Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроотрицательность и резонанс

    Если различие в ионности связи достаточно велико, чтобы его можно было предсказать, то величины меняются в соответствии с изменением ионности. Однако для систем, в которых различие в ионности связи не столь очевидно, если исходить из электроотрицательности и других соображений, интерпретация различия в e Qq с точки зрения относительной важности эффектов, учитываемых уравнением (14.22), сомнительна. Одно из наиболее успешных исследований было проведено в ряду замещенных хлорбензолов. Найдено линейное соотношение между константой Гаммета а и частотой квадрупольного резонанса [c.275]


    Является ли связь углерод — металл ионной или полярно-ковалентной, зависит главным образом от электроотрицательности металла и от строения органической части молекулы. Вероятность образования ионной связи возрастает, когда отрицательный заряд на связанном с металлом углероде уменьшается за счет резонанса или эффекта поля. Так, связь углерод-натрий в натриевой соли ацетоуксусного эфира более ионная, чем в метилнатрии. [c.234]

    Лайнус Карл Полинг (род. 1901 г.) — выдающийся американский химик, один из немногих ученых, которому была дважды присуждена Нобелевская премия (1954 г. — по химии, 1962 г. — премия Мира). В 1970 г. Л. Полингу была присуждена Ленинская премия за укрепление мира между народами. Один из создателей метода ВС, теории гибридизации, концепции резонанса, электроотрицательности и др. Внес огромный вклад в создание молекулярной биологии (спиральное строение полипептидной цепи, существование гемоглобина 8 и т. д.). На русский язык переведены его книги Не бывать войне , Природа химической связи , Общая химия и др. [c.137]

    Понять, почему молекулы АТФ обладают характером молекул, богатых энергией, можно из рассмотрения принципа электроотрицательности (разд. 6.13) и теории резонанса (разд. 6.8). [c.227]

    В соед., включающих связи между атомами с существенно разл. электроотрицательностями, значит, вклад в волновую ф-цию вносят резонансные структуры ионного типа. Строение СО в рамках Р. т. описывается резонансом трех структур  [c.228]

    Рассмотрим кратко отдельные факторы, определяющие химический сдвиг резонанса F. Как показывает эксперимент, в ряде случаев наблюдается корреляция с электроотрицательностью заместителя Е. Понижение электроотрицательности соседнего атома ведет, как и в случае резонанса протонов, к увеличению экранирования. Этот эффект ясно прослеживается в химических сдвигах сигналов F нескольких фторидов  [c.375]

    Более высокая электроотрицательность кислорода сказывается еще и в более высокой индуктивной поляризации молекулы, которая настолько выражена, что приводит к появлению у фурана общего дипольного момента с отрицательным концом на атоме кислорода (см. стр. 17). В целом следствием электроотрицательности кислорода является уменьшение мезомерии или резонанса. Вероятно, по этой причине фуран имеет менее ароматический характер, чем пиррол. [c.19]

    Дублет резонанса Ферми (иногда видна только одна полоса) Электроотрицательный заместитель на а-углеродном атоме увеличивает частоту (на 15-20 см для С1 или Р, [c.302]


    Имеется ряд других критериев, которые можно использовать для оценки относительной устойчивости и, следовательно, относительного вклада структур, участвующих в резонансе. Один из этих критериев (а) рассматривает электроотрицательность и локализацию заряда. [c.317]

    Частично полярную ковалентную связь двух атомов А и В, имеющих неодинаковую электроотрицательность, Полинг выражает в терминах резонанса как суперпозицию чисто ковалентной и чисто ионной структур [c.345]

    Водородная связь всегда образуется между двумя электроотрицательными атомами. Сначала казалось, что она имеет чисто электростатическую природу [36, 37]. Действительно, теоретические расчеты электростатического взаимодействия привели к значениям энергии водородной связи, близким к опытным данным. Однако такое представление нельзя согласовать со спектроскопическими данными — с интенсивностями инфракрасных полос, а также с данными по дипольным моментам и спектрам протонного магнитного резонанса [33]. [c.201]

    В спектрометрии ЯМР- С могут быть применены те же общие принципы, которые используются при корреляции структуры с химическим сдвигом в ПМР-спектрометрии. Например, можно показать (рис. 8.10), что алканы имеют сигналы атомов углерода (в интервале б от —10 до +35 м. д.) в более сильном поле, чем сигналы атомов углерода алкенов (б от 100 до 165 м. д.). Следует вспомнить, что протоны алканов дают сигналы в более сильном поле, чем олефиновые протоны. Далее, электроотрицательные атомы (например, Ы, О) вызывают появление сигналов непосредственно с ними связанных атомов углерода в более слабом поле по сравнению с алканами та же самая общая тенденция существует и в протонном магнитном резонансе. [c.502]

    В различных молекулах или в пределах одной молекулы однотипные ядра (например, протоны) могут иметь различные константы экранирования и, следовательно, различные условия резонанса. Рассмотрим, например, условия резонанса протонов и атомов углерода метильных групп тетраметилсилана, триметиламина и диметилового эфира. Очевидно, что электронная плотность на атомах углерода и на протонах в ряду этих соединений уменьшается ввиду увеличения электроотрицательности гетероатома. Если зафиксировать частоту электромагнитного поля V( и плавно повышать напряженность постоянного магнитного поля (развертка по полю), то условия резонанса наступят раньше (т.е. при более слабом поле) для протонов метильных групп диметилового эфира (ДМЭ), затем - триметиламина (ТМА) и, наконец,-тетраметилсилана (ТМС) (рис. 5.5). Если, наоборот, зафиксировать напряженность Hq и плавно менять частоту электромагнитного поля (развертка по частоте), резонансная линия протонов тетраметилсилана появится при более низкой частоте радиочастотного поля, затем линия протонов триметиламина-при более высокой частоте и, наконец, линия диметилового эфира-при самой высокой частоте. Рис. 5.5 есть [c.282]

    Замещение в ряду нитропроизводных в общем протекает нелегко, но лучше, если в орто- или ара-положении имеются другие электроотрицательные группировки. Благоприятное влияние орто-заместителей усиливается при этом вследствие уменьшения резонанса, т. е. устойчивости молекулы, за счет влияния группы N02 (см. стр. 430), Это можно показать на примере 2,5-динитрохлорбензола, который реагирует с аммиаком предпочтительно в положении 2, а не 1 и 5 (з)  [c.200]

    Примером сигматропных реакций может быть и хорошо известная перегруппировка Кляйзена (рис. 56, а). При реакции происходит поворот я-орбиталей у атомов 1 и 6 и их регибридизация до вр -состояния, одновременно происходит разворот лопастей о-связи в положении 3—4 и их регибридизация до я-орбиталей (рис. 56, б). Конечным итогом реакции является образование новой о-связи в положении 1—6 и двух новых я-свя-зей в положении 2—3 и 4—5. Четырехцентровое переходное состояние в этом случае имеет вид, изображенный на рис. 56, в. Затем система стабилизируется запрещенным по симметрии, но очень выгодным энергетически [1,3]-переходом атома водорода к атому кислорода и образованием ароматической системы бензола. Энергетическая выгодность в данном случае, помимо выигрыша за счет энергии резонанса ароматического ядра бензола, определяется и значительно большей электроотрицательностью атома кислорода по сравнению с атомом углерода (сравнить с нереализуемой схемой на рис. 52). Наличие в системе атома кислорода вместо тетраэдрического углеродного атома не допускает оценки перегруппировки с точки зрения супра- или антараповерхностного перехода. Появившиеся в последнее время данные по ускорению перегруппировки Кляйзена под действием кислот не противоречат отнесению перегруппировки к сигматропным процессам, так как протонирование атома кислорода или хотя бы блокирование его электронной пары могут, не меняя [c.649]

    Алкильные радикалы обладают +/-эффектом. Группы —ОН и —NHa характеризуются —/-эфс )ектом (кислород и азот более электроотрицательны, чем углерод), однако их -ЬУИ-Э( )фект выражен значительно сильнее, вследствие чего электронная плотность смещается к бензольному ядру. Обогащение орто- и /гара-положений в большей степени, чем. ие/ла-положения, объясняется с позиций теории резонанса тем, что отрицательный заряд, локализуясь в этих положениях, образует с я-электронами цепь сопряжения (структуры I, II), в то время как в ж /иа-положении (структура III) такое сопряжение и, следовательно, стабилизация заряда исключены  [c.247]


    Локальные электронные токи возникают в атоме под действием внешнего магнитного поля в п.поскости, перпендикулярной к этому полю. Они всегда уменьшают внешнее магнитное поле в месте нахождения ядра, т. е. приводят к отрицательному или диамагнитному, экранированию. В свою очередь степень электронного экранирования должна находиться в прямой зависимости от электронной плотности вокруг протона чем электронная плотность выше, тем сильнее экранирование, т. е. в тем более сильном поле будет наблюдаться резонанс данного протона (или другого магнитного ядра). Этот вывод согласуется, например, с тем, что наблюдается соответствие между химическими сдвигами протонов метильных групп и электроотрицательностями связанных с ними атомов (см. рис. 57). [c.68]

    Галогенирование ароматических соединений, имеющих- электроотрицательные группы, происходит медленно и дает преимущественно мета-тоыер. Поэтому для его осуществления необходимы более жесткие условия, например более высокие температуры, и(или) более сильные электрофильные катализаторы, такие, как сульфат серебра и галоген в серной кислоте [80]. При наличии заместителей, оттягивающих электроны от кольца за счет резонанса, получаемые побочные продукты всегда содержат большее количество орто-, чем /га/ а-изомера, поскольку fiapa-положение дезактивируется в большей степени. Существенным вкладом в осуществление реакции л ета-галогенирования явилось понимание необходимости добавления более одного эквивалента катализатора, л-ак как при этом изменяется характер оказываемого заместителем влияния и, кроме того, первый эквивалент катализатора расходуется на образование комплекса. Поэтому неизрасходованный избыток катализатора служит для промотирования галогенирования. Таким способом легко [c.458]

    Эти данные показывают, что связи в молекулах этих галогенидов водорода прочнее средних значений связей в молекулах соответствующих простых веществ и что возрастающая прочность (энергия связи) определяется разностью электроотрицательностей соответствующих пар атомов. Чем дальше отстоят два элемента друг от друга по шкале электроотрицательности, тем прочнее связь между ними. Дополнительна стабильность определяется энергией резонанса между нормальной кова лентной структурой и ионной структурой. [c.159]

    Разность электроотрицательностей углерода и фтора еоответствует 43% ионности для связи С—F, а следовательно, орбиталь углерода высвобождается для образования двойной связи с другим атомом фтора. Приняв для нормальных валентных структур А для H2F2) энергию связи С—F равной 443 кДж-моль получим следующие значения для энергии резонанса ео структурами типа Б и В 56 кДж-моль для H2F2, 139 кДж-моль-1 для HF3 и 212 кДж-моль для F4. [c.200]

    Но некоторые группы (NH, и ОН и их производные) действуют как мощные активаторы при электрофильном замещении в ароматическом ряду, хотя они содержат электроотрицательные атомы и в других случаях могут проявлять электроноакцелторный индуктивный эффект. Если наш подход к проблеме верен, то эти группы должны подавать электроны не за счет индуктивного эйффекта, а иным способом, и считается что они делают это за счет эффекта резонанса. [c.352]

    Строго говоря, резонанс менее существен для кислоты, поскольку участвующие структуры обладают различной стабильностью, в то время как эквивалентные структуры иона обязательно должны обладать одинаковой стабильностью. В структуре 11 два атомг одинаковой электроотрицательности несут противоположные заряды. Поскольиу необходимо сообщить энергию для разделения противоположных зарядов, то структура II характеризуется большим содержанием энергии и, следовательно, менее устойчива, чем структура I. Рассмотрение степени разделения зарядов служит одним из простейших критериев (разд. 10.15), который можно использовать для оценки относительной стабильности и, следовательно, относительной величины вклада резонирующей структуры [c.570]

    Поскольку атом кислорода является сильно электроотрицательным, он легко принимает отрицательный заряд н поэтому структуры I и II должны быть особенно устойчивыми. Поэтому карбанионы, для которых возможен вклад подобных структур, будут гораздо стабильнее карбанионов, образующихся при атаке самого хлорбензола или л<-хлоронитробензола, для которых возникновение структур типа I и II невозможно. Таким образом, резонанс с участием НОг Группы усиливает активацию по отношению к нуклеофильному замещению, вызываемую индуктивным эффектом. [c.798]

    Преимущество этого метода в том, что образование производного происходит быстро и легко наблюдать за ходом реакции. Для анализа приготавливают раствор меркаптана в дейтерохлороформе с концентрацией около 107о. Спектры регистрируют при частоте внешнего сигнала 60 МГц. Линии резонанса на ядрах водорода тиоспирта заключены в диапазоне 0,8—3,00 млн" относительно сдвига для ТМС. Образование тиокарбамата проявляется в исчезновении спектральных линий тиоспирта. Образование электроотрицательной тиокарбаматной группы приводит к появлению парамагнитного сдвига линий резонанса на ядрах а-водородных атомов, и это упрощает спектр ЯМР. Скорость реакции обмена водородных атомов меркаптана такова, что наблюдается взаимодействие этих атомов с соседними атомами водорода однако при образовании производного этот эффект практически равен нулю. Парамагнитный сдвиг линий резонанса на ядрах а-водородных атомов метиленовой группы находится в пределах 0,45—0,55млн а соответствующий сдвиг для а-водородных атомов метиновой группы — в пределах 0,71—0,72 млн" Спектральные данные для анализировавшихся меркаптанов представлены в табл. 15.3. [c.353]

    Имидазол — гораздо более сильное основание (рАГа7,1), чем тиазол (рК 1,5), оксазол (рЛ , 0,8) и даже пиридин (рА 5,2). Это обусловлено амидиноподобным резонансом, который позволяет обоим атомам азота на равных участвовать в делокализации заряда. Относительно низкую основность оксазола можно объяснить сочетанием индуктивного влияния электроотрицательного кислорода со слабым мезомерным электронодонорным действием. 1,3-Азолы устойчивы в горячих растворах сильных кислот. [c.507]

    При наличии в связи большой ковалентной составляющей правило отношения радиусов уже не выполняется. С другой стороны, в этих структурах значения разности электроотрицательностей Ьх могут меняться в пределах 0,4—2,1, которые шире, чем у структур типа Na l. Основной причиной стабильности этих-двух типов структур считают резонанс между ковалентными связями, образованными состояниями с sp -гибриди-зацией. При сопоставлении сумм рассчитанных Полингом тетраэдрических ковалентных радиусов и измеренных расстояний М — X оказывается, что они почти совпадают, и различие не превышает 0,06 А. Стабилизация структур этого типа легко [c.189]

    В кетогрунпе нет водородного атома, и поэтому определять кетоны методом ЯМР не так легко, как соединения с другими функциональными группами. Однако для того, чтобы установить присутствие кетона, можно воспользоваться электроотрицательностью карбонильной группы и ее влиянием на водородные атомы при а- и (3-атомах углерода. Простейший кетон — ацетон дает единственную линию протонного резонанса, соответствующую химическому сдвигу 2,17 млн относительно линии ТМС. Метилэтилкетон легко определить по резонансам на атомах водорода метила и этила для идентификации можно использовать и другие свойства этого соединения. При усложнении структуры органических кетонов их идентификация становится более сложной. [c.108]

    Электроотрицательность атома фосфора равна 2,1. Элементы с такой величиной электроотрицательности склонны к обобщению электронов без полной их отдачи или присоединения, поэтому в большинстве своих соединений атом фосфора ковалентно связан с соседними атомами. Это подтверждается расщеплением линий спектра ядерно-магнитного резонанса (ЯМР), происходящим в результате непрямого спин-спинового взаимодействия электронов, а также спектроскопическим и рентгенографическим исследйваниями [55]. Наибольшее распространение имеют соединения фосфора с координационными числами 4 и 3, менее распространены соединения с координационными числами 5 и 6. [c.10]

    Для метильных и метиленовых групп, присоединенных к насыщенному атому углерода, наблюдаются две полосы, соответствующие симметричным (у ) и асИлМ-метричным (Уд) валентным колебаниям. При нарушении силмметрии Сзу метильной грутшы полосы асимметричных колебаний расщепляются вследствие снятия вырождения. Положение полос симметричных валентных колебаний —С—Н существенно зависит от электроотрицательности атома, к которому присоединена метильная группа, асим.метричные колебания менее чувствительны к этому фактору. В присутствии двойных связей, примыкающих к метильной или метиленовой группе, полосы симметричных колебаний могут расщепляться. В полярных молекулах могут добавляться полосы Ферми-резонанса с обертонами деформационных колебаний [15]. Внутренние деформационные колебания метильной группы также характеризуются двумя полосами 8 и 8 . Метиленовая группа имеет одну полосу, соответствующую так называемым ножничным колебаниям. Соседние электроотрицательные атомы и группы существенно меняют частоту симметричных деформационных колебаний метильной группы 8 и ножничных колебаний метиленовой группы. [c.435]

    При постоянной частоте 30 Мгц протонный резонанс происходит приблизительно при напряженности поля 7050 гс. При низкой разрешающей способности прибора для любого водородсодержащего соединения наблюдается всего один максимум. При умеренно высокой разрешающей способности по-прежнему наблюдается один максимум при условии, что весь водород в составе соединения находится в одном химическом состоянии, как, например, в случае воды или метилбро-мида. Однако для этилбромида Я = 7050 гс обнарулсиваются уже два пика, находящихся на расстоянии 0,007 гс друг от друга [5]. Эти пики соответствуют протонам метиловых и метиленовых групп соответственно. Подобное же расщепление линий наблюдается для других галоидэтилов. Расстояние между пиками находится приблизительно в линейной зависимости от электроотрицательности замещающего галогена. [c.242]

    МЕЗОМЕРИИ ТЕОРИЯ, теория электронного строения хим. соед. с сопряженными связями, согласно к-рой истинное распределение электронной плотности в молекуле является промежут. между распределениями, представленными двумя или неск. классич. ф-лами. По своему содержанию М. т. практически совпадает с резонанса теорией, одвако в отличие от последней оперирует для описания строения молекул не набором резонансных структур, а правилами электронных смещений (см. Индуктивный эффект, Мезо-мерный эффект, Электромерный эффект), позволяющими охарактеризовать внутримол. поляризацию. Напр., особенности хим. св-в и структуры формамида (повышенная кислотность группы ЫН1, отсутствие ряда характерных для карбонильной группы реакций, удлинение связи С=0 и укорочение связи С—Ы) объясняются смещением неподеленных пар электронов азота и элшстронов кратвых связей в сторону более электроотрицательного атома О (обозначается изогнутыми стрелками) Н-. л Аналогично объясняются выравненность /1Ч- -СН=0 всех связей в молекуле бензола, повыш. ) нуклеофильность орто- и пцра-положе- [c.319]


Смотреть страницы где упоминается термин Электроотрицательность и резонанс: [c.19]    [c.320]    [c.701]    [c.156]    [c.39]    [c.377]    [c.19]    [c.269]    [c.270]    [c.326]    [c.326]    [c.282]    [c.336]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.406 ]




ПОИСК





Смотрите так же термины и статьи:

Электроотрицательность



© 2025 chem21.info Реклама на сайте