Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвижность в физической адсорбции

    Адсорбция бывает физическая и химическая. При химической адсорбции (хемосорбции) полярные концы молекул, связываясь с поверхностью тела, образуют на ней монослой своего рода химического соединения. Подвижность молекул в результате этого сильно ограничивается. Хемосорбция в отличие от физической адсорбции носит избирательный характер она протекает с большей интенсивностью в местах нарушений кристаллической решетки включениями или незаполненными узлами. [c.60]


    С увеличением температуры физическая адсорбция и хемосорбция в соответствии с принципом подвижного равновесия уменьшаются, так как адсорбция сопровождается выделением тепла. [c.426]

    Для силикатных пород нет точной информации о снижении о под действием воды. Обзор сведений по кварцу содержится в книге [257] и в работе [258], из которых видно, насколько велик разброс литературных данных. Однако можно считать, что свободная энергия негидратированной силоксановой поверхности кварца, обнажающейся при образовании ступеньки, вряд ли успевает сильно снизиться при физической адсорбции воды или при смачивании, а термоактивируемая химическая модификация поверхности с образованием силанольных связей требует большего времени. В то же время известно, что движение дислокаций в кварце может значительно облегчаться под действием воды. По схеме, разработанной Григгсом [259], в результате диффузии воды вдоль дислокаций образуются силанольные мостики =51—ОН. .. НО—51 =, которые легко рвутся в самом слабом месте (по водородной связи). Сопротивление движению дислокаций уменьшается, и поэтому диффузия ОН-групп (или, возможно, ионов Н+ или НзО+) контролирует подвижность дислокаций и, следовательно, скорость деформации. По сути, здесь мы имеем дело с явлением, близким к адсорбционному пластифицированию, только облегчение разрыва межатомных связей происходит в другом координационном окружении — не на поверхности, а в объеме. По-видимому, такой механизм возможен и в случае многих других силикатных минералов (оливин [260] и др.). [c.89]

    При физической адсорбции молекулы при повышении температуры могут приобретать подвижность, характер которой в процессе может меняться. При определенных условиях (повышение температуры и снижение давления до определенного уровня) ад-сорбат удаляется из пор, десорбируется. На практике, для улучшения процесса десорбции, кроме изменения температуры и давления осуществляется подача через адсорбент газообразного ве- [c.198]

    В случае цеолита типа А электропроводность возрастает с гидратацией до тех пор, пока содержание воды не составит приблизительно 5 молекул на каждую элементарную ячейку. Это эквивалентно гидратации 4 подвижных ионов натрия, локализованных в местах Зц и 3,,, вблизи 8-членных кислородных колец, образующих входные окна в а-полости. По-видимому, указанные центры обладают наиболее высокой энергией адсорбции. Комплексы вода — ионы натрия, локализованные в 8-членных кольцах, весьма эффективно блокируют входы в а-полости и препятствуют проникновению туда других молекул. Последнее обстоятельство подтверждают результаты определения физической адсорбции, показывающие, что в присутствии даже следов воды адсорбция газов типа кислорода не протекает. [c.411]


    Поскольку описанные ХНФ содержат несшитый полимер, который удерживается на силикагеле только вследствие физической адсорбции, то по причине растворимости на подвижную фазу накладываются некоторые ограничения. Так, например, следует избегать применения ароматических углеводородов, хлороформа и тетрагидрофурана, которые растворяют полимер. В настоящее время предпочтительной подвижной фазой является метанол [51] и наблюдается общая тенденция к увеличению а с возрастанием полярности растворителя, но время удерживания во многих случаях при этом становится неприемлемо большим. [c.127]

    В зависимости от механизма процесса сорбции жидкостную хроматографию классифицируют на молекулярно-адсорбционную (реализуется физическая адсорбция), ионообменную (ионообменная адсорбция), распределительную (в основе — 1>азличная растворимость разделяемых компонентов в жидкостях подвижной и неподвижной фазы), осадочную (осадитель в неподвижной фазе с разделенными компонентами образует соединения с различной растворимостью в подвижной фазе), гель-хроматографию (различная проницаемость молекул раз-.теляемых веществ в неподвижную фазу геля обусловлена размерами молекул). [c.213]

    Следует отметить, что в отличие от хемосорбционного взаимодействия, физическая адсорбция инициаторов не приводит к снижению скорости распада инициатора- она остается такой же или даже возрастает. В ряде случаев, в зависимости от химической природы поверхности при полимеризации с участием пероксидных и азосоединений, добавка высокодисперсных кремнеземов оказывает ускоряющее действие на свободнорадикальную полимеризацию виниловых мономеров. Причиной ускорения полимеризации может быть также активация молекул мономеров в результате комплексообразования их функциональных групп с ОН-группами, содержащимися на поверхности многих минеральных наполнителей [355, 356]. Другим фактором является ориентация молекул мономеров на поверхности и стабилизации макрорадикалов [348, 354]. Это приводит к затруднению реакций обрыва цепи из-за снижения подвижности в адсорбционном слое. Поскольку влияние наполнителя связано с воздействием его поверхности, особо важную роль играет его дисперсность. [c.139]

    Характерной особенностью физической адсорбции является падение теплот адсорбции с увеличением степени заполнения поверхности твердых тел, что, по-видимому, связано с наличием латерального взаимодействия, обусловленного неоднородностью поверхности. На неоднородной поверхности вначале заполняются наиболее активные центры, так как, с одной стороны, адсорбция на них протекает, вероятно, быстрее, а с другой, если вначале возникает даже случайное заполнение в подвижном слое, впоследствии происходит распространение слоя к наиболее активным центрам. Таким образом, с ростом заполнения в адсорбционный процесс вовлекаются менее активные центры, в результате чего теплота адсорбции непрерывно падает [19—21]. В случае кристаллических тел активными центрами могут быть вершины, ребра и края кристаллов, дефекты их решетки, норы, обладающие гораздо более высокой адсорбционной поверхностью, чем гладкая поверхность. [c.21]

    В нашем обзоре мы остановимся на использовании ИК-спектроскопии для выяснения природы центров физической адсорбции молекул. Мы оставляем в стороне вопросы применения этого метода к решению ряда других важных для физической адсорбции задач, таких, в частности, как исследование структуры кристаллической решетки адсорбентов, изучение свойств модифицированных поверхностей, выяснение ориентации и вращательной подвижности адсорбированных молекул (см. обзоры [2—5]). [c.116]

    Примеры, рассмотренные выше, показывают, что знание энтропии адсорбции, а следовательно, и энтропии адсорбированного вещества, дает указания на то, в какой мере молекулы способны двигаться поступательно на поверхности. Физическая адсорбция, которая, вообще говоря, ведет к подвижной адсорбции, в некоторых условиях может дать локализованную адсорбцию. Чем меньше теплота адсорбции по сравнению с теплотой испарения, тем больше вероятности встретиться с полной свободой двухмерного поступательного движения. Чем ниже температура, при [c.273]

    Адсорбция — процесс поглощения одного или нескольких компонентов подвижной фазы (газообразной или жидкой) твердым поглотителем — адсорбентом. Способность твердых тел поглощать вещества из подвижной фазы объясняется особыми свойствами молекул поверхности твердого тела. Их силовые поля в противоположность силовым полям молекул, расположенных в объеме твердого тела в окружении других молекул, не уравновешены, в результате чего возникает сила, направленная к поверхности твердого тела. Под действием этой силы и происходит притяжение молекул из подвижной фазы. В зависимости от природы сил, действующих на поверхности твердого тела, различают физическую, активированную и химическую адсорбцию. Последнюю обычно называют хемосорбцией. Под физической понимают адсорбцию, происходящую под действием сил взаимного притяжения молекул— вандерваальсовских сил. Они не обладают специфическим действием, т. е. химические особенности поглощаемого вещества и адсорбента не имеют значения и вызванное этими силами взаимодействие не приводит к образованию каких-либо химических соединений. Действие вандерваальсовских сил проявляется на расстояниях, значительно превышающих размеры адсорбируемых молекул. Поэтому при физической адсорбции на поверхности адсорбента обычно удерживается несколько слоев молекул поглощаемого вещества. [c.502]


    Рассмотренный выше аргумент, вероятно, справедлив для подавляющего большинства адсорбционных процессов. Вполне возможно, что он всегда имеет сипу в случае физической адсорбции, когда с помощью уравнений, выведенных из статистической механики, может быть показано [47], что даже при чрезвычайно высокой подвижности адсорбированных молекул, энтропия адсорбированных молекул всегда должна быть меньше энтропии молекул газовой фазы. Поэтому не удивительно, что в литературе ранее никогда не появлялось сообщений об эндотермической адсорбции. [c.33]

    Концентрация диффундирующих атомов определяется разностью между теплотой атомизации металла АЯм и энергией взаимодействия атом—носитель АЯц. Если ДЯн соответствует энергии физической адсорбции, концентрация атомов при обычных температурах спекания незначительна. Она становится существенной, только если АЯд составляет хотя бы половину АЯм. В условиях восстановительной среды это маловероятно, по крайней мере для чистых окисных носителей. В условиях окислительной среды АЯн увеличивается, и для благородных металлов преобладающими становятся подвижные молекулы окислов. Процесс переноса между частицами по поверхности или через газовую фазу при этом можно описать количественно. В последнем случае также справедливо уравнение (5), но с г = 2. [c.287]

    Таким образом, суммарный эффект, воспринимаемый как поверхностная диффузия адсорбированных частиц, может на самом деле быть обусловлен переносом их благодаря равновесию с газовой фазой. Вследствие высоких значений энергии активации поверхностной диффузии и прочности адсорбционной связи при химической адсорбции, поверхностная подвижность при этом, как правило, менее вероятна, чем при физической адсорбции. Вероятность поверхностной подвижности увеличивается с повышением температуры. Возможны и эпизодические переходы частиц с одного места поверхности на другое если вероятность такого поступательного движения адсорбированных частиц будет значительно меньше вероятности колебательного и вращательного движе- ний, то, несмотря на наличие этих переходов, они могут практически не сказываться на величинах статистических сумм и энтропии адсорбции. [c.51]

    Орр измерил изменения теплот адсорбции аргона, азота и кислорода на кристаллических галогенидах щелочных металлов. Расчеты, проведенные на основе полученных им значений Д(3 при 6 = 0,5, показывают уменьшение энтропии примерно на 16 энтр. ед., что точно соответствует значениям, предсказываемым для двумерного газа. Большие изменения энтропии, связанные с сильной адсорбцией на фиксированных центрах, отмечены при хемосорбции азота на железе и воды на окиси цинка, а также при низкотемпературной физической адсорбции водорода на стекле и на шабазите. Если водород адсорбируется на металлах, то при низких температурах адсорбированные атомы неподвижны, но подвижность возрастает как с увеличением степени заполнения поверхности, так и с повышением температуры. Неоднородность центров поверхности можно обнаружить даже при низкотемпературной физической адсорбции благородных газов на металлах. Так, было установлено, что при 77—90° К теплоты адсорбции ксенона и криптона на никеле уменьшаются с 5,4 до 4,5 ккал-моль- для криптона и с 4,75 до 4,60 ккал-моль для ксенона. Эти расчеты были проведены по уравнению Клаузиуса —Клайперона [c.103]

    Вследствие потери вращательной подвижности в растворе частичное разрешение тонкой вращательной структуры полосы поглощения при 3094 см отсутствует при записи спектра в растворе четыреххлористого углерода. Контур спектра и частоты полос поглощения физически адсорбированного бутена-1 аналогичны спектру его раствора. Это показывает, что в этом частном случае имелось очень малое дополнительное возмущение за счет физической адсорбции, сравнимое с тем, которым сопровождается растворение молекул в неполярном растворителе. [c.23]

    Энзимы. Иммобилизованные энзимы получают нанесением на твердый полимер, после окончания реакции он полностью регенерируется. Иммобилизованные энзимы обладают всеми достоинствами, присущими фиксированным на носителе катализаторам. Для связывания энзима с носителем используют различные способы [49, 50] ограничение подвижности молекулы энзима ( матричная ловушка ) сшивание полимера, например полиакриламида, проводят в присутствии энзима, молекулы которого больше пор матрицы, при этом энзим фиксируется физически адсорбция энзима на инертном носителе или ионообменнике капсулирование энзимов с помощью мембран, проницаемых только для малых молекул ковалентное связывание энзима с полимером-носителем, содержащим функциональные группы. [c.84]

    Прежде всего вполне вероятно, что при адсорбции неоднородности и дефекты поверхности обратимо перераспределяются. Как отмечается в гл. V, разд. V-4B, присутствие адсорбированных молекул должно приводить к изменению энергии центров адсорбции (рис. V-8). При температуре выше некоторого критического для поверхностной подвижности значения распределение центров адсорбции зависит от степени заполнения поверхности адсорбатом. Кроме того, несколько первых слоев кристаллической поверхности твердого тела имеют искаженную структуру (гл. V, разд. V-7). В присутствии адсорбата степень нарушения структуры поверхностного слоя, конечно, должна меняться, причем этот процесс не обязательно сопровождается массовым переносом атомов твердого тела. Имеется ряд данных, которые можно непосредственно связывать с изменением структуры поверхностного слоя. Так, Лэндер и Моррисон, исследуя дифракцию медленных электронов на поверхности германия, пришли к выводу, что ири адсорбции иода имеет место значительная перестройка поверхности. Применив метод автоэлектронной микроскопии, Эрлих и др. [66] обнаружили, что структуры поверхности вольфрама при адсорбции и десорбции азота меняются. Изменения адсорбента при хемосорбции подробно рассмотрены в обзоре [67]. Получены также некоторые данные, свидетельствующие о структурной перестройке поверхностей молекулярных кристаллов при физической адсорбции. При адсорбции н-гексана на льду такие изменения наблюдаются при температурах выше —35 °С [69]. [c.431]

    В развитии катализа некоторые концепции выступают как вехи на пути к пониманию. Я полагаю, что мы можем считать открытие двух типов адсорбции, физической и химической, одним из открытий фундаментальной важности. Развитие концепции физической адсорбции нашло практическое приложение прямом измерении удельных поверхностей изменяется концепция поверхностной фазы с сопутствующими ей критическими константами и поверхностной подвижностью более детально рассматривается явление пористости, переход от монослоев [c.19]

    Тбрмодияам Ическая теория, развитая для физической адсорбции (гл. XIV, разд. Х1У-12), конечно, прим-енима к хемосорбции. Как и в физической адсорбции, в хемосорбции термодинамичедкие уравнения в основн.о м служат для расчета теплот адсорбции, т. е. для нахождения 8 из данных, полученных при различных температурах. Найденные таким способом значения qst должны совпадать с калориметрическими дифференциальными теплотами адсорбции, отличаясь от последних не больше чем на ЯТ, вероятно, даже для неоднородных поверхностей. Правда, при исследовании хемосорбции всегда существует опасность несоответствия экспериментальных данных адсорбционному равновесию. Рассматриваемый в разд. ХУ-5 критерий Бика для поверхностной подвижности применим для предельной ситуации, когда только часть поверхности находится в равновесии с газовой фазой. Напомним, что в таких случаях величины не имеют ясного физического смысла. [c.515]

    Внезапное повышение ПП этилена после линейной области может быть связано с появлением подвижности. Для подтверждения этого предположения были проведены измерения при более высоких температурах, при которых подвижность адсорбированного этилена больше. При —135° С начальный наклон кривой изменения ПП на серебре много больше, чем при — 183° С, и обнаруживаются две линейные области, перед тем как равновесное давление не увеличивается настолько, что точное измерение адсорбции становится невозможным. Начальный дипольный момент равен при —135° С 1,9 дебая, а усредненный — 0,87 дебая при таких же допуш ениях, как указано выше площадь молекулы ксенона эквивалентна четырем атомам серебра, а поверхность представляет собой грань (100)]. Хотя эти допущения, возможно, и не оправдываются, ясно, что дипольный момент очень велик и намного больше, чем ожидалось на основе предположения о физической адсорбции, исходя из поляризуемости этилена (4,26-10 см ) по сравнению с соответствующей величиной для этана (4,53-10 см ). [c.109]

    Обмен ионов характерен также для высокомолекулярных полиэлектролитов и в первую очередь для ионообменных смол, представляющих собой сплошную пространственную сетку (каркас) полимера, в узлах которой равномерно закреплены ионы одного знака (аналогичные ионам внутренней обкладки) подвижные противоионы находятся в растворе внутри сетки и являются обменными. Сетка полимера, заполненная раствором, рассматривается в настоящее время как одна гомогенная фаза поэтому представления о границе раздела фаз и адсорбции в этих системах теряют физический смысл. Тем не менее законы ионного обмена являются общими для таких полиэлектролитов и для типичных гетерогенных адсорбентов. Поэтому все поглотители, для которых характерен процесс эквивалентного обмена подвижных ионов, в то время, как ионы другого знака закреплены в структуре, носят общее название ионитов. [c.124]

    При хемосорбции адсорбированные молекулы не могут перемещаться по поверхности адсорбента, их положение фиксировано и такая адсорбция называется локализованной. Физическая адсорбция может быть как локализованной, так и не локализованной. Обычно нри повышении температуры молекулы приобретают подвижность и характер процесса изменяется локализованная адсорбция переходит в пелокализованную. [c.29]

    Процесс физической адсорбции, поскольку он заключается а ко[ цептрировании молекул адсорбата, сопровождается выделепи-ем энергии, хотя и незначительным. Скорость процесса адсорбции пропорциональна концентрации адсорбата в фазе, из которой происходит поглощение. По мере лечения адсорбции молекулы адсорбата накапливаются на поверхности адсорбента и тем самым создаются условия для протекания обратного процесса — отрына молекул от поверхности адсорбента, который называется десорбцией и сопровождается поглощением энергии. Когда скорость десорбции становится равной скорости адсорбции, устанавливается подвижное равновесие, которое характеризуется при данной температуре соотношением величины адсорбции и концентрации адсорбата. Адсорбционное равновесие может быть сдвинуто посредством изменения концентрации адсорбата и температуры. Очевидно, что процессу адсорбции благоприятствует понижение температуры. [c.106]

    Гетерогенную систему можно сконструировать таким образом, что при принудительном перемещении жидкого раствора или газа (подвижной фазы) относительно неподвижной твердой фазы некоторые компоненты будут обратимо задерживаться твердой фазой, например, путем физической адсорбции. В результате этого часть времени они не будут перемещаться вместе с подвижной фазой, т. е. средняя скорость их перемещения относительно неподвижной фазы будет меньп1е, чем для основной массы подвижной фазы. Естественно, что при перемещении в такой системе слоя (зоны) раствора, содержащего смесь компонентов, вещества, имеющие разные средние скорости перемещения будут разделяться, образуя отдельные зоны. Такой способ разделения веществ получил название хроматографии .  [c.337]

    Дисперсионный эффект был введен в вычисление теплот адсорбции Лондоном[ ], который возражал против объяснения ван-дер-ваальсовой адсорбции притяжением между постоянными диполями молекул газов и электрическими зарядами на поверхности на том основании, что такая картина сделала бы необходимой перемену знака силы взаимодействия каждый раз, как только молекула передвинулась бы от одной точки поверхности к соседней. Это должно было бы значительно уменьшить подвижность молекул вдоль поверхности в противоречие общепринятому взгляду, что при физической адсорбции молекулы обладают свободной подвижностью по поверхности. Доказательство свободного движения было дано при обсуждении потенциальной теории в гл. V, а именно — было указано, что уравнению состояния газа подчиняется также и адсорбционная фаза. Другое доказательство было предложено Фольмером и Ади-кари [2 ], которые экспериментально доказали подвижность адсорбированных молекул, как это будет показано в гл. ХП1. Эти факты указывают на важность дисперсионных сил в адсорбции, так как эти силы всегда являются силами притяжения и не меняют своего знака с перемещением молекулы по поверхности. [c.279]

    В классической ЖХ работают с жидкостями, которые удерживаются на носителе за счет физической адсорбции. Типичным носителем является силикагель с площадью поверхности 10-500 м /г или оксид алюминия с площадью поверхности 60-200м /г. Неподвижными фазами служат полярные жидкости, такие, как вода и триэтиленгликоль. Подвижная фаза — неполярная, как, например, гексан или диизопропиловый эфир. [c.274]

    Как для физической адсорбции, так и для хемосорбции можно различать две крайние модели состояния вещества, зависящие от того, будет ли адсорбированное вещество очень ограничено в своих движениях на поверхности или оно будет полностью подвижным. Согласно представлениям о неподвижной адсорбции, т. е. адсорбции на определенных центрах или локализованной адсорбции, — все эти три термина являются синонимами, — адсорбированные молекулы закреплены на определенных адсорбционных центрах поверхности. В этой модели число молекул, которые могут быть адсорбированы в полностью завершенном монослое, определяется числом центров на поверхности, и прежде всего структурой поверхности твердого тела. Согласно представлениям о подвижной адсорбции (или нелокализован-ной адсорбции), адсорбированное вещество ведет себя как двумерный газ, свободно перемещающийся по поверхности. В этой модели число молекул, которые могут быть адсорбированы в монослое, определяется размерами самих адсорбированных молекул. На практике поведение любых адсорбированных веществ нельзя отнести ни к подвижной, ни к неподвижной адсорбции, оно соответствует какому-то промежуточному случаю. Если энергетические барьеры между адсорбционными центрами очень низки, а энергия теплового движения молекул велика, то будет наблюдаться сильная тенденция перехода к подвижной адсорбции (ср. разд. 2.4.3). Если же энергия активации для движения вдоль поверхности Е- в уравнении (106) гл. 2) значительно больше энергии теплового движения (Ё > QltT), то система по своим свойствам будет приближаться к модели неподвижной адсорбции. [c.109]

    Электризация может быть в результате контакта твердое тело — твердое тело (вне или внутри электрического поля) вследствие поляризации присутствующих в молекулах подвижных диполей при наличии внешнего электрического поля (данный эффект также может быть уничтожен за счет адсорбции ионов) в ]эезультате проводимости (при движении частицы через проводящую среду она ведет себя как маленький конденсатор и принимает потенциал, близкий к потенциалу растворителя). Влияние элекгропроводности слабее других физических процессов зарядки, так как электропроводность порошков обычно мала (наибольшее вл1[яние электропроводности сказывается на разряде частиц) вследствие адсорбции ионов (имеет наибольшее значение для зарядки частиц). [c.112]

    Казалос ) бы возможным предположить, что при хемосорбции адсорбированные атомы или молекулы занимают фиксированные положения иа поверхности, в то время как физически адсорбированные молекулы обладают некоторой свободо1 [ передвижения по поверхности. Однако, как будет видно из дальнейшего, в обоих случаях может иметь место кс к подвижная адсорбция, так и адсорбция на определенных адсорбционных участках. [c.21]

    Важной стороной экспериментальных исследований в области катализа в последние два десятилетия является измерение теплоты адсорбции, которое производится с целью помочь выяснению смысла результатов адсорбщюнных измерений. Количество теплоты, выделяющейся при адсорбции, обычно показывает, является ли связь с поверхностью физической или химической. В первом случае теплота адсорбции такая же, как теплота испарения адсорбированного вещества, или превышает ее в 2—3 раза, тогда как во втором случае (при хемосорбции) выделяемая энергия значительно больше, что указывает на избирательность действия адсорбента. Исследование изменения теплоты адсорбции по мере покрытия поверхности позволяет узнать характер неоднородности поверхности и взаимодействия между адсорбированными молекулами. Обзор этой области можно найти в книгах Адама [1] и Брунауэра [2]. Наши знания об энтропии адсорбции продвинулись в гораздо меньшей степени число проведенных определений и теоретических исследований еще сравнительно невелико. Главная задача подобных исследований заключается б том, чтобы установить, подвижно ли адсорбированное вещество на новерхности или нет. Работа Баррера [3] показывает, что вещества, адсорбированные на цеолитах, неопособны к поступательному движению, а Форстер [4], применив способ расчета Баррера, нашел, что то же самое справедливо для многих веществ, адсорбированных на окиси железа и на силикагелях. С другой стороны, Дамкелер и Эдзе [5] находят, что окись углерода, адсорбированная на окнсп меди, подвижна при 650° К. Эти заключения противоречат ожиданиям, так как можно было бы думать, что свобода молекул будет больше при физической адсорбции, как в опытах Баррера и Фостера, чем при хемосорбции. Хилл [6] при помощи статистических расчетов показал, что следует ожидать свободы поступательного движения в большинстве случаев вандерваальсовой адсорбции в более поздней работе [7] он нашел, каким образом константы в уравнении БЭТ для многослойной адсорбции зависят от способности двухатомной молекулы вра- [c.256]

    Различают физическую и химическую адсорбцию или хемосорб-цию. При хемосорбции между адсорбатом и частицами адсорбента на поверхности протекает химическая реакция с образованием нового соединения. При физической адсорбции адсорбат стремится, не меняя своей химической природы, самопроизвольно занять всю поверхность адсорбента. Препятствует этому процесс, противоположный адсорбции, — десорбция, вызванная, как ж диффузия, стремлением к равномерному распределению вещества вследствие теплового движения. Поэтому физическая адсорбция является обратимым процессом (см. гл. IV) в том смысле, что она протекает как в прямом, так и в обратном направлении. В результате устанавливается адсорбционное равновесие, при котором число адсорбирующихся и десорбирующихся в единицу времени частиц одинаково. Таким образом, адсорбционное равновесие является динамическим, или подвижным, равновесием. Важнейшей характеристикой адсорбционного равновесия является изотерма адсорбции, которая дает зависимость количества адсорбированного вещества при постоянной телгпературе от равновесного давления или концентрации адсорбата. Количество адсорбированного вещества выражают в граммах на 1 см поверхности или, если площадь поверхности неизвестна, в граммах на 1 г или 1 см адсорбента. Наиболее типичная изотерма адсорбции приведена на рис. 8 (изотерма I). При высоких давлениях (концентрациях) наступает насыщение д лри котором вся поверхность адсорбента занята адсорбируемым веществом. Для описания иа<>-терм Фрейндлихом было предложено эмпирическое уравнение. Для адсорбции газов  [c.56]

    Мы можем прийти к заключению, что физическая адсорбция при низких температурах и давлениях является ленг-мюровской, т. е. что она происходит на фиксированных центрах по мере повышения температуры адсорбированный газ приобретает подвижность в двух измерениях. При увеличении давления выше значений, соответствующих пределам образования монослоя, адсорбция идет с образованием толстых пленок, обладающих в случае полярных систем вертикальной ориентацией молекул плотность этих пленок становится равной плотности жидкости. При этом адгезионные силы оказываются анизотропными. [c.36]

    Образование слоя хемосорбционного комплекса Л1е(0Н)адс снижает энергию поверхности, и последующий процесс адсорбции воды протекает по ранее рассмотренному механизму конденсации (для полимолекулярной адсорбции). Однако свойства воды в таком физически сорбированном слое вследствие действия поверхностных сил отличаются от свойств объемной воды1 Структурирование воды в тонких стенках, по-видимому, влияет на концентрацию и подвижность гидратированных ионов, образующихся по реакции Н20ч=ьН+адс-Ь -ЬОН-адс. Учитывая, кроме того, чрезвычайно малый объем физически адсорбированной воды ( 10 моле- ул/см2), нет оснований ожидать заметных скоростей реакций с участием гидратированных ионов. Действительно, если даже допустить, что ионное произведение В0ДЫ1 в адсорбированном слое такое же, как и в ее объеме (10 ), то количество ионных пар в адсорбированной фазе при п= 15-т-20 статистических монослоев составляет около 10 на 1 см . Эта величина еще меньше в области отрицательных температур, где ионное произведение воды (льда) быстро уменьшается. [c.58]

    Увеличение адгезионной прочности, согласно адсорбционной теории, достигается изменением химической природы полимера (накоплением полярных групп, уменьшением молекулярной массы, повышением подвижности цепей) и увеличением полярности подложки, например, посредством окисления, гидро-филизации и т. д. Достаточно высокая адгезионная прочность многих полярных пленкообразователей (эпоксидных, алкидных, фенолоальдегидных, шеллака, поливинилацетата, ацеталей поливинилового спирта и др.) является в первую очередь результатом проявления молекулярных сил. Физическая адсорбция на поверхности металлов характерна для большинства пленко- [c.85]

    По мнению Корала и др. [95], процесс адсорбции не должен быть эндотермическим в случае физической адсорбции простых молекул на чистых поверхностях, так как в этом случае изменение энтропии адсорбции должно быть отрицательным, а необходимая энтальпия также должна быть отрицательной (вследствие уменьшения свободной энергии адсорбции). Однако в случае полимеров следует рассматривать систему в целом. Адсорбция полимерной молекулы на нескольких участках требует, чтобы несколько молекул растворителя переходило с поверхности в ра-. створ. Поступательная энтропия молекулы полимера наряду с вращательной и колебательной энтропией теряется при адсорбции молекулы вследствие частичного ограничения ее сегментальной подвижности. Вследствие этого десорбирующиеся молекулы растворителя увеличивают свою поступательную энтропию, которая в сумме намного больше, чем энтропия молекул полимера. Конечным результатом является общий выигрыш в энтропии в системе при адсорбции полимерных молекул, вытесняющих молекулы растворителя, даже если процесс является эндотермическим. [c.161]

    Применение для описания распределения концентрации вблизи одиночных поверхностей и в тонких порах уравнений (Х.13) и (Х.29) оправдано тем, что расчеты капиллярного осмоса включают лишь подвижную часть адсорбционного слоя. Для этой (диффузной) части, находящейся в поле дальнодействующих поверхностных сил, теория дисперсионных сил может быть применена в достаточной мере корректно. Как известно, на адсорбцию первого слоя молекул заметным образом влияют также и короткодействующие силы, свя-ванные с перекрытием электронных оболочек и не включенные в 1акроскопическую теорию дисперсионных сил. Расчеты течения жидкости обычно предполагают неподвижность первого слоя молекул, что составляет физическую основу известного в гидродинамике граничного условия — условия прилипания. Исключение составляет лишь случай лиофобных поверхностей, когда становится возможным проскальзывание [19—23]. В тонких порах (шириной менее [c.298]

    Эффективность работы адсорбционной установки в первую очередь зависит от соответствия способа организации процесса физикохимическим характеристикам обрабатываемых газов и адсорбента. По расходу, температуре, влажности, давлению отбросных газов, концентрации загрязнителя и его свойствам практически однозначно подбираются вид адсорбента (нейтральный, поляризованный или импреги-нированный), конструкция аппарата (с подвижным или неподвижным слоем и т.д.), вид адсорбции (физическая или химическая), режимы обработки (периодическая или непрерывная). На этой стадии разработки должны быть тщательно подобраны и проверены на соответствие друг другу все элементы системы адсорбционного обезвреживания. Необходимо также конструктивно определить способы охлаждения и нагрева адсорбента при сорбции и регенерации, компоновки аппаратов, их обвязки коммуникациями, выгрузки, загрузки и перетока адсорбента, предусмотреть возможность автоматического регулирования процесса. Должны быть разработаны системы удаления или утилизации уловленного загрязнителя, отработанного адсорбента и других отходов Конструктивные параметры адсорбера, свойства адсорбента должны соответствовать времени пребывания, необходимому для полного улавливания или обезвреживания загрязнителя. [c.389]


Смотреть страницы где упоминается термин Подвижность в физической адсорбции: [c.177]    [c.89]    [c.19]    [c.118]    [c.520]    [c.209]    [c.118]    [c.121]    [c.152]    [c.109]   
Физическая химия поверхностей (1979) -- [ c.444 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция физическая



© 2025 chem21.info Реклама на сайте