Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы и металлы сталей

    Жаростойкость — стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность — свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов. Хром и кремний улучшают также жаропрочность сталей. Стали, легированные 4—9 % хрома, молибденом или кремнием, применяют, например, в парогенераторе- и турбостроении. Сплав, содержащий 9—12% хрома, применяют для изготовления лопаток газовых турбин, деталей реактивных двигателей, в производстве двигателей внутреннего сгорания и т. п. [c.235]


    Алюминий используют для нанесения покрытия на сталь в расплавленном состоянии, так как точка плавления стали значительно выше точки плавления алюминия. На сплавы алюминия покрытие из чистого алюминия следует наносить путем металлизации или плакировки. Если в качестве покрытия используют хром, то при электроосаждении непосредственно на основной металл обычно получают покрытие с неравномерной защитой основного металла. Если основной металл — сталь, то на грунтовое никелевое покрытие наносят хромовое покрытие если основной металл — цинк, то на грунтовое медное покрытие наносят никелевое покрытие. На алюминий после химического цинкования наносят слои медного и никелевого покрытия. [c.126]

    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]

    Борьбу с химической коррозией металлоконструкций в жидких неэлектролитах ведут путем подбора устойчивых в данной среде металлов и сплавов (например, алюминия и его сплавов, коррозионностойких сталей в крекинг-бензинах) или нанесением защитных покрытий (например, покрытие стали алюминием для сероводородных сред). [c.142]

    При массовых серийных экспрессных анализах однотипных образцов различных сплавов и сталей, нанример в металлургии, иш-роко применяются полихроматоры, позволяющие одновременно регистрировать спектры более десятка определяемых элементов. В этом случае такие приборы называются квантометрами. Среди выпускаемых в Советском Союзе квантометров для анализа металлов и сплавов следует отметить 16-канальный (для определения 16 элементов) прибор МФС-8, а также 24-канальный прибор ДФС-51 (вакуумированный), которые используют для анализа чугунов, сталей на серу, фосфор, углерод и другие элементы. Кван-тометры ДФС-44 и ДФС-40 предназначены для определения 40 элементов. [c.116]


    В качестве конструкционных материалов насадки используются металлы и сплавы (углеродистая сталь, нержавеющие стали, никель, монель, хастеллой, титан, бронза, алюминий), пластические массы, керамика, стекло, графит. [c.47]

    Антикоррозионные свойства жидкостей характеризуют нх агрессивное воздействие на металл (сталь, чугун, алюминиевые и цинковые сплавы и др.). Для улучшения антикоррозионных свойств жидкостей [c.60]

    Другие методы определения приблизительной стоимости также включают временной фактор, в них же учитывается стоимость металла, составляющая одну пятую стоимости смонтированного оборудования. Если применяются специальные сплавы, нержавеющая сталь или цветные металлы, то сравнительная стоимость процесса изготовления оборудования будет меньше. [c.548]

    Лезвийная и абразивная обработка стали, чугуна, алюминиевых и титановых сплавов, прокатка цветных металлов Абразивная и лезвийная обработка цветных металлов и сплавов, жаропрочных сталей и сплавов, композиционных материалов [c.406]

    При обычных условиях пластмассы представляют собой твердые, упругие тела с блестящей поверхностью, не нуждающейся в дополнительной обработке. Плотность их колеблется от 0,9 до 2,2 г/см . В среднем они легче алюминия в 2 раза. Прочность отдельных пластмасс значительно превосходит прочность чугуна, сплавов алюминия и больше прочности многих марок стали. По электрическим свойствам пластмассы относятся к диэлектрикам. По антифрикционным свойствам многие пластмассы значительно превосходят лучшие антифрикционные сплавы металлов и, кроме того, их металлополимерные системы обладают особыми свойствами, изменяющими трение тел. Так, полиамиды, наполненные твердыми смазками — графитом, дисульфидом молибдена, имеют очень высокие среди полимеров антифрикционные свойства (см. разд. 36.2.7). [c.650]

    Помимо сходства, существующего между металлами внутри триады, существует некоторое сходство между элементами, триады железа и марганцем. Известны многочисленные сплавы железа с кобальтом, никелем, марганцем. Железо, кобальт., никель п их сплавы (чугуны, стали) являются важнейшими конструкционными материалами современной техники и промышленности. Наибольшее значение из элементов триады ж< -леза имеет железо. [c.345]

    Металлический никель имеет важнейшее значение как относительно инертный в химическом отношении (нержавеющий) металл, а также как компонент нержавеющих сплавов и сталей большого оборонного значения (бронебойные, жаростойкие и др.). До 80% всего добываемого никеля используют именно для изготовления специальных сталей и сплавов. [c.144]

    Распределительная хроматография на целлюлозе применялась также для выделения тория из руд, при анализе сплавов и сталей, для разделения благородных металлов, щелочных и щелочноземельных металлов и некоторых других элементов [102]. [c.175]

    Никель является важнейшим металлом для производства нержавеющих сталей, жароупорных сплавов, высоковязких сталей его широко используют в качестве материала для защитно-декоративных гальванических покрытий, а также для электродов радиоламп и в щелочных аккумуляторах. Мировое производство никеля составляет сейчас около 400 тыс. г в год. [c.75]

    В настоящее время используются в машиностроении главным образом сплавы железа — стали. На их долю приходится более 90% общего веса применяемых металлов. [c.166]

    Сплавы — системы, состоящие из двух или нескольких металлов (или метал тов и неметаллов). В технике используют металлические сплавы, весьма разнообразные по составу и свойствам гораздо шире, чем чистые металлы. Известно более 8000 сплавов и десятки тысяч их модификаций. Различают несколько типов сплавов по основному компоненту черные сплавы (чугун, сталь), т. е. сплавы на основе железа цветные сплавы (бронзы, латуни), важнейшим компонентом кото рых является медь легкие сплавы (дюралюмин, магналий и др.), содержащие алюминий нли магний благородные и редкие сплавы, основными компонентами которых бывают платина, золото, серебро, ванадий, молибден и др. [c.267]

    Контактная коррозия наблюдается при контакте алюминия с более благородными металлами в электролитах. В этом виде коррозии существенную роль играют состояние поверхности контактируемых металлов, площадь контакта, аэрация и степень деформации. Значительная контактная коррозия наблюдается при контакте алюминия с медью, ее сплавами и сталью известны случаи контактной коррозии алюминия с алюминиевыми сплавами. Скорость коррозии алюминия при контакте с нержавеющей сталью значительно повышается в водных растворах хлорида натрия и в меньшей степени в спиртовых растворах. [c.124]


    Сплавы металлов 281 Среды водных растворов 191 Сродство к электрону 87 Сталь 282 [c.709]

    Пассивностью называют состояние относительно высокой коррозионной стойкости металлов, сталей и сплавов в агрессивных средах, возникающее в результате торможения анодной реакции ионизации в определенной области электродных потенциалов. [c.89]

    Индукционные тигельные печи применяются в промышленности для получения черных металлов (стали, чугуна, сплавов на основе железа и никеля) и ряда цветных металлов. [c.142]

    Приведенные на рис. 140—178 параметрические диаграммы жаростойкости основаны на использовании параболической зависимости удельной потери массы металла (стали, сплава) g от времени окисления и  [c.288]

    В настоящее время происходит непрерывное расширение применения редкоземельных металлов в технике. В связи с этим редкоземельные металлы стали объектом интенсивного исследования. Мы проводили систематические исследования двойных сплавов редкоземельных металлов с германием с целью построения диаграмм состояния. В литературе данные о диаграммах состояния этих систем почти отсутствуют [11, 17]. [c.191]

    Сталь, в том числе с покрытиями, все цветные металлы Сталь, чугун, сталь и чугун с покрытиями, алюминий и его сплавы, не содержащие медь Сталь, в том числе с покрытиями, все цветные металлы [c.112]

    Никелевые покрытия имеют толщину от 5 до 40 мкм. Для декоративных покрытий используют никель или сочетание никель- -хром в зависимости от состава основного металла (стали, цинкового сплава, меди или медных сплавов, алюминия или алюминиевых сплавов, пластмассы) и условий окружающей среды. С более толстослойным покрытием изготовляют химическое оборудование или изделия, применяемые в гальванопластике. [c.97]

    Кальций находит широкое практическое применение в качестве раскислителя (вещества, удаляющего кислород) для железа и стали, меди и медных сплавов, а также в качестве составной части свинцовых сплавов (металл для подшипников или для изготовления оболочек электрических кабелей) и сплавов алюминия его используют и как восстановитель при получении других металлов из их окислов. [c.522]

    В результате опытов, проведенных Гудковым (ВНИИкимаш) по изучению горения металлов в кислороде, было установлено, что проволоки, изготовленные из технических сплавов— углеродистой стали (0,13% С), оцинкованного железа, стали ЭЯ1Т и нихрома НХ20, при нагревании ИХ электрическим током в среде неподвижного кислорода горят с пиротехническим эффектом. Наибольший эффект наблюдали при горении сплава нихром и хромоникелевой аустенитной стали ЭЯ1Т. Горение проволоки из этих сплавов в воздухе идет спокойно. [c.83]

    И класс—металлы средней стоимости алюминий, медь, бронза, медноникелевые сплавы, высоколегированные стали, никель. [c.205]

    Контакты алюминиевых сплавов со сталью, в морской воде и в морской атмосфере вызывают сильную коррозию алюминиевых сплавов [81]. Контакты алюминия с алюминиевыми сплавами, содержащими медь, приводят > приморской атмосфере к коррозионному разрушению алюминия. По дан- ым ряда авторов, даже оксидирование алюминия не дает положительных >езультатов при его защите от контактной коррозии. Некоторые исследова- ели считают контакт алюминиевых сплавов с другими металлами допустимым при условии их предварительной защиты цинком, алюминием или кад-1ием, но не рекомендуют применять алюминий в паре с медью и медными плавами, с никелем и никелевыми сплавами. В последнем случае рекомен- [c.83]

    Весьма плодотворным в ряде конструкций является принцип создания композиционных конструкций из разнородных металлов с использованием долгоживущих протекторов или так называемых жертвенных деталей. Например, в запорной арматуре наиболее ответственным является узел затвора тарелка, седло клапана, шпиндель. Их следует изготавливать из более стойких материалов (нержавеющие стали, медные, титановые сплавы), катодных по отнощению к корпусу клапана (чугун, сталь, медные сплавы, нержавеющие стали). Некоторое увеличение скорости коррозии корпуса клапана из-за контакта с более положительными по потенциалу деталями узла затвора не скажется на сроке службы клапана, который будет даже выше, чем при гомогенном исполнении. Использование различного рода вытеснителей, перегородок из углеродистой стали, находящихся в контакте, допустим, с трубками из нержавеющих сталей теплообменников, охлаждаемых морской водой, позволяет полностью подавить усиленную язвенную коррозию трубок при теплопередаче в морскую воду. [c.81]

    Наиболее распространенным из таких процессов переноса является диффузия в кристаллической решетке. Водород очень быстро диффундирует в большинстве металлов, особенно с о. ц. к. структурой решетки (стали и титановые р-сплавы), и поэтому вполне уместно сопоставить скорости растрескивания (например, в области II на рис. 2) со скоростями диффузии. Такое сравнение принято проводить на основе параметров активации (в частности, энергии активации) и в целом ряде работ было получено согласие данных для двух процессов в титановых сплавах [207], сталях [172, 308, 309] и некоторых других материалах [172]. Следует, правда, отметить, что обычно нет уверенности в протекании единственного термически активированного процесса и поэтому получение энергии активации растрескивания, близкой к энергии активации диффузии, не свидетельствует ни о наличии единственного диффузионного механизма переноса, ни даже об определяющей роли диффузии в процессе переноса водорода [39, 310]. Мы не сомневаемся, что некоторые явления водородного растрескивания контролируются диффузией, однако имеющиеся доказательства такого контроля не всегда достаточно убедительны. [c.129]

    Так, например, хром и никель в нержавеющих сталях, диффундируя к поверхности, образуют оксидный слой, содержащий шпинель Ni r204 и частично шпинель РеСггО . Оксидный слой такого состава оказывается более устойчивым, чем просто оксид СГ2О3, образующийся на поверхности чистого хрома. Поверхностное легирование представляет собой насыщение поверхности данного сплава металлом, обладающим прочным оксидным слоем, — аллитирование, хромирование, силицирование и т. д. Оно осуществляется диффузионным путем из газовой фазы, содержащей пары или летучие соединения легирующего компонента, или нанесением слоя этого металла вакуумным напылением, плазменным напылением или даже наплавкой, но обязательно с последующей термообработкой изделия. При нанесении на поверхность данного металла легирующего компонента возможно образование между ними интерметаллидов. [c.540]

    Цветные металлы и их сплавы дороже сталей п чугунов, однако их часто используют в качестве материала для теплообменных аппаратов, так как они отличаются более высокой коррозионной стойкостью в условиях эксплуатации и более высо кой теплопроводностью. [c.53]

    Изготовление специальных коррозионно устойчивых сплавов, нержавеющих сталей и т. д. сводится к введению в них добавок различных металлов. Эти добавки оказывают влияние на микроструктуру сплава и содействуют возникновению в нем таких микрогальваничес-ких элементов, у которых суммарная э. д. с. вследствие взаимной компенсации приближается к нулю. Такими полезными добавками, особенно для стали, являются хром, никель и другие металлы. [c.138]

    Общие закономерности их действия, проверенные не только в лабораторных условиях, но и в обширных производственных испытаниях, были установлены в тридцатых годах работами П. А. Ребип-дера, Л. А. Шрейнера, К. Ф. Жигача с их сотрудниками. Было показано, что кроме повышения скорости бурения (разрушения породы), адсорбционный эффект всегда выражается и в повышении износостойкости режущего инструмента. Хотя и на инструменте должен обнаруживаться односторонний эффект некоторого понижения прочности при адсорбции, однако этот вредный эффект может быть значительно снижен подбором понизителя твердости, который избирательно адсорбировался бы поверхностями разрушаемой породы, а не поверхностью металла (стали, твердого сплава) режущего инструмента. [c.231]

    Вместе с тем, необходимо выделить группу легко пассивирующихся металлов и сплавов, коррозионная устойчивость которых в атмосферных условиях не уступает благородным металлам. К ним следует отнести титан, тантал, цирконий, ниобий, хром, алюминий. Пассивное состояние этих металлов обусловлено образованием на их поверхности химически инертных оксидны пленок. Пассивирующие пленки могут разрушаться под действием ионов галогенов (С1-, Вг , 1 , Р ), поэтому в морской атмосфере на алюминиевых сплавах, нержавеющих сталях и других пассивирующихся системах могут появляться локальные очаги коррозии. [c.90]

    Один из первых сплавов на основе бериллия, получивший практическое применение, — бериллиевая бронза. Это сплав с 1—3% меди, он внешне похож на настоящую бронзу, обладает замечательной упругостью, и из него можно изготовить практически вечные пружины (к сожалению, очень дорогие и из-за дефицита бериллия используемые только в исключительных случаях). Если бы не дефицитность и дороговизна бериллия, он мог бы применяться, кроме того, в качестве великолепного раскислителя различных металлов, сталей, сплавов. Этому способствуют сильные восстановительные свойства и тугоплавкость металла (т. пл.= 1284°С), легкая возгоняемость (/ 1000°С) образующегося при раскислении окисла ВеО. Теплота образования ВеО составляет 135 ккал/моль, что мало отличается от такой же величины Na и Ва, слишком химически активных для применения в качестве раскислителей (теплота образования Na20=146 ккал/моль, ВаО= = 140 ккал/моль). Так что препятствие для такого использования — дороговизна бериллия, а также его токсичность. Особенно опасны пары окисла бериллия. Вдыхание их вызывает боль в легких, в сердце, а затем, при больших дозах, наступает бериллоз — общее отравление организма, часто кончающееся летальным исходом. Так что работать с бериллием и его соединениями надо, принимая необходимые меры предосторожности. Впрочем, Вокелен, открывший бериллий, без. заметного вреда для своего здоровья пробовал его соединения на вкус [c.28]

    Большинство химических элементов являются металлами (см. рис. 53). Многие из них в силу своей химической активности находятся в природе в связанном состоянии, и поэтому до XVIII в. были известны лишь металлы, встречающиеся в самородном состоянии или легко выплавляемые из руд, такие, как золото, серебро, медь, ртуть, свинец, олово, железо и висмут (причем висмут долгое время принимали за разновидность свинца, олова или сурьмы). Использование сплава меди с оловом сыграло важную роль в развитии производительных сил общества и открыло бронзовый век . Совершенствование плавильных печей позволило производить чугун и другие сплавы железа, появление которых явилось новой вехой в создании человеком материальных ценностей. Алюминий, никель, хром, марганец, магний и другие хорошо известные теперь металлы стали получать лишь в конце XIX — начале XX в., а титан — только в середине XX в. [c.390]

    Многие сплавы металлов можно рассматривать как твердые золи. Так, некоторые стали —это системы, в дисперсионной среде которых (железе) распределены коллоидные частицы цементита РезС. [c.239]

    Для защиты металлов и сплавов от коррозии при высоких температурах их легируют поверхностно или объемно другими металлами. Например, хром или никель, добавленные к стали в качестве -легирующих 1 омпоксптовг4фв-высокой температуре диффундируют к ее поверхности, образуя оксидный слой, более устойчивый, чем СггОз на чистом хроме. Широкое распространение получило поверх--тюетяве- яегяровавне, т. е. насыщение поверхности сплава металлом (а иногда и неметаллом), образующим прочный оксидный слой (алюминием, хромом и т. д.). [c.404]

    Применение стандартных образцов. Стандартные образцы — это эталоны химического состава материалов. В Советском Союзе есть несколько организаций, специально занимающихся приготовлением и аттестацией стандартных образцов. Так, образцы черных металлов и сплавов — чугунов, сталей и др. — готовит Всесоюзный институт стандартных образцов в г. Свердловске. Сплавы цветных металлов, готовят н аттестуют во Всесоюзном научно-исследовательском и проектном институте вторичной цветной металлургии Бниивторцветмет . [c.58]

    В целях экономии дорогостоящих коррозионно-стойких металлов используется технология изготовления двухслойных труб методом совместного волочения на волочильном стане. В частности, применяются также компоненты основного и плакирующего слоев как сталь 10- -сплав ВТМ, сталь 12Х18Н10Т + сплав ВТ1-1, сталь 10 + никель, сталь 10 + медь и др. По этой технологии трубы из стали 10 футеруются трубами из титанового сплава ВТ1-1, никеля, свинца или меди трубы из стали 25ХЗМВФ — трубами из титанового сплава ВТГ-1, меди или других материалов. [c.66]

    Толщина обычных декоративных электроосаждаемых осадков обычно составляет около 0,3 мкм. Если эти осадки используются с подслоями никеля соответствующей толщины и качества, то основной металл (сталь, цинковые сплавы или медь) можно полностью защитить от внешнего воздействия на протяжении от шести недель до шести месяцев. После образования маленьких язв или пузырей, содержащих продукты коррозии основного металла, декоративные внешние качества изделия теряются, хотя функциональные качества могут оставаться неизменными еще более длительный период времени. Можно немного улучшить качества за счет нанесения плотных молочных осадков (см. гл. 3), но в этом случае сопутствующим недостатком явится чрезмерная хрупкость. Если же использовать осадки хрома, имеющие микронесплошности (такие, как микротрещины или микропоры) при толщине покрытия 0,3—1,0 мкм, создаваемого электроосаждением (см. гл. 3), то снижение плотности локального анодного тока замедлит проникающую коррозию в защитных подслоях никелевого покрытия, и срок службы полностью сохраненной декоративной поверхности может составить от одного года до пяти лет. Даже по истечении этого времени потеря внешнего вида часто связана не с коррозией основного металла, а с мельчайшим отслаиванием хрома от никеля в результате поверхностной коррозии никеля, вследствие чего поверхность хрома становится матовой. [c.112]

    Никелемедный сплав НМЖМц 28-2,5-1,5 (монель-металл) Стали  [c.337]

    В других экспериментах, приведенных в лаборатории фирмы Dow , сравнивалась коррозионная стойкость углеродистой и низколегированной сталей. Сплава 20, сталей 304 и 311, а также ряда алюминиевых и медных сплавов [232]. Главной причиной коррозии всех исследованных сплавов в морской воде был растворенный кислород. Низколегированные стали обладали более высокой стойкостью, чем малоуглеродистые, особенно в быстром потоке. Скорости коррозии сталей возрастали вдвое при повышении температуры воды от 82 до 120 °С, Алюминиевые сплавы были нечувствительны к повышению температуры до 120 °С и к изменению содержания кислорода нинсе уровня 1 мг/кг, но подвержены влиянию гальванических эффектов, скорости движения воды и ионов тяжелых металлов. [c.199]

    Имеющиеся в литературе немногочисленные данные дают основание предположить, что описанная выше инверсия масштабного эффекта при коррозионной усталости характерна не для всех металлов и сплавов. Она обнаружена у углеродистых, низколегированных и некоторых высокопрочных нержавеющих сталей, а также алюминиевых сплавов. У стали 12Х18Н9Т увеличение диаметра образца с 10 до 60 мм привело к снижению сопротивления усталости и в воздухе, и в коррозионной среде, т.е. инверсия масштабного фактора не обнаружена [130, с. 16—26]. Причину ее отсутствия авторы видят в склонности стали 12Х18Н9Т к щелевой кор- [c.135]


Смотреть страницы где упоминается термин Сплавы и металлы сталей: [c.90]    [c.129]    [c.523]    [c.31]    [c.193]    [c.110]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.432 , c.446 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние катионов металлов на коррозию сталей и сплавов в кислых средах

Коррозия металлов, сталей и сплавов в серной кислоте и олеуме

МЕТОДЫ АНАЛИЗА СПЛАВОВ ЧЕРНЫХ МЕТАЛЛОВ С ПРИМЕНЕНИЕМ ИОННОГО ОБМЕНА Анализ легированных сталей

Металлы сплавы

Методы анализа сплавов черных металлов Анализ легированных сталей

Общие положения. Сталь. Чугун. Легированные стали и сплавы стали с цветными металлами. Легированные чугуны Алюминий. Медь. Никель. Свинец. Монель-металл. Хавег Дерево Защитные покрытия

Определение азота металлах, сплавах, сталя

Определение титана с хромотроповой кислотой в горных породах, рудах, сталях, металлах и сплавах

Определение фосфора в сталях, сплавах, металлах и полупроводниковых материалах

Поведение сталей, металлов и сплавов в условиях эксперимента

Сплавы и металлы металлов

Сталь сплавы с цветными металлами

Характерное и весьма важное свойство титана — его практически полная коррозионная устойчивость в морской воде и морской атмофере В этом отношении титан превосходит даже такие коррозионно-устойчивые материалы, как аустенитная нержавеющая сталь, монель-металл, купроникель, приближаясь к устойчивости благородных металлов В табл. 90 приведены данные по скорости коррозии некоторых коррозионно-устойчивых металлических сплавов и среди них листового титана в условиях морской атмосферы, по данным пятилетних испытаний, из которых следует полная устойчивость титана в этих условиях Скорость атмосферной коррозии (на расстоянии 24от моря), по данным пятилетних испытаний

Штуцера и люки из коррозионно-стойких сталей, цветных металлов и сплавов

Электродные потенциалы металлов, сталей и сплавов в синтетической морской и шахтной водах

Электроосаждение металлов на титан и его сплавы, а также на хром, молибден, вольфрам и нержавеющую сталь



© 2025 chem21.info Реклама на сайте