более концентрированными растворами, добавляя нитрат кальция для устранения влияния посторонних металлов Для этого 1 г образца сплавляют в платиновом тигле с 6 г смеси карбонатов калия и натрия. Сплав растворяют в воде, осадок отфильтровывают через плотный беззольный фильтр и промывают один раз 0,5%-ным раствором карбоната натрия и два раза дистиллированной водой. Осадок смывают струей воды с фильтра в стакан и растворяют его в 25 жл 5 н. азотной кислоты. Раствор нагревают почти до кипения и осаждают железо, алюминий, марганец и другие металлы прибавлением по каплям раствора аммиака (не содержащего СОг) до полной коагуляции осадка. Осадок отфильтровывают, промывают 2%-ным раствором нитрата аммония и отбрасывают (при большом его количестве может потребоваться переосаждение аммиаком). Раствор упаривают приблизительно до 40 мл, переносят в мерную колбу емкостью 50 мл и разбавляют до метки водой. Перед фотометрированием полученный раствор смешивают с равным объемом [c.249]

    Определению мешают железо (1Й), марганец и магний в [c.159]

    Железо, медь, марганец, кобальт, никель, свинец и другие металлы образуют с К1[Ре(СЫ)(.] осадки или окрашивание и мешают определению и потому должны отсутствовать. [c.333]

    Никкель и кобальт осаждают одновременно сернистым аммонием из не содержащих железа и алюминия фильтратов, полученных после осаждения цинком [см. далее, 14]. Если присутствует марганец, он тоже осаждается. При обработке осадка сильно разбавленной соляной кислотой (1 6) сернистый марганец растворяется, а сернистый кобальт и никкель остаются в осадке. Их фильтруют, промывают, прокаливают и взвешивают в виде закиси или осаждают электролизом и взвешивают в виде металлов. Во всяком случае прокаленный осадок следует проверить на железо и марганец. Отделение никкеля от кобальта требуется очень редко, тем более, что кобальт не часто встречается в железных рудах в количествах, поддающихся определению. Если разделение необходимо, его производят [c.41]

    Вторым примером последовательного определения двух элементов является определение железа и марганца (или кальция и магния) при помощи комплексона IV (стр. 431). Определение проводят следующим образом в анализируемый раствор, содержащий железо и марганец, pH которого доводят до значения, равного [c.412]

    Алюминий, железо, титан не мешают определению, марганец не мешает определению до 10 мкг. [c.321]

    Габер по совету Вальтера Нернста решил проверить возможность каталитического синтеза аммиака при высоком давлении. В качестве катализатора он использовал платиновую фольгу и высокодисперсные железо и марганец. К концу 1908 г. стало ясно, что синтез аммиака из элементов ограничен определенными термодинамическими условиями и не может быть осуществлен столь же успешно, как получение серной кислоты, где большая часть ЗОг превращается в ЗОз. [c.198]

    При определении по разности осаждают аммиаком сумму полуторных окислов, в которую входят окиси железа, титана, циркония и других элементов вместе с окисью алюминия. В отдельных пробах определяют железо, титан, марганец и затем по разности находят содержание алюминия. Метод очень длителен, неточен и в большинстве случаев дает завышенные результаты. [c.152]

    При анализе питьевой воды помехи маловероятны. Магний, цинк, кальций, натрий, калий, фосфаты, сульфаты и нитраты не препятствуют определению. Марганец, цирконий, хром, титан, медь, ванадий, алюминий, бериллий и железо не позволяют провести анализ с высокой точностью. Помехи, вызванные окрашиванием пробы, наличием гуминовых кислот и/или нерастворенными веществами могут быть устранены известными приемами (обесцвечиванием, фильтрованием через фильтр с активированным углем и т.п.). [c.189]

    Определению не мешают алюминий, железо, кремний, марганец (до 1% каждого), магний, медь, цинк (до 5% каждого), хром (до 0,5%). [c.138]

    Определению вольфрама мешает молибден, но в анализированных образцах его содержание не превышает 0,1 %. Железо и марганец практически полностью отделяются от вольфрама в процессе подготовки раствора к титрованию. Кремний и олово не влияют на определение вольфрама. Медь, алюминий, ванадий, титан, хром, мышьяк и другие элементы содержатся в рудах вольфрама в небольших количествах и не влияют на результаты определения. Большие количества фосфатов мешают. [c.112]

    По методу У. Шиффелина и Т. Каппона [28], который использовался в США [13, 15, 30], тонкоизмельченный (- 0,09 мм) лепидолит смешивали в стальном реакторе с концентрированной серной кислотой, взятой в количестве 110% (от массы минерала). Смесь выдерживали в течение 30 мин, а затем медленно, в течение более 8 ч, нагревали от 110 до 340° С по специальной прописи с фиксированной по времени выдержкой при определенных значе-ниях температур (степень разложения минерала достигала 94%). Скомковавшуюся массу еще в теплом состоянии обрабатывали водой, и, если из раствора выделялась двуокись кремния, ее отфильтровывали. В раствор переходили соли всех щелочных металлов, алюминия, марганца и железа. Для удаления алюминия в раствор вносили сульфат калия в количестве, рассчитанном на образование калиевых квасцов, первые порции которых особенно богаты рубидием и цезием, так что, проводя дробное выделение квасцов, можно было получать концентрат соединений рубидия и цезия. После отделения квасцов маточный раствор нейтрализовали карбонатом кальция. При этом отделяли остаток алюминия в виде гидроокиси. Далее осаждали кальций, магний, железо и марганец (щавелевой кислотой и раствором аммиака). Это обеспечивало получение чистого раствора сульфата лития. Из него с помощью карбоната калия осаждали технический карбонат лития, который промывали и высушивали при 60° С. [c.231]


    Методы хроматографии на бу.маге используются в ряде случаев для качественного обнаружения кобальта в присутствии посторонних элементов описано также. много. методик полуко-личественного или количественного определения. Описаны методики разделения с.месей, содержащих кобальт, никель, медь, железо, цинк, марганец, кадмий, свинец, уран и др. [c.62]

    Трехвалентное железо связывают в цитратный комплекс ионы двухвалентного железа необходимо предварительно окислить. В цитратном растворе марганец окисляется раствором K3Mo( N)s частично до трех-, а частично до четырехвалентного, однако в присутствии фторидов марганец окисляется только до четырехвалентного. Тем не менее метод нельзя использовать для анализа материалов, содержащих одновременно железо и марганец, так как в присутствии ионов фтора железо заметно мешает определению. [c.111]

    Полярографированне трехвалентного кобальта в оксалатных растворах [935]. Ионы меди, никеля, железа, цинка восстанавливаются после кобальта н не мешают определению. Марганец, ванадий и хром восстанавливают до низших степеней окисления гидроксиламином. После растворения навески прибавляют раствор едкого натра, 4 ма разбавленной (1 1) уксусной кислоты, 10 МА 2 М раствора ацетата аммония и 50 мл [c.192]

    Приведенный на стр. 22 другой объемный метод требует значительно меньше времени. В этом методе алюминий определяют добавлением к раствору, полученному после отделения титана, избытка комплексона III и обратным титрованием не связанного комплексона III стандартным раствором соли цинка с использованием ксиленолового оранжевого в качестве индикатора Метод применим для анализа титаналюминиевых сплавов, содержащих железо и марганец. Определению мешают олово, ванадий и медь. [c.18]

    Определение хрома при помощи железа (II) описано также в разделах Железо , Ванадий , Марганец , поскольку его можно определять из одной навески вместе с названными элементами. В последнее время предложено несколько видоизменений основного метода. Так, например, Хайэтт й Кобетц определяя ванадий и хром в силико-алюминиевых катализаторах крекинга, титруют сумму ванадия и хрома (оба элемента — в состоянии высшей валентности), а для определения ванадия восстанавливают хром (VI) до хрома (III) азидом натрия. А. И. Филенко пользуется методом с двумя электродами, применяя систему из одного неподвижного и одного вращающегося электрода, и определяет ванадий, хром и марганец из одной навески легированной стали. Эппль и Циттель заменяют платиновый индикаторный электрод графитовым (пиролитическим) и титруют при +1,0 в (Нас. КЭ) среда, как и в других случаях, — сернокислая, но авторы этой работы считают необходимым продувать раствор аргоном. По нашему мнению, это излишне, так как растворенный кислород при процессе анодного окисления железа (II) мешать не может, тем более на графитовом электроде. [c.341]

    После отделения кремниевой кислоты фильтрат используют для определения компонентов, которые осаждаются аммиаком алюминий, железо, титан, марганец и фосфор. Чтобы полностью осадить содержащийся в пробе марганец, необходимо окислить его до Mn(IV), который в этом состоянии осаждается в виде марганцевой кислоты (НзМпОз) или, точнее, в виде МпОг-лИгО. Окисление Мп 11) до Mn(IV) чаще всего осуществляют в слабоаммиачной среде бромной водой. Осаждение аммиаком приводит обычно к соосаждению небольших количеств кальция и магния с осадком гидроксида, вследствие чего после фильтрования осадок растворяют в НС1 и снова осаждают аммиаком. Осадок фильтруют, промывают разбавленным раствором NH4 I и после прокаливания взвешивают сумму оксидов, обозначаемую обычно как R2O3. [c.459]

    Пренебрежение этими второстепенными карбонатными компонентами пород бывает часто причиной ошибок при подведении итогов результатов анализа, в которых нередко в виде карбонатов приводят только кальций и магний, присутствующие одновременно даже значительные количества железа представляют в виде FegOg, а марганца — в виде какого-нибудь из его высших окислов, хотя почти с полной уверенность ) можно полагать, что эти элементы в преобладающем большинстве случаев присутствуют в виде карбонатов железа (И) и марганца (И). Так ли это или нет, часто может раскрыть точное определение содержания СОг в породе, ибо если железо и марганец действительно присутствуют в виде карбонатов, то Oj будет обнаружено больше, чем это отвечало бы найденным количествам СаО и MgO. Но, с другой стороны, если избытка Oj не окажется, то отсюда никак нельзя с уверенностью вывести, что карбоната железа и карбоната марганца нет совсем, так как очень часто небольшая часть MgO может присутствовать в породе в составе силикатов, а в некоторых породах небольшое количество СаО может находиться в виде гипса. Последнее мало вероятно в породах средней твердости, применяемых [c.1043]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Известен метод определения примесей в плутонии, основанный на его поглощении из ЪМ HNOg. Такие элементы, как алюминий, кальций, хром, железо, магний, марганец, никель и цинк, проходят в вытекающий раствор и определяются спектрографическим способом [56]. Опасность облучения персонала при использовании этого метода минимальна. Он применяется также для анализа тройных сплавов плутония с кобальтом и церием [93] (см. также [5, 12, 13, 127]). [c.339]

    Лаврухина А. К. Методы определения металла и его окислов различной валентности при их совместном присутствии (медь, железо и марганец). Дисс. на соискание учен, степени кандидата хим. наук. Автореферат. М., 1949, 16 с. (АН СССР, Ии-т геохимии к аналит. химии). Стеклогр. 4574 [c.180]

    Семь элементов-металлов — железо, кобальт, марганец, натрий, калий, кальций, магний — играют решающую роль в основных процессах жизнедеятельности и относятся к числу биогенных элементов. Перечень этот сократить нельзя, но можно расширить. По крайней мере, еще десяток элементов имеют существенное значение для нормального существования организмов медь, цинк, молибден, никель, ванадий, хлор, бром, иод. Некоторые из легчайших атомов — литий, бериллий, бор — присутствуют в небольших количествах в большинстве растений и животных. Определенным типам клеток обязательно нужен кремний и, вероятно, в некоторых случаях еще и фтор. Подавляющее большинство перечисленных элементов составляют члены 2—3-го периода таблицы Д. И. Менделеева. [c.175]

    Из загрязняющих примесей определению подлежат медь, кадмий, желево и марганец. Медь и кадмий выделяются путем 2—3-кратного осаждения [сероводородом] из подкисленного серной кислотой раствора. Железо и марганец осаждают в виде гидроокисей, пересыщая раствор. аммиаком и окисляя его перекисью водорода, и определяют известным способом. Присутствие в техническом цинковом купоросе незначительных количеств сернокислого кальция или сернокислого магния не имеет значения. [c.592]

    В кислой среде (pH 2,5) в присутствии комплексона цианидом осаждаются только серебро, двухвалентное железо, цинк, марганец и цирконий. Определением цикка и марганца в таком растворе подробно занимался Ченг [29] и пришел к выводу, что таким методом надежно можно определить только марганец. [c.181]

    Весьма важен вопрос о мешающем влиянии трехвалентиого железа. Невозможно не только определение железа прямым титрованием в щелочном растворе (вследствие осаждения гидроокиси), но и обратное титрование избыточного количества комплексона. Трехвалентное железо, связанное в комплекс с комплексоном, реагирует с индикатором с образованием красно-бурой окраски. До сих пор не выяснено, образуется ли при этом только очень прочный комплекс с индикатором или же получается окрашенный продукт реакции в результате окисления индикатора. Поэтому в большинстве работ предлагается предварительное выделение железа из раствора осаждением, например аммиаком. Малые количества железа можно перевести в нереагирующий с комплексоном и индикатором ферроцианид. С другими способами устранения мешающего влияния железа при проведении комплексометрических титрований читатель встретится в соответствующих местах. Аналогично железу, мешает марганец, легко окисляющийся в щелочном растворе до трехвалентного и при этом разрушающий индикатор. Однако добавка соответствующего восстановителя (аскорбиновой кислоты, гидроксиламипа) препятствует полному окислению марганца и позволяет непосредственно его титровать. В присутствии марганца — что следует особо подчеркнуть — переход окраски индикатора очень отчетлив. [c.287]

    Железо и марганец проявляют в своих соединениях переменную степень окисления, причем особенно разнообразны в этом отношении соединения марганца. Однако в водных раство рах устойчивыми при определенных условиях являются Fe , Fe + и Мп2+, а также анион МпО кроме того, часто приходится встречаться с марганцоватистой кислотой НгМпОз, или [c.115]

    Наиболее часто применямый метод отделения хрома основан на окислении последнего в щелочной среде до хромата, который остается в растворе, в то время как многие металлы — железо, титан, марганец, никель, кобальт и т. п., выпадают при этом в осадок. Элементы, остающиеся вместе с хромом в рас-, творе, частью не мешают дальнейшему колориметрическому определению (алюминий, мышьяк, фосфор), частью же najiy-шают ход определения (уран в хроматном методе, ванадий и большое количество молибдена в дифенилкарбазидном методе). Окисление можно вести в горячем растворе перекисью натрия или перекисью водорода с едким натром. Окислять можно также сплавлением с перекисью натрия или со смесью карбоната натрия (10 ч.) и нитрата калия (1 ч.), а некоторые образцы, например, силикаты анализируют, сплавляя даже с одним карбонатом натрия. При сплавлении марганец окисляется до манганата, но последний можно восстановить до гидрата двуокиси марганца, добавляя спирт к горячему раствору сплава. Хром обычно не остается в нерастворимом остатке после выщелачивания содового сплава, и поэтому повторное сплавление не требуется. Следует избегать плавня, содержащего слишком много нитрата, а также слишком высокой температуры при сплавлении, так как это может привести к разъеданию платинового тигля и ввести в раствор немного платины. [c.496]

    Определению меди не мешают титан (IV), железо (III), марганец, алюминий, молибден, кальций, магний и хром (III) при содержании последнего до 10%. Метод применим при содержании меди в алюминиевых сплавах от 0,0005 до 10%. Точность метода такая же, как и карбаминатного (см. стр. 67). [c.70]

    Метод основан на том, что цинк в аммиачном растворе вступает во взаимодействие с трилоном Б, образуя устойчивый комплекс. При растворении навески сплава в щелочи медь, железо, магний, марганец, никель и некоторые другие компоненты сплавов остаются в нерастворившемся в щелочи остатке и определению цинка не мешают. [c.104]


Смотреть страницы где упоминается термин Железо определение марганца: [c.496]    [c.211]    [c.47]    [c.496]    [c.458]    [c.187]    [c.369]    [c.50]    [c.136]    [c.28]    [c.277]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.704 ]




ПОИСК





Смотрите так же термины и статьи:

Марганец определение



© 2024 chem21.info Реклама на сайте