Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гель-хроматография сорбенты

    Область применения тонкослойной хроматографии практически безгранична, что объясняется возможностью большого выбора слоев различных сорбентов. Для разделения полярных веществ применяют слои адсорбентов, для гидрофильных — распределительную хроматографию на целлюлозе или силикагеле, для гидрофобных — импрегнированные слои (обращенные фазы). Можно применять также ионообменную или гель-хроматографию в тонком слое. Метод тонкослойной хроматографии в настоящее время применяют в основном для целей качественного анализа. Количественное определение возможно в такой же степени, как и в бумажной хроматографии. При проведении определений можно работать с очень небольшими количествами веществ, разделение проходит быстро и с умеренными затратами. Тонкослойную хроматографию в связи с этим можно применять для предварительных опытов по выбору фаз для разделения больших количеств веществ методом колоночной хроматографии. [c.361]


    Большое значение имеют сорбенты на основе пористого стекла с привитыми углеводами. Они сочетают гидрофильный характер поверхности с высокой механической прочностью и предназначаются для разделения методом гель-хроматографии смесей высокомолекулярных соединений в водных растворах. [c.231]

    Для гель-хроматографии применяют в зависимости от целей гидрофильные и гидрофобные сорбенты. В качестве гидрофильных сорбентов применяют декстрановые гели (сефадексы и моя-селекты), полиакриламидные гели (биогелн), оксиалкилметак-рилатные гели (сфероны) и т. д. Сефадексы получают из декстрана  [c.237]

    Полимеры находят все большее применение в качестве сорбентов, т. е. материалов, поглощающих, или сорбирующих ионы и молекулы различных веществ из разных сред. Это, в частности, разнообразные ионообменные смолы, а также полимерные сорбенты, не содержащие ионогенных групп, применяющиеся в гель-хроматографии. Процессы сорбции играют большую роль при взаимодействии полимерных волокон с различными реагентами и красителями, в процессе газо- и паропроницаемости полимерных материалов и т. д. Поэтому целесообразно рассмотреть особенности полимерных сорбентов, в том числе ионообменных смол, закономерности формирования пористой структуры полимеров и методы ее оценки, механизм сорбции низкомолекулярных жидкостей и паров на полимерах. [c.492]

    Гель-хроматография, гель-проникающая хроматография, гель-фильтрационная хроматография, хроматография на молекулярных ситах — вариант хроматографического анализа, основанный на различной доступности пор сорбента для макромолекул разных размеров. Колонку заполняют измельченным гелем [c.97]

    Эта классификация не требует особых пояснений. Если пористые гранулы геля или сорбента для любого типа хроматографии заполняют стеклянную или металлическую колонку, то говорят о хрома- [c.12]

    Ограничимся рассмотрением эксклюзионной, или гель-хроматографии. Этот процесс можно рассматривать как процесс сепарации раствора, при котором компоненты разделяются (фракционируются) в соответствии с размером молекул. В качестве сорбента, или, как его еще называют, молекулярного сита, используют пористые полимерные шарики. При прохождении молекул через слой сорбента в микропоры шариков проникают молекулы, размер которых меньше размера пор. Молекулы большего размера в поры не проникают. На рис. 6.12 схематично показан процесс сепарации молекул двух сортов, различающихся размерами [4]. [c.134]


Рис. 5.3-19. Удерживание и градуировка в гель-хроматографии. а—удерживание стандартных соединений в диапазоне молекулярной эксклюзии с величнами К от О до 1 и относительными молекулярными массами от 10 до 1(Я. Последний (пятый) пик соответствует соединению, имеющему химические взаимог ействия с сорбентом б — логарифмическая зависимость между молекулярной массой и объемом удерживаг ния (элюирования) стандартных соединений в—определение молекулярной массы на основании хроматограммы неизвестной пробы. Для этого элюирование должно проводиться в тех же условиях, что и градуировка (объем вводимой пробы, скорость потока). Рис. 5.3-19. Удерживание и градуировка в <a href="/info/141010">гель-хроматографии</a>. а—<a href="/info/1262793">удерживание стандартных соединений</a> в <a href="/info/445171">диапазоне молекулярной</a> эксклюзии с величнами К от О до 1 и <a href="/info/6878">относительными молекулярными массами</a> от 10 до 1(Я. Последний (пятый) пик <a href="/info/636083">соответствует соединению</a>, имеющему химические взаимог ействия с сорбентом б — логарифмическая <a href="/info/25969">зависимость между</a> <a href="/info/532">молекулярной массой</a> и объемом удерживаг ния (элюирования) <a href="/info/2776">стандартных соединений</a> в—<a href="/info/4434">определение молекулярной массы</a> на <a href="/info/142789">основании хроматограммы</a> неизвестной пробы. Для этого элюирование должно проводиться в тех же условиях, что и градуировка (объем вводимой пробы, скорость потока).
    Для гель-проникающей хроматографии используют гель-хроматографы, состоящие из набора хроматографических колонок, заполненных соответствующим сорбентом (макропористыми стеклами, стирогелями и пр.), блока подготовки растворителя для элюции, насосов для прокачивания элюента и детектирующей системы, обеспечивающей запись концентрационного профиля хроматографической зоны. Кроме того, гель-хроматограф имеет [c.98]

    Колонки для гель-хроматографии нуклеиновых кислот готовят обычным образом по аналогии с хроматографией низкомолекулярных веществ. Первое время гель-хроматографию на сильно сшитых сорбентах использовали вместо диализа для отделения высокомолекулярных полинуклеотидов от низкомолекулярных веществ с целью обессоливания, очистки [117], [c.80]

    Для разделения простых неорганических ионов существует несколько методов, выбор которых определяется природой вещества, сорбента (ионита) и элюента. Например, в случае большой разницы в размерах разделяемых ионов целесообразно использовать гель-хроматографию или неорганические иониты, используя ситовый эффект. Для ионов с различной плотностью зарядов имеет смысл применять ионообменную или адсорбционную хроматографию. Однако в случаях небольшого различия между ионами прибегают к более сложным приемам, например используют сочетание нескольких хроматографических методов, основанных на различных механизмах протекающих процессов [c.321]

    Правильный выбор сорбента и соответствующей элюирующей системы — это первый и наиболее важный этап решения поставленной задачи. Поэтому необходимо обстоятельно знать свойства всех типов используемых в ТСХ сорбентов. Выбрать оптимальную хроматографическую систему достаточно сложно, поскольку разделение методом ТСХ обычно совершается в результате сочетания различных механизмов, чаще всего адсорбции и распределения между фазами, а также ионного обмена или затрудненной диффузии (гель-хроматография). Однако, еслп условия выбраны правильно, один из механизмов разделения становится преобладающим. Если разделяемые соединения неполярны, следует создать условия, благоприятные для адсорбционной хроматографии (применение сорбента с большой адсорбционной способностью), а для разделения полярных (растворимых в воде) соединений следует использовать принципы, применяемые в жидко-жидкостной хроматографии. Наконец, при работе с ионогенными соединениями следует избрать методику ионообменной хроматографии. Очевидно, что налицо определенная аналогия с колоночной хроматографией. [c.97]

    Происходя из хроматографии на бумаге, хроматография в тонких слоях создала целую эпоху в жидкостной хроматографии. Гидродинамика перемещения жидкости в этом методе чрезвычайно своеобразна, и капиллярные силы в плоском слое волокон или высокодисперсного порошка чаще превалируют над гравитационными при обычной постановке анализа. Хроматография в тонких слоях, так же как и колоночная хроматография, благодаря широким возможностям выбора и подготовки сорбентов, в высшей степени универсальна. В сборнике представлен очерк об эволюции тонкослойной хроматографии, главным образом в области биохимии, биологии и исследования высокомолекулярных веществ. В последнем случае тонкослойный вариант развивает возможности колоночной гель-хроматографии, позволяющей, как известно, фракционировать смесь полимерных молекул в препаративных масштабах. [c.8]

    Этот термин предпочитают использовать вместо термина гель-хроматография , так как значительная часть сорбентов, применяемых в настоящее время, не является гелями. [c.27]

    В качестве сорбентов для ТСХ наиболее часто применяют целлюлозу, кизельгур и силикагель. Некоторые полимерные носители для гель-хроматографии (сефадекс, или биогель Р), доступные в мелкодисперсном виде (>400 меш), могут быть использованы в тонкослойной гель-хроматографии для быстрого фракционирования таких высокомолекулярных соединений, как гликозаминогликаны [407]. Очевидно, что данный метод представляет собой частный случай СЭХ (разд. 7.2.5) и не будет рассматриваться в этом разделе. [c.64]


    В литературе описаны попытки использования сефадексов и биогелей, представляющих собой соответственно сшитый декстран и гранулированный полиакриламидный гель, для разделения компонентов нуклеиновых кислот за счет различного сродства их молекул к сорбенту [32, 33]. Однако в основном гель-хроматографию применяют для фракционирования нуклеиновых кислот и их компонентов в соответствии с размерами молекул этих соединений. Например, на колонке с сефадексом 0-10 нуклеозиды и нуклеотиды отделяются от неорганических солей (выходят со свободным объемом колонки) [34]. Аналогичным образом олигонуклеотиды, содержащие больше 10—15 нуклеотидных остатков, не задерживаются на сефадексе 0-25 или 0-50, а мононуклеотиды проникают в поры геля и поэтому элюируются значительно медленнее [3]. Именно этот метод широко используют для удаления избытка нуклеозидтрифосфатов из смеси биосинтетических олиго- и полинуклеотидов [35]. [c.167]

    Гель-хроматография, как представляется на первый взгляд, должна быть идеальным методом отделения полимеров и определения их характеристик. Однако большинство известных сорбентов, применяемых в гель-хроматографии, для решения зтой задачи не подходят. На поверхности гелей сефадекса имеются вицинальные гидроксильные группы, которые в нейтральной среде легко образуют комплексы с ионами большинства металлов (типичным соединением этого типа является глицерат железа Британской фармакопеи). Поэтому при применении в больших концентрациях эти ионы дают хвосты , а при малых концентрациях полностью адсорбируются. На поверхности пористых стекол и пористого силикагеля (и их производных) обычно располагается значительное число силанольных групп, которые также энергично взаимодействуют с мономерными и полимерными ионами металлов. Тем не менее методом гель-хроматографии удается разделить гидролизуемые полимерные соединения некоторых металлов, например рутения [12], родия (III) i[13], и растворимые ферроцианиды [14—16]. Характер перемещения небольших мономерных ио ов внутри сорбента, применяемого для гель-хроматографии, в значительной степени определяется ионным обменом с остаточными карбоксильными группами (благодаря которым происходит вытеснение ионов) и гидрофобной адсорбцией, особенно сильной на сефадексе LH-20, при использовании которого, кроме того, может наблюдаться эффект высаливания [17]. [c.328]

    В эксклюзионной хроматографии молекулы веществ разделяются по размеру (устаревшее название метода — ситовая, или молекулярная хроматография гель-хроматография) за счет их различной способности проникать в поры неподвижной фазы. При том первыми выходят из колонки наиболее крупные молекулы (с большой молекулярной массой), последними — вещества с малыми размерами молекул, свободно проникающие в поры сорбента. Разделение анализируемых веществ происходит за счет перераспределения молекул между растворителем, находящимся [c.13]

    Фракционирование по размеру разделяемых молекул (гель-хроматография) происходит при перемещении по колонке в потоке элюента смеси веществ разного молекулярного веса при этом внутренний объем пор частиц сорбента доступен лишь молекулам, имеющим размеры, не превышающие диаметр пор. Эти молекулы участвуют в процессе распределения вещества между подвижной и неподвижной фазами системы. В отличие от них молекулы, не проникающие внутрь гранул сорбента, слабо участвуют в процессах распределения и элюируются быстрее малых молекул. [c.197]

    Гель-хроматография —осспля форма жидкостной хроматографии. Она осно-вана на разделении молекул по их различному размеру (рис. 5.3-18). Все молекулы, имеющие размеры выше определенного, исключаются из силикагеля или полимерного сорбента с определенным размером пер (эксклюзиониая хроматография). Молекулы с молекулярной массой ниже эксклюзионного предела сорбента соответствующим образом удерживаются. В отличие от всех методов ЖХ, обсуждавшихся до этого, гель-хроматография не основана ни на каком химическом или физическом взаимодействии с неподвижной фазой. [c.287]

    Реальные хроматографические процессы проходят по смешанным механизмам. Например, современные колонки для гель-хроматографии заполнены отнюдь не инертным сорбентом и разделение в них происходит не только по размеру молекул, но включает и адсорбцию, и распределение. [c.198]

    Наиболее широкое распространение среди носителей для гель-хроматографии белков получили сорбенты, приготовленные на основе декстрана (сефадексы, сефакрилы, молселекты), полиакриламида (биогели Р, акрилексы) и агарозы (сефарозы, биогели А) и др. Набухая в воде, они образуют гели. [c.106]

    Частачно гидролизованные, т.н. клинические, Д. с мол. м. 30-80 тыс. (содержат не менее 95% 1 - 6-связей) используют для приготовления плазмозаменителей противошокового и гемодинамич. действия. Д., сшитые поперечными связями эпихлоргидрином (т.н. сефадексы), и их производные-сорбенты в гель-хроматографии, ионообменной и гидрофобной хроматографии и электрофорезе. [c.20]

    Коэффициент распределения является важной характеристикой для сравнения различных сорбентов. Волее того, на основании зтой величины все фундаментальные теоретические предпосылки, описанные в разд. 5.1, могут быть перенесены на гель-хроматографию. [c.288]

    Жидкостная адсорбционная хроматография основана на различной способности веществ сорбироваться на поверхности сорбента и десорбироваться при пропускании растворителя — элюента. В качестве сорбентов применяют оксид алюминия, кремниевую кислоту и диоксид кремния (силикагели), гранулированные полисахариды (например, декстраны) или другие полимеры, которые в растворителе набухают, образуя гранулированный гель (гель-хроматография). [c.16]

    Начиная с 70-х годов в ГПХ стали использовать жесткие макропористые сорбенты пористые стекла, силикагели и сфе-роны, обладающие хорошо развито11 пористой структурой. При этом термин ГПХ остался, хотя в ряде работ появилось другое название метода, в известном смысле отражающее его сущность и применимое ко всем используемым в нем сорбентам — молекулярно-ситовая хроматография [3]. Однако от этого названия, как и от других ранее бытовавших названий метода, таких как гель-фильтрация [1, 4], гель-хроматография [5, 6], гелевая хроматография [7], эксклюзионная хроматография [8], рекомендовалось отказаться в пользу термина гель-проникающая хроматография, предложенного в основополагающей работе Мура в 1964 г. [2]. Эта рекомендация, первоначально исходившая от авторов, интенсивно работающих в данной области [9]. была принята в качестве стандартного термина во всех международных [c.81]

    Удерживаемые объемы дают информацию о стерических затруднениях алкильных групп в ароматическом ядре. Изучение двухатомных фенолов методом хроматографии позволило Чоу-пеку с сотр. [7] определить эффекты замещения и характер соединяющей связи. Они снова продемонстрировали ту важную роль, которую играла сольватация в гель-хроматографическом анализе полициклических фенольных и сильно замещенных веществ. Полученные результаты были использованы Чоупеком с сотр. [8, 9] для гель-хроматографических определений содержания фенольных антиоксидантов и легких присадок в полимерах. Системы присадок в некоторых промышленных полимерах были проанализированы Ховардом [10] в связи с определением влияния изменения содержания отдельных компонентов на процессы очистки и старения полимеров. Гель-хроматография на органофильных сорбентах также широко используется при изучении распределения молекулярных масс фенольных смол [И—15]. [c.34]

Рис. 38.10. Область применения сорбентов для гель-хроматографии (с указанием молекулярного веса разделяемых веществ) (по данным фирм Pharma ia Рис. 38.10. <a href="/info/58141">Область применения</a> сорбентов для <a href="/info/141010">гель-хроматографии</a> (с указанием <a href="/info/3779">молекулярного веса</a> разделяемых веществ) (по данным фирм Pharma ia
    Такой детектор регистрирует минимальные тепловые эффекты, имеющие место при взаимодействии растворенного вещества с сорбентом. Измерения проводятся в специальной детекторной колонке, расположенной непосредственно после главной рабочей колонки. Однако кажется сомнительным, чтобы этот остроумный принцип оказался приемлемым для гель-хроматографии, поскольку, согласно доминирующим воззрениям относительно механизма происходящих в колонке процессов, вещества с гелем не взаимодействуют (см. гл. П1). Тем не менее при разделении на сефадексе G-10 олигомерных полисахаридов и про-пиленгликолей их удалось надежно определить в элю-ате с помощью детекторной колонки [49] приборы такого типа выпускаются фирмой Bio- al (Mun hen, BDR). [c.67]

    На рис. 9.6 доказана выпускаемая фирмой Phaгma ia камера для нисходящего хроматографирования [2], предназначенная для тонкослойной гель-хроматографии. Для горизонтального элюирования ири различных, но точно устанавливаемых условиях предварительного насыщения слоя сорбента можно использовать К5-жамеры (рис. 9.7). Оптимальные условия разделения в этих камерах можно быстро установить. Другие типы камер, используемые для специальных методов, например проточного (непрерывного) элюирования, градиентного элюирования или круговой хроматографии, описаны в монографиях по ТСХ ([2Э, [c.95]

    Для ТСХ пригодны также биогели Р —гели полиакриламида, выпускаемые фирмой Bio-Rad Labs. (см. гл. 6, разд. 6.2.3). Эта же фирма выпускает неорганический сорбент биоглас с пятью заданными интервалами размеров пор (от 200 до 2500 А), пригодный для гель-хроматографии белков, вирусов, сахаридов и липидных комплексов. [c.109]

    Особым видом хроматографии является гель-хроматография, основанная на различной скорости диффузии молекул и макромолекул компонентов смеси в поры соответствующих сорбентов (набухающих органических пористых полимеров — сефадексов, биогелей и ненабухающих макропористых силикагелей или силохромов). [c.296]

    Аскью с сотр. [3] предложил общий метод определения фос-фороргани 1еских пестицидов в речных водах и сточных водах с помощью газовой, тонкослойной и гель-хроматографии. Из пробы сточных вод объемом 1 л производили экстракцию пестицидов тремя порциями хлороформа (по 50 мл). Экстракты объединяли и обезвоживали, пропуская их через колонку с безводным сульфатом натрия. Элюат переносили в испаритель и упаривали до малого объема. В ряде случаев необходима очистка экстрактов в хлороформе. Если происходит удерживание некоторых пестицидов на угле, эту операцию можно провести на колонке с активированным углем или оксидом алюминия или магния. На стеклянные подложки размерами 20X20 см наносили слой силикагеля G 250 мкм и активировали в течение по крайней мере двух часов при температуре 120 °С. Концентрированные экстракты наносили на слой сорбента и проводили разделение одним из трех элюентов (1) гексан— ацетон (5 4) (2) хлороформ — ацетон (9 1) (3) хлороформ— уксусная кислота (9 1). При использовании элюента (1) значения Rf 40 пестицидов изменяются от О до 0,9. При разделении пестицидов в элюенте (2) лучше, чем в первом случае, разделялись соединения с относительно малыми значениями Rf. Третий элюент использовали для некоторых групп пестицидов, разделяемых элюентом (2). Величины Rf пестицидов при использовании всех трех элюентов представлены в табл. 14.18. [c.491]

    В эксклюзионной хроматографии неподвижной фазой служат гелеобразные неиояные полимеры, избирательно удерживающие такие молекулы, которые способны проникнуть в поры геля. Этот метод разделения веществ иногда называют гель-фильтрацией или хроматографией на молекулярных ситах. Такие термины абсолютно неприемлемы, поскольку создается впечатление, что носитель удерживает преимущественно большие молекулы. Термин гельпроникающая хроматография лучше отражает суть процесса, однако по некоторым причинам его используют только для обозначения хроматографии на гидрофобных полимерных сорбентах в системах органических растворителей. К счастью, все большее распространение получает название гель-хроматография , которое не подчеркивает принцип разделения и поэтому имеет общий характер [24, 26]. [c.20]


Смотреть страницы где упоминается термин Гель-хроматография сорбенты: [c.137]    [c.266]    [c.150]    [c.452]    [c.137]    [c.309]    [c.150]    [c.11]    [c.46]    [c.108]    [c.156]    [c.15]    [c.22]    [c.239]   
Аналитическая химия Том 2 (2004) -- [ c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Гели, как сорбент в ГПХ

Гель-проникающая хроматография сорбенты

Гель-хроматография

Особенности гель-проникающей хроматографии линейных гибкоцепных полимеров на набухающих макропористых сорбентах

Полимеры гель-проникающая хроматография на набухающих сорбентах

Сорбенты

Сорбенты хроматографии



© 2025 chem21.info Реклама на сайте