Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки глобулы

    Третичная структура белковой молекулы образуется при свертывании поли-пептидной цепи в компактную трехмерную систему (в случае ферментов это, как правило, сферическая глобула). При рассмотрении сил, определяющих свертывание полипептидной цепи (цепей), прежде всего укажем на следующее фундаментальное свойство белков полипептидные цепи стремятся свернуться так, чтобы во внут- [c.11]


    Образованию весьма прочных многоточечных (хелатных) комплексов способствует то, что полипептидные цепи белка и особенно боковые группы аминокислотных остатков, находящихся в поверхностном слое, не зафиксированы слишком жестко и обладают определенной подвижностью (гибкостью). В результате обеспечивается возможность пространственной настройки отдельных сорбционных участков глобулы на соответствующие (связываемые ими) фрагменты сорбируемой молекулы. Иными словами, сорбционный участок глобулы в принципе способен принять конфигурацию, несколько отличную от равновесной [c.23]

    В зависимости от строения основной цепи, наличия или отсутствия ионогенных функциональных групп, молекулы полимеров могут быть вытянутыми в нить , развернутыми в лист , иметь пространственное строение, быть свернутыми в клубки — глобулы и т. д. Например, молекулы каучуков обычно линейны, молекулы полиэтилена высокого давления имеют разветвленное строение, молекулы резины имеют вид пространственной сетки, а молекулы белка имеют глобулярное строение. [c.294]

    Типичными полярными и нейтральными боковыми радикалами обладают Ser, ys, Thr, Arg, Gin и Thr. Они способны образовывать внутри- и межцепные водородные связи. Эти звенья могут располагаться в макромолекуле белка как внутри, так и на поверхности глобулы. Звенья Asp и Glu, как правило, находятся также на поверхности частиц белков. Формирование вторичной структуры белка зависит как от особенностей первичной структуры, так и от внешних (влажность, pH, температура) условий. [c.342]

    Такие сферические образования в некоторых случаях могут переходить в линейные, но при наличии достаточно прочных внутримолекулярных связей глобулярные системы сохраняют свою форму в течение длительного времени. Это мы наблюдаем у так называемых глобулярных белков, глобулы которых весьма устойчивы. У природных полимеров глобулы имеют одинаковые размеры вследствие монодисперсности полимера. Поэтому при контакте глобул возникает кристаллическая структура, построенная по принципу плотной упаковки шаров. Глобулярные структуры были обнаружены и у ряда синтетических полимеров. [c.15]

    Характерная особенность структуры мицелл — это гидрофобное ядро, образованное углеводородными цепями молекул ПАВ, окруженное гидрофильным слоем их головных групп. Этим создается некоторое подобие мицеллярной структуры со структурой глобулярных белков (см. гл. I). Однако если белковая глобула — это относительно жесткое и весьма неоднородное образование, то мицелла ПАВ, напротив, носит псевдожидкий характер [1001 и образована совершенно идентичными молекулами ПАВ. Хотя эти различия и накладывают существенные ограничения на использование мицелл как моделей ферментов [1011, с другой стороны, именно благодаря простоте в построении мицелл в мицеллярных системах наиболее четко и достоверно могут быть прослежены такие эффекты, как стабилизация переходного состояния химической реакции за счет дополнительных сорбционных взаимодействий (или же сближение реагентов при их концентрировании), далее сдвиг р/Са реагирующих групп и влияние микросреды на скорость реакции. [c.115]


    Кристаллическое состояние вещества наступает тогда, когда реализуется как ближний, так и дальний порядок во взаимном расположении частиц. Звенья, сегменты макромолекул могут взаимодействовать как внутри-, так и межмолекулярно. Если интенсивность внутримолекулярного взаимодействия выше, чем межмолекулярного, то макромолекулы могут свернуться в более или менее плотную глобулу (случай, характерный для белков). [c.141]

    Исключение составляют макроскопические монокристаллы глобулярных белков, в узлах решетки которых располагаются отдельные белковые глобулу. Подобные кристаллы для синтетических линейных полимеров неизвестны, и их структура здесь не рассматривается. [c.172]

    Однако в последнее время некоторые советские и зарубежные ученые начинают возвращаться к полипептидной теории Э. Фишера, так как новейшие исследования структур белков все более аргументируют в пользу линейных структур, скрученных в пространстве или образующих глобулы. [c.545]

    Большинство других белков, таких как белки крови, ферменты, гормоны, имеют не фибриллярную, а глобулярную структуру. Последняя состоит из спиралей, свернутых в клубок — глобулу, внутри которой отдельные части спирали сшиваются между собой большим количеством поперечных водородных и дисульфидных связей — мостиков. [c.40]

    Четвертичная структура белков. В больших белковых молекулах (молекулярная масса которых, как правило, существенно превышает 30 ООО) имеется не одна, а несколько полипептидных цепей, не связанных ковалентно друг с другом. Эти субъединичные глобулы могут, [c.12]

    В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, макромолекула линейного полимера в зависимости от геометрии элементарных звеньев и порядка их чередования (если они различаются по химическому составу и стереометрии) может по своей форме приближаться к жесткой палочке (полифенилены, полиацетилены), свертываться в спираль (амилоза, нуклеиновые кислоты, пептиды) или в клубок — глобулу (глобулярные белки). В зависимости от формы макромолекулы линейные полимеры могут значительно различаться по свойствам. Но в то же время они имеют ряд общих свойств, характерных именно для линейных полимеров, которые отличают их от полимеров с иной геометрической формой молекул. [c.47]

    Иногда X < 1 [53]. Это указывает на то, что в результате комплексообразования гидрофобная группа К погружается в среду белка далеко не полностью (и частично сохраняет термодинамически невыгодный контакт с водой) или же сорбцию сопровождают неблагоприятные с точки зрения термодинамики конформационные изменения в структуре глобулы (возможно также и в молекуле лиганда). [c.28]

    Глобулярные белки Белки, молекулы котс ых свернуты в шарообразную структуру. Такие белки растворимы в воде, так как их полярные группы обращены наружу, а неполярные спрятаны внутрь глобулы [c.544]

    Внешнее поле глобулы защищено (экранировано) гидратными оболочками. Глобулярные макромолекулы между собой не сцепляются. В растворах глобулярных веществ внутреннего каркаса не образуется. Поэтому растворы глобулярных белков не застудневают. [c.279]

    ПодготоЕ ленная путем модифицирования реакцией с -амино-пропилтриэтоксисиланом поверхность достаточно крупнопористого силохрома или силикагеля может быть использована для иммобилизации белков и, в частности, ферментов, нужных для проведения -биокаталитических реакций. Для этого, как указывалось в лек-дии 5, надо провести дальнейшее модифицирование поверхности адсорбента-носителя прививкой агента (глутарового альдегида), способного вступить в реакцию с аминогруппами как модификатора, так и балка. Адсорбент-носитель с привитыми теперь уже альдегидными концевыми группами вводится в реакцию с различными белками. Ра ссмотрим иммобилизацию уреазы — важного фермента, находящего также применение в аналитическом определении мочевины и в аппарате искусственная почка . На рис. 18.9 представлена зависимость активности иммобилизованной уреазы от количества иммобилизованного белка. Адсорбентом-носителем является макропористый силохром со средним диаметром пор 180 нм. Этот размер пор значительно превышает размер глобулы уреазы. Вместе с тем удельная поверхность этого силохрома еще достаточно высока (5 = 41 м /г), чтобы обеспечить иммобилизацию значительного количества уреазы. Из рис. 18.9 видно, что при этом удается иммобилизовать до 120 мг белка на 1 г сухого адсорбента-носителя (это составляет около 3 мг/м ). Активность уреазы снижается не более, чем наполовину, даже при большом количестве уреазы в силикагеле, зато иммобилизованный так фермент можно многократно применять в проточных системах, и он не теряет активности при хранении по крайней мере в течение полугода. [c.341]

    Белки в зависимости от формы молекулы разделяются на фибриллярные, имеющие линейную, вытянутую форму молекулы, и глобулярные, имеющие свернутые шаровидные молекулы— глобулы. Молекулярная масса белков колеблется в очень широких пределах — от 17 500 для лактальбумина до 6 800 000 для гемоцианина. [c.181]


    Молекулярный вес глобул белка колеблется от 30 ООО до 1 ООО ООО и более, что соответствует пептидным цепям из сотен [c.179]

    В связи с различием в размерах глобул и в величине заряда скорость движения белков крови оказывается неодинаковой. Быстрее всего движутся самые малые и имеющие наибольший заряд частицы альбуминов, затем частицы а-, 3- и у-глобулинов (рнс. 83). При соблюдении определенных условий удается получить и большее число фракций. [c.190]

    Молекулярный вес глобул белка колеблется от 30 ООО до 1 ООО ООО и более, что соответствует пептидным цепям из сотен или даже тысяч аминокислот. Длина такой полипептидной цепочки должна была составить 800 ммк и больше. Однако длина глобул белка составляет 3—10 ммк, так как субъединицы белка образованы одной или несколькими полипептидными сильно извитыми спиралями. В водных растворах белки легко дезагрегируются (распадаются) на микроглобулы. [c.203]

    Повышение температуры в растворах высокополимеров увеличивает осмотическое давление в большей мере, чем следует из теоретического расчета. Это зависит от повышения степени диссоциации ионогенных групп белков и от дезагрегации белков на микро-глобулы. Дополнительная гидратация микроглобул уменьшает количество свободного растворителя, что соответствует увеличению концентрации частиц в растворе. [c.223]

    Первая — Это кристаллическая Структура, построенная по прин-ципу плотной упаковки шароо. Такие кристаллические образования наблюдаются у так называемых глобулярных белков, глобулы которых остаются устойчивыми даже при непосредственном кон-такт Друг с Другом. Возможность образования кристаллической структуры При этом обусловлена одинаковым размером всех ша-риков, мто связано с мопомолекулярностью природных высокомолекулярных соединеннй. [c.133]

    Наиболее полно гибкость полимерных цепей может быть реализована в очень разбавленных растворах, когда отсутствуют взаимодействия между отдельными макромолекулами. При этом конформационные превращения приводят к образованию наиболее плотно свернутых форм макромолекул — глобул. Глобулы образуются и в коллоидных системах, когда несколько молекулярных клубков ассоциируются в отдельные коллоидные частицы полимерного вещества. Типичным случаем такой системы являются натуральный и синтетические латексы, представляющие собой водные коллоидные системы с полимерными частицами глобулярного строения. Устойчивость глобул в коллоидных частицах зависит от характера межмолекулярного и рнутримолекулярного взаимодействия. Если под влиянием ван-дер-ваальсовых сил внутримолекулярного взаимодействия возникают прочные физические связи, придающие устойчивость свернутым формам макромолекул (например, в белках), глобулы оказываются весьма стабильными. Если же силы внутримолекулярного взаимодействия в полимере слабы и молекулы обладают малой гибкостью, то глобулярные структуры неустойчивы и легко разрушаются. Вообще, чем меньше гибкость полимерной цепи, тем менее вероятны свернутые формы макромолекул и тем меньше возможность образования глобул в таком полимере. Образование глобул чаще всего протекает в процессе синтеза полимера, например при эмульсионной полимеризации. [c.50]

    По данным работ [161. 196]. Горизонтальной пунктирной линией вверху обозначена собственная удельная сжимаемость глобулы (средняя по всем глобулярным белкам). —эксперимент. О — аддитивный расчет. Стрелки, направленные вниз, означают величину гидратационного вклада в К 1М для глобулярных белков она отсчитывается от значения сжимаемости глобулы, для полностью развернутых цепей — от нуля, поскольку в этом случае собственная сжимаемость молекулы отражает ничтожно малую сжимаемость вандер-ваальсовых объемов аминокислотных остатков. / — рибонуклеаза 2 — лизоцим 3 — миоглобин — полиглутаминовая кислота 5 — поли-0,1-аланин — коллаген нативный [161, 202] 7 — коллаген деструктурированный (желатина) [200] [c.59]

    Добываемое из этих деревьев каучуковое молоко (латекс) состоит примерно из 55—60% воды и 35—40% каучука в форме мелких глобул, стабилизованных адсорбированным на их поверхности слоем белка. Часть латекса, предохраненного от брожения добавкой небольшого количества аммиака, непосредственно экспортируется в промышленные страны другая часть перерабатывается на месте его добычи в твердый каучук. В последнем случае мелкие частицы каучука коагулируют, добавляя уксусную или муравьиную кислоту, и затем коагулят обрабатывают по одному из двух различных способов для получения смокед-шитса или светлого крепа. По первому способу коагулят постепенно вытягивают на вальцах в листы толщиной 3—4 мм, после чего сушат и коптят в специальных помещениях. Копчение при температурах до 60° предохраняет каучук от окисления и плесневения. При получении крепа количество вводимого коагулянта берут с таким расчетом, чтобы при коагуляции разбавленного латекса получалась рыхлая масса последнюю после отделения водной фазы промывают и вальцуют в крепо-подобную тонкую шкурку, а затем сушат на воздухе. [c.950]

    Существуют и некристаллические упорядоченные структуры. По причинам, которые изложены ниже, довольно бессмысленно их систематизировать, за исключением, разве что, глобул, которые вполне дискретны, но не обязательно обладают внутренним дальним порядком. Дело в том, что путаница, царящая в монографической и журнальной литературе по поводу надмолекулярных структур, особенно в некристаллизующихся полимерах, обусловлена пренебрежением принципами статистической физики и физической кинетики. Описание полимеров на всех уровнях структурной организации не может быть полным, если наряду с морфологией не учитывается подвижность соответствующих структурных элементов . А введение подвижности ав томатически требует, при описании надмолекулярной организации в целом, не только описания пространственного распределения и -сил взаимосвязи структурных элементов, но и усреднения во времени (ср. стр. 45). При этом сразу выявляется третий признак классификации структур по их стабильности. Как известно, по отношению к так называемой денатурации все глобулярные белки принято подразделять на кинетически и термодинамически стабильные. ЭтОт же принцип должен реализоваться и по отношению к надмолекулярным уровням структурной организации полимеров. Все дискретные организованные структуры являются термодинамически стабильными отдельные организованные морфозы (типа сферолитов, например) могут обладать определенной — и регистрируемой, (см. гл. VII) — внутренней и внешней подвижностью, но ниже температуры фазового перехода они вполне устойчивы в отсутствие внешних силовых полей их время жизни т->оо. [c.47]

    Микросреда поверхностного слоя обнаруживает также сильно пониженную полярность по сравнению с водой. На это указывают, в частности, результаты сравнения УФ- и видимых спектров поглощения или спектров флуоресценции ароматических соединений в воде, в органическом растворителе и при солюбилизации их в поверхностном слое белковой глобулы [23, 24]. Полярность среды, окружающей молекулу Ы-арилсульфоната в комплексе с белком, близка й значению, характеризующему этанол (Z = 80 для воды Z = 95) (табл. 4). В тех участках ферментной глобулы, где непосредственно происходит гидрофобное взаимодействие аполярных аминокислотных остатков поли-пептидной цепи, полярность микросреды должна быть еще более низкой. С другой стороны, в рядом расположенных областях поверхност- ного слоя следует ожидать высокую локальную концентрацию диполей пептидных связей. Это (даже в отсутствие полярных и заряженных боковых групп) может привести к образованию участков высокополярной и поляризующей мик- 57 росреды (где напряженность поля достигает значений 10— [c.21]

    Из всего изложенного следует, что даже столь грубая оценка величины АОвнутр позволяет прийти к выводу, что силы взаимодействия между поверхностным слоем ферментной глобулы и органическими молекулами или ионами вполне могут перекрыть (особенно при многоточечном взаимодействии фермент—лиганд) энтропийные потери, обусловленные необходимым сближением комплексующих агентов (ДСсближ)- Эксперимент подтверждает это представление, поскольку комплексообразование низкомолекулярных лигандов с белками характеризуется весьма высокими значениями констант ассоциации порядка 10 —10 л/моль [30] (см. гл. VH), что соответствует величине АОассоц. равной примерно — (3 — 7) ккал/моль или — —(12,6—29,4) кДж/моль. [c.29]

    Наиболее важная информация о строении молекулы химотрипсина (молекулярная масса 25 ООО) была получена с помощью рентгеност-зуктурных исследований последних лет, проведенных Блоу с сотр. 14, 17—19]. Как итог своих исследований авторы представили трехмерную модель молекулы химотрипсина (см. рис. 3). В согласии с ранними общими представлениями о строении белков было найдено, что все заряженные группы в молекуле этого фермента направлены в сторону водного растворителя (за исключением трех, которые выполняют специфические функции либо в механизме активации зимогена, либо в механизме действия активного центра). Особенности расположения аминокислотных остатков с гидрофобными боковыми цепями внутри белковой глобулы также согласуются с ранними представлениями о важной роли гидрофобных взаимодействий в стабилизации третичной структуры белков (см. гл. I). [c.127]

    В связи с этим интересно отметить, что эффективность адсорбции ароматических соединений на твердых поверхностях (угле) практически не зависит от наличия в ядре каких-либо заместителей [87, 88]. Поэтому в случае полуже-сткой модели гидрофобного кармана в белке, для того чтобы объяснить полную экстракцию глобулой различных гидрофобных заместителей в молекуле ингибитора, необходимо допустить, что аминокислотные остатки, расположенные вблизи щипцов , обладают все-таки некоторой подвижностью, которая обеспечивает обволакивание неароматических гидрофобных фрагментов псевдожидкой средой активного центра. [c.141]

    На поверхности белков имеется большое количество гидрофильных групп, которые обусловливают создание вокруг этих макроструктур почти сплошной водной оболочки. Гидрофобные радикалы аминокислот, образующие полипептидные цепи, обращены преимущественно внутрь структуры. Несмотря на это, некоторое количество воды может быть связано и внутри белковых макроструктур. Часть гидрофильных групп может содержаться и во внутренних отделах белковых макроструктур кроме того, некоторая часть воды может быть замкнута внутри этих структур в своеобразных ячейках , образованных гидратированными полипептид-нымн цепочками. И, наконец, дипольные молекулы воды могут попросту вклиниваться в водородные связи, не нарушая при этом их прочности. Принято различать интермицеллярную воду, находящуюся в свободном состоянии между отдельными белковыми макромолекулами, и интрамицеллярную воду, находящуюся внутри белковых глобул. Для устойчивости коллоидиых частиц имеет значение только вода, создающая внешнюю водную оболочку. Именно она и препятствует столкновению и объединению белковых макромолекул. [c.339]

    Латексы, как и эмульсии, содержат микроскопические или ультрамикроскопические частицы (глобулы), приближающ.иесп по форме к сферическим, на поверхности которых адсорбирован стабилизатор — соединения типа белков для [c.381]

    Кривые титрования белков, являющихся полиамфолитами, имеют плавный характер, часто без заметных перегибов. Это обусловлено различными причинами. Макромолекулы белков содержат обычно несколько типов как основных, так и кислотных групп, каждый из которых имеет свое значение рК и характеризуется своей точкой перегиба на кривой титрования. Но даже одному типу групп соответствует несколько значений р/С в зависимости от окружения этих групп на поверхности или внутри белковой глобулы. Наконец, описанные выще электростатические эффекты, которые приводят к сглаживанию кривых титрования поликислот (или полиоснований), действуют так же и в случае полиамфолитов. [c.127]

    Другие ферменты предпочитают атаковать срединные связи субстрата на достаточном удалении от концов полимерной молекулы. Активный центр таких ферментов можно упрощенно пред-ставит . в виде длинной ложбины или расп елипРз1 па поверхности белковой глобулы, вдоль которой и располагается субстрат, в то время как его концевые группы могут выходить за пределы активного центра или даже молекулы белка. Такие ферменты называют эндоферментами , пли действующими по эндотипу . [c.77]

    В работах И. М. Лифщица было показано, что для биологических полимеров, образующих плотные глобулы, характерно появление системы дискретных уровней энергии Гельмгольца. Л. А. Блюменфельд указал, что в случае гетерополимеров, к числу которых относятся и белки, каждому дискретному уровню должна соответствовать и определенная конформация (т. е. способ образования вторичных связей). [c.348]

    В составе отдельных аминокислот кроме групп —КНз и —СООН имеются и другие функциональные группы, не участвующие в образовании полипеп-тидйой цепи первичной структуры белка. При укладке полипептидной цепи строго определенным способом в компактные глобулы или фибриллы имеющиеся [c.425]

    Характер связей одинаков в фибриллярных и глобулярных белках. Молекулярный вес обоих основных структурных видов белка также примерно одинаков (от 30 ООО до 1 000 000 и более), но форма значительно отличается. У фибриллярных белков длина макроглобул в сотни и тысячи раз превышает их толщину так, макроглобула проколлагена с молекулярным весом 680 ООО имеет длину 3000 А при толщине несколько ангстрем. Глобулярные белки имеют чаще не шарообразную, а веретенообразную форму, варьирующую у разных белков. Длина глобул обычно не превышает 300 А, а средний объем составляет 44 000 А . [c.180]

    Поверхность фибриллярных и глобулярных белков имеет большое количество гидрофильных групп, создающих вокруг этих макроструктур почти сплошную водную оболочку. Гидрофобные радикалы аминокислот, образующих полипептидные цепи, обращены, видимо, преимущественно внутрь структуры. Тем не менее некоторые количества воды связаны (иммобилизованы) и внутри их 1) диполи воды могут вклиниваться в водородные связи, не нарушая их прочности 2) гидрофильные группы содержатся и во внутренних отделах макроструктур белков, где связывают определенное количество воды 3) некоторое количество воды замкнуто внутри белковых молекул в своеобразных сотах , образованных гидратированными полипептидными цепочками. Благодаря этому различают интрамицеллярную воду, находящуюся внутри белковых глобул, и интермицеллярную воду, находящуюся в свободном состоянии между ними. Для устойчивости коллоидных частиц имеет значение только вода, создающая внешнюю водную оболочку, препятствующую столкновению и объединению частиц. [c.180]

    Типичным примером водородной связи является связь, обра-зуемая водородом гидроксильной группы. Водородная связь может возникать не только между молекулами, но и в пределах одной молекулы, например белка, обеспечивая скручивание полипептид-пой цепочки с образованием глобулы. Такой тип внутримолекулярного взаимодействия является характерным для биологических макромолекул — белков, полисахаридов, нуклеиновых кислот. [c.27]

    Еще несколько лет назад полагали, что а-спирали вторичных структур белка соединяются сбок о бок , одна рядом с другой — субъединица белка здесь представляет собой пласт полипептидных спиралей, а не кабель или пучок. Пласты наслаиваются один на другой, соединяясь в основном водородными связями, и образуют сферическую макроструктуру (ее часто называют глобулой или макроглобулой). Так, по Пальмеру, яичный альбумин состоит из четырех пластов субъедцгшп, в каждом из которых находится по 96 аминокислотных остатков, расположенных в восьми полипептидных цепочках по 12 аминокислот (рис. 85). Пласты обращены друг к другу своими гидрофобными либо гидрофильными частями. [c.202]

    В связи с различием в размерах глобул и в величине заряда скорость движения белков крови оказывается неодинаковой. Быстрее всего движутся самые малые и имеющие наибольший заряд частииы альбуминов, затем частииы а-, р- и -углобулннов (рис. 96). [c.218]


Смотреть страницы где упоминается термин Белки глобулы: [c.261]    [c.21]    [c.23]    [c.107]    [c.180]    [c.204]   
Химия высокомолекулярных соединений (1950) -- [ c.469 ]




ПОИСК





Смотрите так же термины и статьи:

Белки глобула расплавленная

Глобулы

Пируваткиназа Плавление участков белковой глобулы

Связывание флуоресцентных меток с гидрофобными участками белковой глобулы



© 2025 chem21.info Реклама на сайте