Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол крекинг

    Циклопентан относительно термически стабилен он не подвергается дегидрированию нри нормальных температурах крекинга, а при более жестких условиях углерод-углеродная связь расщепляется с разрывом кольца [50—53]. Циклогексан начинает разлагаться при 490—510° С, образуя большие количества водорода, этилена, бутадиена [54], бензола [55] пропилен не получается [56]. Циклогексен, по-видимому, является промежуточным продуктом, из которого затем образуются бензол и водород или бутадиен и этилен [55]. Последний вариант реакции протекает почти количественно при 800° С [56] в продуктах реакции почти нацело отсутствует циклогексадиен [57]. Нет доказательств и в пользу предположения о возможности изомеризации циклогексана в метилциклопентан при термическом крекинге [56]. [c.301]


    Реакция (V) дегидрирования циклогексана в бензол в условиях термического крекинга может протекать до конца (см. стр, 273—275). [c.286]

    Сырьем для каталитического риформинга служат бензиновые фракции прямой перегонки широкая фракция 85—180 °С для получения высокооктанового бензина, фракции 62—85, 85—115 и 115—150 С для получения бензола, толуола и ксилолов соответственно. Иногда к прямогонной широкой бензиновой фракции добавляют низкооктановые бензины коксования, термического крекинга. Сера, содержащаяся в сырье, вызывает отравление (дезактивацию) катализатора, поэтому платформингу обычно предшествует гидроочистка сырья. Минимальная [c.40]

    Таким образом, с увеличением концентрации бензола крекинг все более и более подавлялся,. одновременно реакция изомеризации становилась более избирательной и достигала максимума в точке, где крекинг становился крайне незначительным. Дальнейшее увеличение концентрации добавки за пределами этой точки постепенно подавляло изомеризацию точно так же, как она подавляла крекинг в области низких концентраций. [c.24]

    В первом реакционном узле системы при термическом крекинге газойля в качестве товарных продуктов из системы отводятся бензин, метан и бутан + + высшие образовавшиеся в процессе крекинга этан и пропан направляются на дегидрогенизацию, этилен и пропилен — на алкилирование бензола, крекинг-остаток направляется на процесс деструктивной гидрогенизации, а флегма возвращается обратно на крекинг. [c.167]

    Известный интерес представляет также применение активных глин для алкилирования ароматических углеводородов при температурах порядка 450° и давлении 100—200 ат. Некоторые авторы предлагают проводить таким способом алкилирование бензола крекинг-бензинами для повышения их октановых чисел. [c.303]

    При гомогенном окислении толуола в статических условиях добавки бромистого водорода увеличивают скорость превраще- ния исходного углеводорода [37]. В ходе реакции наряду с бензойной кислотой образуются продукты бромирования в ядро и боковую цепь (бензилбромид, моно- и дибромфенолы), а также продукты деалкилирования (фенол, бензол), крекинга (этан, этилен) и глубокого окисления (вода, окислы углерода). Выход их приведен в табл. 1. [c.17]

    Таким образом, при увеличении количества добавляемого бензола крекинг все более подавлялся. Одновременно реакция изомеризации становилась более избирательной и достигала высшей точки тогда, когда крекинг шел в очень малой степени. Дальнейшее увеличение концентрации добавки за этой точкой постепенно уменьшало изомеризацию точно таким же образом, как и замедляло крекинг в области более низких концентраций. [c.38]


    Описанный выше механизм не объясняет, почему в регулируемых условиях бензол в присутствии катализатора — хлористого алюминия с хлористым водородом замедляет не только крекинг, но также и реакцию изомеризации (табл. 25, опыт 3), тогда как в отсутствие бензола крекинг является преобладающей реакцией. В описанном выше механизме не принимаются во внимание наблюдения, показывающие, что в регулируемых условиях насыщенные углеводороды — метилциклопентан, циклогексан или бутаны [7, 23, 35] — не подвергаются изомеризации, несмотря на присутствие следов олефинов. [c.48]

    На рис. 96 показано точнее, чем в табл. 136, влияние добавок бензола на изомеризацию н-пентана с катализатором хлористый алюминий— хлористый водород. Кривые изображают течение изомеризации и степень крекинга, прослеживаемые соответственно по концентрациям изопентана в пентановой фракции и по образованию бутана. Чтобы отчетливее показать закономерности, на оси абсцисс нанесены 1 (у+ 1), где V — содержание бензола в пентане в % объемн. Отсюда видно, что оптимум изомеризации лежит при добавке 0,25—0,5% объемн. бензола (23]. [c.521]

    Этим в основном и объясняется малое содержание бензола в бензине каталитического крекинга. [c.48]

    Положение о том, что лишь один атом металла принимает участие в образовании я-частицы, не означает отсутствия влияния остальных атомов поверхности. Специфичность металла проявляется в сравнительной легкости образования с- и я-частиц, а его кристаллическая упаковка влияет на природу орбиталей, предоставляемых металлом для образования я-связей. По легкости формирования я-комплексов металлы УП1 группы располагаются в ряд Р(1 Р1 > N1 > КЬ [15]. По мнению Го, Руни и Кемболла [15], образованием и разложением промежуточных я-связанных металлорганических комплексов объясняется каталитическая активность переходных металлов во многих реакциях углеводородов гидрирования, дегидрирования, дейтерообмена, изомеризации, конфигурационной изомеризации и крекинга. Приведенные ниже примеры иллюстрируют распространившуюся тенденцию объяснять механизмы самых разнообразных реакций углеводородов с помощью я-комплексов. Учитывая сказанное выше, можно думать, что в случае бензола более энергетически выгодной, а следовательно, и более вероятной является модель XX. Руни [21] изображает гидрирование бензола как процесс [c.53]

    Ароматические углеводороды. Скорость каталитического крекинга ароматических соединений значительно выше, чем скорость термического процесса. Крекинг ароматических углеводородов характеризуется полным отрывом от колец боковых цепей без расщепления самих колец. Например, этил-, изопропил-, н-бутил-и амилбензолы крекируются при 500° С с почти количественным выходом бензола [260]. Простые кольца вполне устойчивы к расще- [c.334]

    Сообщалось [39] о некоторых факторах, имеющих существенное влияние на реакцию изомеризации к-пентана, когда для подавления крекинга применяется бензол. Решающее влияние концентрации бензола отчетливо видно из рис. 2. [c.24]

    Реакции такого типа преобладают в каталитических крекинге и риформинге (см. гл. IX). Каталитическим дегидрированием циклогексана и метилциклогексана получают, соответственно, бензол и толуол [264, 265]. С подходящими нафтеновыми дистиллятами процесс применим и в промышленности. Полициклические нафтеновые углеводороды можно превратить в отвечающие им ароматические углеводороды нагреванием до 450° С в присутствии хромо-алюминиевого катализатора [266]. При дегидрировании сольвент-экстракта керосина образуются дифенил и некоторое количество метилнафталинов [267], что указывает на присутствие в исходном дистилляте соответствующих нафтенов или их алкилпроизводных. [c.102]

    Процесс может быть направлен на получение сырья для нефтехимии увеличенного выхода газа, более богатого непредельными углеводородами, жидких продуктов, из которых могут быть выделены бензол, толуол и нафталин. Тяжелые фракции могут являться сырьем для производства технического углерода. В этом случае режим процесса более жесткий температура в реакторе 600 °С и коксонагрева-теле 670—700 С. Газойли коксования используют на некоторых заводах (иногда после гидроочистки) как компоненты сырья установки каталитического крекинга. [c.31]

    На изомеризацию я-парафинов в присутствии галогенидов алюминия существенно влияет содержание в сырье не только олефинов, но и других углеводородов, особенно ароматических. Введение бензола, толуола и других ароматических углеводородов тормозило крекинг, причем его удавалось совсем подавить, добавляя к изомеризуемому -парафину 0,5% бензола (рис. 1П.1). При увеличении содержания ароматического углеводорода уменьшался йыход изопарафинов. Добавление небольших количеств [до 0,5% (об.)] бензола благоприятно сказывается на изомеризации -парафинов (подавляется крекинг). Если при превращении чистого -пентана 10% сырья расходовалось на крекинг и 20% на изомеризацию, то при использовании (в тех же условиях) -пентана, содержащего 0,5% (об.) бензола, крекинг был полностью подавлен, а в изопентан превратилось уже 50% -пентана. Вместе с тем добавление бензола до содержания выше, 5% становится неблагоприятным (выход-изопентана меньше, чем из.чистого -пентана), хотя крекинг -пентана по-прежнему подавляется. [c.84]

    Согласно патенту фирмы So ony — Va uum , добавка к бензолу крекинг-газойля, содержащего олефиновые углеводороды, существенно улучшает конверсию и выход фенола (достаточно, например, добавить 0,25—5% н-гексана). Температура процесса 315—510 °С, давление более 350 ат. Схема этого процесса показана на рис. 87. [c.242]


    При рассмотрении вопроса о природе активных центров в синтетических фожазитах особое внимание должно быть уделено состоянию центров Хц. Действительно, центры si со всех сторон окружены алюмосилнкатным скелетом и не могут непосредственно взаимодействовать с адсорбированными молекулами. Замена в них ионов Na + на Са не приводит к появлению каталитической активности [3]. Центры щ в натриевых фожазитах могут быть заняты ионами Na+ или свободными от них. Однако эти цеолиты каталитически не активны в карбоний-ионных реакциях и однородны нри адсорбции бензола. Тем не менее центры sm могут иметь значение при адсорбции таких молекул, как HjO и G2H4 [10], а, следовательно, для таких реакций, как дегидратация спиртов. В случае алкилирования бензола, крекинга кумола и других реакций адсорбционные и каталитические свойства синтетических фожазитов определяются прежде всего состоянием центров 5ц. [c.136]

    При иримененни олефипового полимернзата как иромежуточного продукта для нефтехимической промышленности и особепио как исходного материала для алкилирования бензола или фенола необходимо, чтобы сырьем для полимеризации служили олефины близкого состава. В первую очередь для этого применяется пропен-пропановая фракция крекинга и установок стабилизации бензинов. Сополимеризаты из нропена и и-бутена или изобу-тепа мало пригодны как компоненты алкилирования, так как в условиях [c.66]

    При использовании каталитических риформинг-процессов со специальной целью получения ароматических углеводородов лучше каждый раз исходить из очень узких фракций. Условия риформинга, необходимые для перевода углеводородов g в бензол, могут оказаться слишком жесткими для фракции Сд и наоборот. Здесь имеются те же соотношения, что и при крекинге нефтяных фракций для получения бензина. Следовательно, если хотят получить бензол, то следует для риформинга применять в первую очередь фракции, — содержащие циклогексан и метилциклопентан. Для получения толуола применяют фракции, по составу отвечающие приведенной на стр. 103. Дл>[ ксилолов справедливо то же самое. Выход ароматических тем выше, чем выше концентрация соответствующих иафте-нов. [c.105]

    Мэвити с сотрудниками провел подробные исследования действия органических добавок на подавление процессов крекинга при изомеризации [22]. Так, например, оптимальным количеством бензола как ингибитора изомеризации н-пентана является 0,25—0,5% объемн. Для этой цели можно применять также нафтены и функциональные производные ароматических углеводородов, однако они ведут себя часто совершенно различно. Так, например, хлорбензол очень действенный ингибитор, в то время как о-дихлорбензол не влияет на подавление крекинга. [c.519]

    В процессе Шелл для подавления крекинга работают под давлением водорода 4,5—5 ат, тогда как по второму методу к пентану добавляют для этой цели 0,5% объемн. бензола. Катализатор для изомеризации пентана состоит из 2%-ного раствора хлористого алюминия в трех-хлорнстой сурьме. [c.525]

    Если циклопентан и его производные предварительно не изо-меризовать в Св-кольцевую структуру, то при дегидрировании они не образуют ароматических углеводородов [256, 257]. В то время как термодинамические условия при температурах свыше 300° С благоприятны для образования ароматических углеводородов [258], при термической переработке циклогексана ароматики также не образуется. При температуре 550° С получаются очень незначительные количества бензола [259], а при 620° С выход ароматики составляет только 0,4 мольных процента, несмотря на то, что разложению крекингом подвергается до 24% циклогексана [260]. Отчасти алкильные производные циклогек- [c.101]

    Целью других технологических процессов экстракции является получение экстракта с высоким содержанием ароматических соединений. В этих процессах продукт крекинга или риформинга нефти обычно экстрагируется растворителем для получеш1Я бензола, толуола, ксилолов, их смесей или высокомолекулярных ароматических углеводородов, применяемых в качестве растворителей, пластификаторов, компонентов авиационного бензина и исходных продуктов для сульфирования и производства воднорастворимых детергентов. [c.192]

    Следовательно, нафталин также нестабилен относительно составляющих его элементов. Энергия резонанса нафталина равна 75 калориям на моль и может быть соотнесена с энергией бензола на основе относительного числа ароматических связей, т. е. как ii к 6. При умеренных температурах нафталин, по-видимому, более стабилен, чом бензол. Так, при 500° С Тиличеев [45] нашел, что скорость крекинга бензола в 20 раз выше, чем для нафталина, причем для фенантрена и антрацена она больше в 94 и 34800 раз, соответственно. Фоксуэлл [12] установил, что относительные скорости коксообразования при пиролизе нафталина, фенантрена и антрацена в интервале температур от 800 до 900° С равны 1 78 10800. [c.97]

    В последние годы с развитием каталитического крекинга выяснилось., что некоторые катализаторы способствуют конденсации ароматических углеводородов. Так, Матокс и Гроссе [25] нашли, что толуол, пропущенный над алюмохромовым катализатором при 550° С, дает 1% антрацена за проход на 16% разложившегося толуола, и что при этом не получается фенантрен. При термическом крекинге дибензила обычно получается антрацен, однако в контакте с алюмохромовым катализатором были получены не антрацен, а стильбен, толуол и бензол. Тем не менее, большое отложение углерода порядка 14,5% показывает наличие ароматической конденсации обычного типа. [c.99]

    Сообщается об очень интересной конденсации, при которой тетрадекап дает как антрацен, так и фенантрен при крекинге на алюмохромовом катализаторе при 475° С. Несмотря на то, чТо выходы этих продуктов незначительны, совершенно очевидна сложность процессов, приводящих к образованию трициклических структур. Нет сомнения в наличии нескольких реакционных механизмов, так как, например, пара-дибутил-бензол дает в тех же условиях 18% фенантрена, но без антрацена. [c.100]

    Нафтены i,, Сю и выше дают большое количество ароматических углеводородов и, следовательно, бензин с высокими октановыми числами. В ЭТ0Л1 ряду имеет место глубокое дегидрирование, и можно предположить, что некоторая часть ароматических оедннений образуется именно таким путем. Так, дифенил (но не бензол) был найден в продуктах, полученных из дициклогексана нафталин был получен из декалина. Однако циклогексан и метил-циклогексан дают очень мало бензола и толуола. Вообще, при каталитическом крекинге различных индивидуальных нафтенов образуется лишь незначительное количество бензола. [c.334]

    Позднее былц определены скорости реакции термического крекинга тетралина в интервале температур от 425 до 600° С (табл. 9). По этим данным была рассчитана энергия активации, равная 65 калориям на моль, которая аналогична величинам, полученным для парафинов с открытой цепью. Путем сравнения было установлено, что пятичленное кольцо индайа крекируется в два раза медленнее, чем тетралин, что указывает на несколько большую стабильность пятичленного кольца сравнительно с шестичленным. Декалин в аналогичных условиях разлагается еще быстрее, чем тетралин. При температуре 500° С и давлении около 7 ат за IV2 часа разлагалось 95% декалина. Продукт разложения состоял из тетралина, Таблица 9 нафталина, производных бензола и конденсированных продуктов. [c.112]

    Циклогексан, метилциклопентан и низкомолекулярные моно- и диал-килциклогексаны подавляли преимущественно крекинг, а не изомеризацию, как в опытах в периодической, так и в непрерывной (проточной) системах. Применялись концентрации добавок в пределах 5—10%, и полученный эффект соответствовал таковому при концентрациях 0,25—0,5% бензола в сравнимых условиях [39]. При добавлении этих циклопарафинов реакции изомеризации и крекинга были не так чувствительны к небольшим изменениям концентрации добавки, как в опытах с бензолом. Продолжительность жизни катализатора после добавки 5% циклогексана несколько больше, чем при добавке 0,5% бензола [21]. [c.25]

    Для изомеризации бутанов, алкилциклопентанов и алкилциклогекса-нов в присутствии галоидных солей алюминия как катализаторов необходимо применять инициаторы реакции. Изомеризация пентанов и более высокомолекулярных парафинов сопровождается реакцией диспропорционирования, которая может быть ингибитирована в присутствии водорода, бензола или других органических веществ, подавляющих реакцию крекинга. [c.52]

    Ранее отмечалось, что диены с сопряженной системой двойных связей, присутствующие в крекинг-бензинах в весьма малых количествах, весьма чувствительны к автоокислению с образованием смол и что такие диены реагируют с Н2ЗО4 весьма энергично с осмолепием [3, 6, 7]. Диены присутствуют также в сыром бензоле и в легком масле каменноугольной смолы, которые по традиции очищают серной кислотой. [c.353]

    В другом паправлении велись исследования по решению этой задачи ц Англии 129] а именно через реакцию конденсации хлорированного нефтяного парафина с ароматическими углеводородами. Так как парафин пе подвергался крекингу, то можно присоединить более длинные боковые цени, п результате чего получаются масла более высокой вязкости. При пспользовапии в качестве ароматического углеводорода нафталина получаются масла исключительно большой вязкости и с высокой температурой застывания. Если же берут такие ароматические углеводороды, как бензол и толуол, то образуются масла со средними значениями вязкости. [c.512]

    Каталитическим дегидрированием этилбензола в больших масштабах получают стирол. Условия образования бутадиена из н-бутана или и-бутенов применимы также и для получения стирола. В термическом дегидрировании при температурах свыше 600° С выход стирола колеблется от 50 до 55%, но при использовании катализаторов уже при более низких температурах превращение почти полностью заканчивается [270]. В присутствии инертного рзабавителя (водяного пара, двуокиси углерода, метана, бензола) наблюдается более высокий выход стирола и значительно меньший крекинг углеводородов [271]. Так как катализатор стареет, температура реакции постепенно увеличивается с 600 до 660° С. При превращении за проход около 35—40% общий выход стирола составляет около 90% [272]. Подобным же образом можно дегидрировать и другие алкилбензолы. Так, например, изопропилбензол дает а-метилстирол [273], однако при жестких условиях дегидрирования получается от 15 до 30% стирола [274]. [c.102]

    Еще в 1792 г. в Англии предлагали производить из нефти осветительный газ. Дальтон в 1809 г. изучал действие электрических дуг на углеводородные газы, а Фарадей в 1825 г. открыл бензол и исследовал ненасыщенные газы. Большой вклад в исследование термического разложения внес Бертло, который незадолго до 1870 г. опубликовал отчет о проделанном им большом объеме исследований и предложил теоретическое обоснование процесса. В то же самое время Силлимэи получил из нефти горючий газ, появились сообщения о том, что на нефтеперегонном заводе в Нью-Дн ерси проводили крекинг тяжелых нефтепродуктов и при этом получали керосин. [c.295]

    Простейшие ароматические углеводороды устойчивы при низких температурах крекинга и межмолекулярная конденсация с потерей водорода начинается нрп температурах выше 500° С бензол, в частности, превращается в дифенил, аналогичные продукты образуются при удвоении молекул толуола, ксилола и нафталина [59, 60]. Для большинства углеводородов термическая стабильность уменьшается с увеличением размеров молекулы нафталин образует динафтил при 475° С, антрацен при той же температуре разлагается с образованием твердых коксоподобных продуктов, у пндена такой распад протекает уже при 290° С. [c.302]


Смотреть страницы где упоминается термин Бензол крекинг: [c.696]    [c.228]    [c.514]    [c.521]    [c.94]    [c.276]    [c.237]    [c.99]    [c.106]    [c.111]    [c.134]    [c.185]    [c.125]   
Промышленная органическая химия на предприятиях Республики Башкортостан 2000 (2000) -- [ c.14 ]

Промышленная органическая химия на предприятиях Республики Башкортостан 2004 (2004) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Бензол в бензине каталитического крекинга

Бензол из дистиллятов каталитического крекинга

Бензол на цеолитах крекинг

Бензол образование при крекинге

Бензол продукты взаимодействия его с парафиновыми крекинг-фракциями

Бензол термический крекинг

Гептил-бензол, крекинг

Пиролиз Лавровский, Д. В. Макаров. Получение бензола при высокоскоростном контактном крекинге



© 2025 chem21.info Реклама на сайте