Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт протонов и транспорт электронов

    Связь между транспортом протонов, транспортом электронов и энергией [c.107]

    В первой реакции окисление иона двухвалентного железа — это потеря электрона. Во втором примере окисление углеродного субстрата можно в равной мере рассматривать как отрыв от него водорода (дегидрирование) или независимое удаление двух протонов (Н+) и электронов (ё). В биохимических процессах, как правило, перенос водорода осуществляется путем раздельного транспорта протонов и электронов протоны вьщеляются в среду и при необходимости поглощаются из нее, электроны обязательно должны быть переданы на соответствующие молекулы. Поэтому [c.93]


    Дыхательная цепь транспорта электронов обеспечивает работу протонных насосов, которые используют свободную энергию потока электронов для перекачивания протонов наружу, против градиента концентрации Н . В результате, как отмечено выше, возникает электрохимический потенциал. Затем выведенные наружу ионы снова устремляются внутрь через специальные каналы или поры для этих ионов в мембране. В дыхательной цепи электроны идут по градиенту концентрации, и во время их перехода через молекулу АТФ выделяется энергия. Именно эта свободная энергия и служит движущей силой для сопряженного синтеза АТФ из АДФ и фосфата. [c.87]

    Согласно хемиосмотической гипотезе, называемой также гипотезой Митчелла (рис. 7.10), молекулы дыхательной цепи располагаются в мембране векторно и различные стадии электронного переноса (от субстрата до кислорода) сопровождаются транспортом протонов наружу, что вызывает падение pH на внешней стороне мембраны по сравнению с внутренней. [c.180]

    Все три гипотезы не являются взаимоисключающими. Так, вторая и третья сформулированы в то время, когда существовали различные точки зрения о главном источнике энергии при синтезе АТР одни считали, что это протонный транспорт, а другие— электронный. И на этот вопрос все еще нет достаточно [c.180]

    П. Митчелл высказал предположение, что система переноса электронов и протонов и переносящая протоны АТФаза возникли независимо друг от друга и, вероятно, неодновременно как разные способы генерации Арн+, необходимого для обеспечения энергией процесса избирательного транспорта питательных веществ в клетку. Последующая встреча обеих систем в клетке положила начало сопряжению процессов транспорта электронов и фосфорилирования в результате обращения работы АТФазы. Это сделало возможным запасание свободной энергии окисления в молекулах АТФ. Близкий состав и аналогичная структура энергопреобразующих мембран, большое сходство механизмов сопряжения у разных групп прокариот и эукариот указывают на то, что возникшая на раннем этапе эволюции система сопряжения электронного транспорта и фосфорилирования была использована всеми организмами без принципиальных изменений. [c.348]

    Хемиосмотическая теория сопряжения окисления и фосфорилирования. Эта гипотеза предложена в 1961 г П. Митчеллом причем значительный вклад в ее доказательство был сделан В. П. Скулачевым с соавторами. Согласно этой теории, фактором, сопрягающим окисление с фосфорилированием, является электрохимический, протонный потенциал АцН , возникающий на внутренней мембране митохондрий в процессе транспорта электронов. При этом предполагается, что мембрана непроницаема для ионов, особенно протонов, их транслокация с внутренней стороны мембраны (из матрикса) на наружную сторону внутренней мембраны митохондрий осуществляется за счет процесса окисления в дыхательной цепи, т. е. транспорта высокоэнергетических электронов. Возникающий электрохимический потенциал АцН+ является аддитивным он складывается из химического потенциала АрН и электрического со знаком (+) на наружной стороне мембраны (Avj/)  [c.203]


    Цитохромоксидаза объединяет в себе свойства нескольких металлопротеинов. выполняющих транспортные или окислительновосстановительные функции для осуществления более сложной комбинации процессов, включающих связывание и восстановление кислорода и транспорт электронов и протонов. Реальные механизмы этих реакций, так же как и многие вопросы относительно структурной организации фермента, в настоящее время неизвестны. [c.618]

    Не все субстраты передают электроны и протоны на НАД, некоторые окисляются ФАД-зависимыми дегидрогеназами, которые переносят протоны и электроны сразу на убихинон, минуя первый комплекс. В этом случае Р/О = 2. В действительности коэффициент фосфорилирования всегда меньше теоретической величины, потому что часть энергии, высвобождающейся при транспорте электронов, расходуется не на синтез, а на перенос веществ через митохондриальную мембрану. [c.176]

    Некоторые из этих компонентов переносят электроны, другие переносят водород. Взаиморасположение переносчиков в мембране таково, что при транспорте электронов от субстрата к кислороду протоны (Н ) связываются на внутренней стороне мембраны, а освобождаются на внешней. Можно представить себе, что электроны в мембране проходят зигзагообразный путь и при этом переносят протоны изнутри наружу. Эта система, транспортирующая электроны и протоны, получила название дыхательной или электрон-транспортной цепи. Иногда ее образно называют протонным насосом , так как главная функция этой системы— перекачивание протонов. [c.235]

    Направленный транспорт электронов и со.здание протонного градиента. [c.389]

    Согласно создавшемуся представлению об активном центре катализатора, углеводород, находящийся в газовой фазе, отдает электрон льюисовскому кислотному центру, при этом на поверхности катализатора образуется карбониевый ион, что стабилизирует кислотный центр. Стремление алюминия вернуться в состояние, характеризующееся координационным числом 6, создает движущую силу десорбции. Однако для перемещения иона водорода, который также образуется в процессе крекинга, необходимо одновременное присутствие и сосуществование на двойном центре кислоты Льюиса и кислоты Бренстеда. Как было установлено, транспорт протонов может происходить и без участия кислоты Бренстеда. Для осуществления такого транспорта необходимы лишь незначительные изменения в структуре у-окиси алюминия. Катализатор содержит значительное количество ионов кислорода, которые могут присоединять и, следовательно, перемещать протоны. Поэтому вполне возможно, что на поверхности катализатора присутствуют как бренстедовские, так и льюисовские кислотные центры. [c.371]

    Как указывалось, существенным моментом рассмотренных схем является раздельное получение кислорода и водорода в фотопроцессе. В этом отношении они являются моделью первичных стадий фотосинтеза. Если бы удалось разобщить транспорт электронов в фотосинтезирующей системе, то можно было бы ограничить фотосинтез только первичными процессами. Задача фотосинтетического получения молекулярного водорода свелась бы к организации фотокаталитического процесса переноса электронов от воды на протоны. Березин и Варфоломеев [71] предлагают несколько вариантов биофотолиза воды. Один из них представлен на рис. I. 8. [c.47]

Фиг. 94. Индуцированный включением света перенос протонов и ионов через мембрану тилакоида, сопряженный с транспортом электронов. Фиг. 94. Индуцированный <a href="/info/705880">включением света</a> <a href="/info/98132">перенос протонов</a> и <a href="/info/1381842">ионов через мембрану</a> тилакоида, сопряженный с транспортом электронов.
    В функционировании биоэнергетических систем важное место принадлежит транспорту протонов. Перенос электронов в энергосопрягающих мембранах митохондрий, хлоропластов и бактерий сопровождается трансмембранным переносом Н+ и образованием градиента электрохимического потенциала этого иона А[ан+5 который включает электрический (мембранный потенциал) и концентрационный (градиент pH) компоненты  [c.162]

    Когда к клеткам добавляют разобщающий агент, например динитрофенол, поглощение кислорода митохондриями значительно возрастает, так как скорость переноса электронов увеличивается. Такое ускорение связано с существованием дыхательного контроля. Полагают, что этот контроль основан на прямом ингибирующем влиянии электрохимического протонного фадиента на гранспорт электронов. Когда в присутствии разобщителя электрохимический градиент исчезает, не контролируемый более транспорт электронов достигает максимальной скорости. Возрастание градиента притормаживает дыхательную цепь, и транспорт электронов замедляется. Более того, если в эксперименте искусственно создать на внутренней мембране необычно высокий электрохимический градиент, то нормальный транспорт электронов прекратится совсем, а на некоторых участках дыхательной цепи можно будет обнаружить обратный поток электронов. Это позволяет предполагать, что дыхательный контроль отражает простой баланс между изменением свободной энергии при перемещении протонов, сопряженного с транспортом электронов, и изменением свободной энергии при самом транспорте электронов другими словами, величина электрохимического градиента влияет как на скорость, гак и на направление переноса электронов, так же как и на направление действия АТР-синтетазы (разд. 1.2.3). [c.457]


    В конечном счете в ходе окислительно-восстановительных превращений переносчиков на внутренней стороне мембраны тилакоида постепенно накапливаются протоны и возникает мембранный протонный потенциал. Градиент pH между внутренней и внешней фазами тилакоида составляет, по данным Ягендорфа, примерно 2,7, а мембранный потенциал 50 мВ. Процесс фосфорилирования сопровождается перераспределением ионов Н+, противоположным тому, которое возникает при транспорте электронов. По Митчелу, для синтеза одной молекулы АТФ из АДФ и неорганического фосфата достаточно перемещения через мембрану двух протонов (см. схему). Предполагается, что при этом за счет энергии мембранного потенциала происходит активация фермент-суб-стратного комплекса АТФ-синтетазы, или, как ее называют в последнее время, протонной АТФ-азы. [c.105]

    В первой реакции окисление иона двухвалентного железа — это потеря электрона. Во втором примере окисление углеродного субстрата можно в равной мере рассматривать как отрыв от него водорода (дегидрирование или независимое удаление двух протонов (Н+) и электронов (ё). В биохимических процессах, как правило, перенос водорода осуществляется путем раздельного транспорта протонов и электронов протоны выделяются в среду и при необходимости поглощаются из нее, электроны обязательно должны быть переданы на со-ответствуюд1 ие молекулы. Поэтому все окислительно-восстановительные превращения определяются по существу перемещениями электронов. В последнем примере имеет место присоединение атома кислорода к молекуле субстрата. Окислительно-восстановительный характер-реакции в этом случае не столь очевиден, как в предыдущих, поскольку не происходит отрыва электрона (водорода) от молекулы метана. В данном случае в результате окисления метана происходит замена-связи С—Н на связь С—ОН, при этом кислород оттягивает электроны от атома углерода, подвергшегося окислению, сам при этом восстанавливаясь. Таким образом, внутри молекулы происходит деление электронной пары между атомами углерода и кислорода, т. е. окислительно-восстановительные перестройки. Реакции, в которых имеется возможность отрыва электронов, могут быть использованы прокариотами для получения энергии. [c.80]

    Все формы направленного движения и транспорта нуждаются в энергии. В большинстве случаев эта энергия используется в форме АТР. Однако для переноса белков в митохондрии требуется еще наличие электрохимического градиента на внз енней митохондриальной мембране. Этот градиент образуется в процессе транспорта электронов по мере того, как протоны откачиваются из матрикса в межмембранное пространство (см разд 7 1 7) Внешняя митохондриальная мембрана свободно проницаема для ионов, поэтоь на ней не поддерживается никакой градиент Электрохимический градиент на внз енней мембране используется как аккумулятор энергии для осуществления большей части синтеза АТР в клетке Кроме того, энергия градиента расходуется для переноса внутрь митохондрии бежов, несущих положительно заряженные митохондриальные сигнальные пептиды. Если добавить ионо-форы, сбрасьюающие митохондриальный мембранный потенциал (см разд 7 2 10), этот перенос блокируется Каким образом электрохимический градиент способствует переносу белков Ответ на этот вопрос пока не получен [c.30]

    Дестабилизирующие эффекты в фермент-субстратном комплексе оказывают влияние на состояние преобразуемых групп субстратов. Однако в ферменте предусмотрены также функциональные группы, которые более тонко воздействуют на преобразуемые группы. Общий кислотно-основной катализ довольно обычен в ферментах, и с его помощью скорость реакции может увеличиваться в 1000 раз. В химотрипсине эту функцию выполняет зарядно-релейная система, которая посредством водородных связей обеспечивает протонный транспорт в нескольких стадиях реакции (рис. 11.1). В других ферментах, например в глутатионредуктазе, белок обладает активными группами (FAD и цистеиновая пара с окислительно-восстановительной активностью) для транспорта электронов через молекулу фермента (рис. 11.4). [c.281]

    Известно, что токоферолы выполняют в организме две главные метаболические функции. Во-первых, они являются наиболее активными и, возможно, главными природными жирорастворимыми антиоксидантами разрушают наиболее реактивные формы кислорода и соответственно предохраняют от окисления полиненасыщенные жирные кислоты. Во-вторых, токоферолы играют специфическую, пока еще не полностью раскрытую роль в обмене селена. Селен, как известно, является интегральной частью глутатионпероксидазы-фермента, обеспечивающего защиту мембран от разрушающего действия пероксидных радикалов. Биологическая роль витамина Е сводится, таким образом, к предотвращению аутоокисления липидов биомембран и возможному снижению потребности в глутатиониероксидазе, необходимой для разрушения образующихся в клетке перекисей. Участие токоферолов в механизме транспорта электронов и протонов, как и в регуляции процесса транскрипции генов, и их роль в метаболизме убихинонов пока недостаточны выяснены. [c.220]

    Биологическая роль. Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД , являющихся в свою очередь простетическими группами ферментов ряда других сложных белков —флавопротеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Различают 2 типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. К ферментам этой группы относятся оксидазы Ь- и О-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза и др. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении. В каталитическом цикле изоаллоксазиновый остаток ФАД или ФМН подвергается обратимому восстановлению с присоединением электронов и атомов водорода к и ФМН и ФАД прочно связываются с белковым компонентом, иногда даже ковалентно, как, например, в молекуле сукцинатдегидрогеназы. [c.224]

    В процессах тканевого дыхания наиболее важную роль играют цитохромы h, С , с, а и (Я,. Цитохром представляет собой терминальный участок дыхательной цепи — цитохромоксидазу, которая осуществляет окисление цитохрома с и образование воды. Элементарный акт представляет собой двухэлектронное восстановление одного атома кислорода, т.е. каждая молекула кислорода одновременно взаимодействует с двумя электрон-транспортными цепями. При транспорте каждой пары электронов во внутримитохондриальном пространстве может накапливаться до б протонов (рис. 9.8). [c.310]

    Эффекгивность окислительного фосфорилирования в митохондриях определяется как отношение величины образовавшегося АТФ к поглощенному кислороду АТФ/О или Р/О (коэффициент фосфорилирования). Экспериментально определяемые значения Р/О, как правило, оказываются меньше 3. Это свидетельствует о том, что процесс дыхания не полностью сопряжен с фосфорилированием. Действительно, окислительное фосфорилирование в отличие от субстратного не является процессом, в котором окисление жестко сопряжено с образованием макроэргов. Степень сопряжения зависит главным образом от целостности митохондриальной мембраны, сберегающей разность потенциалов, создаваемую транспортом электронов. По этой причине соединения, обеспечивающие протонную проводимость (как 2,4-ди-нитрофенол), являются разобщителями. [c.313]

    Биологическое окисление и транспорт электронов по цепи дыхания тесно связаны с окислительным фосфорилированием, являющимся главным источником накопления свободной энергии в клетках в легко испадьзуемой форме — в виде богатых энергией фосфорных соединений, главным образом в АТФ. В окислительном цикле трикарбоновых кислот на каждую молекулу уксусной кислоты, окисленной до двуокиси углерода, образуется 8 протонов и 8 электронов, которые транспортируются по цепи дыхания и восстанавливают молекулярный кислород в воду. Отщепление атомов водорода происходит на следующих этапах цикла трикарбоновых кислот  [c.561]

    Система тилакоидных мембран хлоропласта превраш,а-ет энергию света в форму, которая может быть использована для осушествления химических реакций. Целиком процесс фотосинтеза был схематически представлен на рис. 10.1. В приводимом ниже обсуждении фотосинтеза рассматриваются три стадии. Первая стадия представляет собой световую реакцию — первичный процесс, с помош,ью которого энергия света поглощается светособирающими пигментами и переносится на фотохимические реакционные центры. На второй стадии поглощенная энергия света используется для осуществления транспорта электронов от воды до NADP+. В ходе электронного транспорта устанавливается градиент заряда, или концентрации протонов, через функциональные везикулы мембраны. Третья стадия представляет собой путь, по которому NADPH, образованный электронтранспортной системой, и АТР, генерируемый за счет различий электрохимического потенциала протонного градиента, используются для фиксации СО2 и синтеза углеводов. Хотя в целях упрощения процесс фотосинтеза разбит на три стадии, необходимо помнить, что поглощение света, транспорт электронов и генерация электрохимического градиента в действительности очень тесно сопряжены. [c.333]

    Согласно теории Митчелла, перенос протонов и электронов сквозь мембрану не приводит к большим изменениям рП. Транспорт электронов, т. е. окислительный процесс, прекращается под действием электрического поля, создаваемого избытком отрицательных зарядов на другой стороне мембраны. Перенос электронов активируется вновь при уменьшении этого поля, т. е. мемт бранного потенциала. Этого можно достичь перемещением катионов через мембрану. В результате должен возникнуть градиент рП, так как перенос каждого одновалентного катиона должен со- [c.436]

    В работах лабораторий Либермана п Скулачева расположение дыхательной цепи определялось по ее способности образовывать мембранный потенциал. В среду вводились различные доноры и акцепторы электронов, не проникающие сквозь мембрану. Оказалось, что эти вещества взаимодействуют лишь с цитохромом с в митохондриях. Установлено, что транспорт протонов и (или) электронов по дыхательной цепи действительно происходит. В других экспериментах определена локализация компонентов в мембране митохондрий. На рис. 13.10 показано вероятное расположение цепн. Согласно хемиосмотической гипотезе, любая сопрягающая система должна создавать электрохимический потенциал понов Н ". Действительно, опыты с проникающими синтетическими ионами показали возникновение А1 5 в митохондриях, СМЧ, хлоропластах (см. гл. 14) и мембранах бактерий. В то же время теория Митчелла встречается с трудностями и вызывает возражения. Блюменфельд приводит аргументы, показывающие невозможность построения машины Митчелла в конденсированной фазе. В такой машине АТФ-синтетаза использует разность концентраций протонов в водной фазе по обе стороны мембраны для выполнения внешней работы. Это — энтропийная машина, получающая энергию из термостата в форме кинетической знергип протонов. Нротоны движутся преимущественно по градиенту концентраций и передают свои импульсы подвижным частям машины разность потенциалов А1 5 расходуется на создание [c.437]

    Бактериальное окисление сульфидных минералов — электрохимический процесс. В присутствии нескольких сульфидов создаются гальванические пары, причем микроорганизмы окисляют прежде всего сульфид с меньшим электродным потенциалом. Это обусловливает возможность избирательного окисления отдельных минералов в концентратах. Окисляемое железо (II) поступает в пери-плазматическое пространство клеточной стенки, где электрон акцептируется медьсодержащим белком — рустицианином, а затем переносится по цитохромной цепи через цитоплазматическую мембрану. Возникающий при транспорте электронов и протонов потенциал обеспечивает синтез молекул аденозинтрифосфата (АТФ). [c.151]

Рис. 7.10. Синтез АТР как обратимый протонный насос. Согласно Митче.ч-лу, во время окислительного электронного транспорта протоны проникают через мембрану. Созданный градиент pH и мембранный потенциал способствуют синтезу АТР. И наоборот, градиент pH образуется при гидролизе АТР [12]. (Воспроизводится с разрешения А. Ленинджера.) Рис. 7.10. Синтез АТР как <a href="/info/1565603">обратимый протонный</a> насос. Согласно Митче.ч-лу, во <a href="/info/799054">время окислительного</a> электронного транспорта протоны проникают <a href="/info/152902">через мембрану</a>. <a href="/info/445420">Созданный градиент</a> pH и <a href="/info/4005">мембранный потенциал</a> способствуют синтезу АТР. И наоборот, градиент pH образуется при гидролизе АТР [12]. (Воспроизводится с разрешения А. Ленинджера.)
    А — системы первичного транспорта 1 — перенос электронов по окислительновосстановительной цепи 2 — протонная АТФ-синтаза 3 — бактериородопсин. Б — системы вторичного транспорта 1 — пассивный транспорт нейтральных молекул 2 — активный перенос катионов (унипорт) 3 — симпорт анионов и протонов 4 — симпорт нейтральных молекул и Н 5 — антипорт катионов и протонов (по Кошп 5, УеИкашр, 1980) [c.103]

    Имеющиеся экспериментальные данные подтверждают вьщви-нутый в начале 60-х гг. XX в. английским биохимиком П. Митчеллом хемиосмотический механизм энергетического сопряжения электронного транспорта с фосфорилированием. П.Митчелл обратил внимание на судьбу протонов при электронном транспорте, которые переносятся в этом процессе через мембрану в одном направлении, создавая градиент концентрации по обе стороны мембраны (см. рис. 25). Перенос электронов и протонов обеспечивается определенным сорасположением мембранных переносчиков, а также свойствами самой мембраны, в первую очередь ее непроницаемостью для протонов. [c.365]

    В результате функционирования цитохромоксидазы происходит генерация электрохимического градиента протонов — движущей силы синтеза АТР. Долгое время предполагалось, что фермент осуществляет этот процесс, катализируя перенос электронов. а эквивалентное число протонов, необходимых для образования молекулы воды, поглощается из матрикса. В настоящее время имеется ряд убедительных данных, свидетельствующих о том, что цитохромоксидаза функционирует как истинный протонный насос и в дейстаительности на один транспортируемый электрон переносится два протона, один из которых используется в aj- u-центре, где происходит восстановление кислорода, а второй пересекает мембрану. Предполагается, что основная роль а транспорте протонов принадлежит субъединице 111. [c.617]

    Показано, что обработка цитохромоксидазы дициклогексил-карбодиимидом (D ) приводит к потере протон-транслоцирую-щей активности, а то аремя как транспорт электронов практически не затрагивается. D в данном случае модифицирует главным образом остатки Glu-90 субъединицы III. Этот район полипептида расположен внутри мембраны и структурно подобен D -связывающему участку протеолипида Н -АТФазы. Потеря протон-транслоцирующей активности происходит под действием антител к 111 субъединице. Препараты цитохромоксидазы. из которых избирательно удалена субъединица 111 (например, с помощью хроматографии комплекса на ДЭАЭ-агарозе), не способны к переносу протонов после реконструкции в липосомы транспорт электронов при этом не нарушается. [c.617]

    Трехмерная структура реакционного центра в полном соответствии со спектроскопическими данными дает представление о пути переноса электрона. После поглощения света электрон переносится с возбужденного первичного донора электронов (специальной пары) через бактериохлорофилл б на промежуточный акцептор — бактериофеофитин б и далее на первичный хиионовый акцептор. Хинон восстанавливает вторичный акцептор — слабо связанный хинон. Полностью восстановленный и протонированный вторичный акцептор освобождается из реакционного центра, а на его место поступает хинон из мембранного окружения. Окисленная специальная пара восстанавливается цитохромом. Перенос электронов через фотосин-тетическую мембрану сопровождается транспортом протонов, который сопряжен с синтеюм АТР. [c.636]

    Существует несколько гипотез, объясняющих механизм сопряжения. Одной из них является хемиосмотическая теория. Цепь транспорта электронов функционирует как протонная (Н+) помпа, осуществляя перенос протонов из матрикса через внутреннюю мембрану в межмембранное пространство. Эндоэргический процесс выброса протонов из матрикса возможен за счет экзоэргических окислительно-восстановительных реакций дыхательной цепи. Перенос протонов приводит к возникновению разности концентрации с двух сторон митохондриальной мембраны более высокая концентрация будет снаружи и более низкая - внутри. Митохондрия в результате переходит в энергизованное состояние, так как возникает градиент концентрации Н+ и одновременно разность электрических потенциалов со знаком плюс на наружной поверхности. [c.177]

    Возможная схема. молекулярных превращений, происходящих в активном центре фермента в процессе каталитического акта восстановления кислорода, соответствующая кинетической схеме (30) — (38), представлена на схеме 1. Стадия (31), представляющая собой одноэлектронное восстановление активного центра фермента, возможно, необходима для того, чтобы упрочить комплекс кислорода с активным центром. Стадии (32), (33), (35), (36) отражают стадии иротонирования оснований, входящих в активный центр фермента. Два одинаковых, симметричных основания в механизме катализа оксидазой играют принципиально важную роль. С одной стороны, они в протонированной форме облегчают перенос электронов с донора (электрода) на двухэлектронный акцептор, с другой — ускоряют транспорт электронов и являются донорами двух протонов на стадии образования воды. [c.90]

    Неравновесное распределениё зарядов, т.е. электрохимический градиент, служит движущей силой для процесса регенерации АТР (и других процессов, требующих затраты энергии). Мембрана содержит специальный фермент АТР-синтазу, синтезирующий АТР из ADP и Р . Этот фермент выступает из мембраны с ее внутренней стороны. В процессе синтеза АТР протоны переходят обратно с наружной стороны мембраны на внутреннюю. Синтез АТР за счет энергии транспорта электронов через мембрану называют окислительным фосфорилированием или фосфорилированием в дыхательной цепи. [c.236]

Рис. 7.12. Транспорт протонов при субстратном дыхании. Из бактериальной клетки (А) или из митохондрии (Б) в суспензионную среду выходят протоны. У субмитохондриальных частиц (В) мембраны вывернуты (внутренней стороной наружу), поэтому протоны транспортируются внутрь. Г. Путь переноса протонов и электронов при окислении КАОНд согласно хемиосмотической гипотезе. КСт-клеточная стенка ЯМ-плазматическая мембрана ВМ и ЯМ-внутренняя и наружная мембраны митохондрий р-кофермент О Z-гипотетический переносчик водорода РеЗ-железосерные белки Ь, с, а, Дз-цитохромы. Рис. 7.12. <a href="/info/591202">Транспорт протонов</a> при субстратном дыхании. Из <a href="/info/32980">бактериальной клетки</a> (А) или из митохондрии (Б) в <a href="/info/500689">суспензионную среду</a> выходят протоны. У <a href="/info/103896">субмитохондриальных частиц</a> (В) мембраны вывернуты (внутренней стороной наружу), поэтому протоны транспортируются внутрь. Г. <a href="/info/1898102">Путь переноса протонов</a> и электронов при окислении КАОНд согласно <a href="/info/284640">хемиосмотической гипотезе</a>. КСт-<a href="/info/98958">клеточная стенка</a> ЯМ-<a href="/info/101065">плазматическая мембрана</a> ВМ и ЯМ-внутренняя и <a href="/info/105631">наружная мембраны митохондрий</a> р-кофермент О Z-гипотетический <a href="/info/105316">переносчик водорода</a> РеЗ-<a href="/info/186942">железосерные белки</a> Ь, с, а, Дз-цитохромы.
    Представление об участии специфических белков-переносчиков в транспорте ионов подтверждают данные о действии ряда антибиотиков и синтетических веществ. Речь идет о ионофорах. Это соединения с относительно небольшой молекулярной массой (500-2000), молекулы которых снаружи гидрофобны, а внутри гидрофильны. Обладая гидрофобными свойствами, они диффундируют в липидную мембрану. Из антибиотиков-ионофоров наиболее, 1звестен валиномицин он диффундирует внутрь мембраны и катализирует транспорт (унипорт) ионов К , Сз , КЬ" или КН . Поэтому присутствие таких катионов в суспензионной среде приводит к выравниванию заряда по обе стороны мембраны (как бы короткому замыканию) и тем самым к падению протонного потенциала. Другие ио-нофоры образуют каналы, по которым могут проходить ионы. Существуют также синтетические соединения, повышающие протонную проводимость мембран наиболее известный переносчик протонов - карбонилцианид-и-трифторме-токсифенилгидразон. Он действует как разобщитель -нарушает сопряжение синтеза АТР с транспортом электронов, перенося в клетку протоны в обход АТР-синтазы. Изучение мембранного транспорта привело к важным результатам, которые согласуются с хемиосмотической теорией преобразования энергии и подкрепляют ее. [c.260]

    Локализация фумаратредуктазы в клетке согласуется с представлением об ее роли в транспорте электронов этот фермент связан с мембраной. Процесс восстановления фумарата сопровождается затратой протонов. [c.323]

    Фотосинтетический транспорт электронов у анаэробных фототрофных бактерий во многих отношениях отличается от только что описанного. В аноксигенном фотосинтезе участвует только одна световая реакция она поддерживает циклический транспорт электронов. Электроны, покидающие цикл для восстановления NAD, не являются продуктом разложения воды, Фотосинтез зависит от наличия в среде восстановленных субстратов и не сопровождается выделением Oj. Собственно фотореакция хотя и аналогична первой фотореакции у зеленых растений, однако у некоторых бактерий она приводит, вероятно, лишь к созданию протонного потенциала и тем самым к запасанию энергии (АТР), но не к восстановлению NAD. Таким образом, нециклический перенос электронов (от донора электронов к пиридиннуклеотиду) здесь отсутствует. По-видимому, NADHj образуется в результате какой-то темновой реакции в ходе обратного транспорта электронов, протекающего с затратой энергии. [c.390]

    Эволюция прокариот. Согласно распространенному, хотя и весьма гипотетическому представлению, в восстановительной первичной атмосфере происходило развитие прокариотических организмов (рис. 17.5). Первыми прокариотами, которые могли появиться в водоемах, богатых органическими веществами, были организмы, существовавшие за счет брожения и обладавшие основными функциями анаэробного обмена (фруктозобисфосфатный и пентозофосфатный пути). Если предположить, что в водоемах имелись тогда и сульфаты, то следующим достижением органической эволюции мог быть эффективный транспорт электронов с созданием протонного потенциала как источника энергии для регенерации АТР. На этом этапе эволюции, вероятно, возникли производные тетрапиррола, содержащие железо или никель, а также автотрофный способ ассимиляции углерода (путь ацетил-СоА). Как реликты тех времен могут рассматриваться метанобразующие и ацетогенные бактерии, а также бактерии, восстанавливающие сульфаты до сульфида, которые, за рядом исключений, могут использовать Hj, Oj и некоторые продукты брожения. [c.519]

    ИМИ прием лучше всего можно продемонстрировать на примере сигналов при +3,3 м. д. в спектре восстановленного цитохрома и при +23,4 м. д. в спектре окисленного белка. Предполагается, что оба эти сигнала принадлежат метильной группе метионино-вого лиганда. Причины такого отнесения сигнала в восстановленном состоянии уже были рассмотрены, что же касается окисленного белка, то для него при отнесении указанного сигнала руководствовались следующими соображениями. Интенсивность сигнала соответствует трем эквивалентным протонам, а ширина достаточно велика, чтобы быть обусловленной релаксацией за счет близости атома железа. Кроме того, величина сдвига сигнала также соответствует ядрам, находящимся вблизи железа. Редфилд и Гупта взяли смесь восстановленного и окисленного цитохрома (1 1) и подвергли образец воздействию излучения при частоте, соответствующей сигналу +23,4 м. д., при мощности излучения, достаточной для насыщения сигнала в этом положении. Другими словами, они провели эксперимент по методике двойного резонанса таким образом, что сигнал при +23,4 м. д. исчез. Было замечено, что при этом уменьшился и сигнал при +3,3 м. д. Отсюда было сделано заключение, что электронный обмен между двумя формами белка идет быстрее, чем успевают релаксиро-вать метильные протоны метионина к своему равновесному состоянию в магнитном поле. Другими словами, насыщение резонансного сигнала метильных протонов в окисленном белке передается на резонансный сигнал тех же протонов в восстановленном белке. Эти эксперименты подтверждают, что указанные два сигнала действительно принадлежат одной и той же метильной группе. Следует отметить два обстоятельства. Во-первых, если насыщать сигнал, имеющий химический сдвиг 3,3 м. д., то это никак не влияет на сигнал при 23,4 м. д., поскольку последний очень быстро релаксирует. Во-вторых, два отдельных сигнала могут наблюдаться от смеси окисленного и восстановленного белка только в том случае, когда частота обмена между двумя состояниями окисления меньше, чем разность частот между двумя сигналами. Скорость переноса электрона между восстановленным и окисленным цитохромом с была оценена путем измерения степени уменьшения резонансного сигнала при 3,3 м. д. и времени спинрешеточной релаксации Т для этого сигнала с использованием некоторых теоретических построений [28, 29]. Было показано, что в отсутствие малых ионов транспорт электрона происходит быстрее при pH 10, т. е. в изоэлектрической точке цитохрома с, причем добавление солей при этом pH не влияет на скорость переноса электрона, тогда как уже при небольшом отклонении от изоэлектрической точки скорость обмена зависит от ионной силы [30]. [c.398]

    Хемиосмотическая гипотеза Митчелла связывает образование АТФ из АДФ с возникновением отрицательного градиента pH в хлоропластах но отношению к внешней среде при транспорте электронов под действием света (протонная помпа) [49]. Трансмембранный градиент pH в хлоропластах создает электрохимический потенциал, обеспечивающий фосфорилирование. Ингибиторы фосфорилирования и так называемые разобщители (среди них ионы аммония) могут уменьшить трансмембранный градиент pH из-за повышения проницаемости мембран хлоропластов, а не разрушать промежуточный X. Доводом в пользу хемиосмотической гипотезы является то, что синтез АДФ—>-АТФ возможен и в темноте, без всякого действия света, если в изолированных хлоропластах создать искусственно градиент pH [50]. Для этого их сначала помещают в раствор с низким pH, а затем быстро в раствор с высоким pH. Существует мнение о конкурентном образовании АТФ и трансмембранного протонного градиента из макроэргиче-ского соединения X  [c.34]


Смотреть страницы где упоминается термин Транспорт протонов и транспорт электронов: [c.177]    [c.81]    [c.312]    [c.181]    [c.390]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте