Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформация тел полимеров пластическая

    Температура качала пластичности (Гила с т) Температура, при которой происходит пластическая деформация полимера при небольшой нагрузке [c.228]

    Упругая деформация полимера (Й1) зависит от температуры. При температуре Т > Т . полимер находится в вязкотекучем состоянии и ему свойственна пластическая необратимая деформация, характерная для вязкого течения вещества (Л3). [c.375]


    Совершенно иной механизм нагружения цепи преобладает в процессе пластической деформации полимеров при деформациях от 30 % до нескольких сотен процентов. В данном случае цепь будет рваться под действием сил трения, существуюш,их между цепями самой молекулы или ее цепями и другими морфологическими элементами при их динамическом сдвиге (гл. 5, разд. 5.2.5). Достигаемые напряжения вдоль оси цепи пропорциональны молекулярному или фибриллярному коэффициентам трения и скорости деформации е. Поэтому число критически нагруженных цепей будет отражать сильный рост коэффициента трения в зависимости от понижения температуры. Девис и др. [19] деформировали листы полиэтилена с высокой молекулярной массой на воздухе и регистрировали образование кислотных радикалов. Для истинной деформации 1п(///о), равной, например 1,1, что соответствует условной деформации 200 %, концентрация кислотных радикалов возрастает от 5-10 см при 294 К до 10 СМ при 160 К. Скорость накопления радикалов [Н]/й 1п(///о) имеет две области переходов одну при температурах 180—200 К и другую — начиная с 250 К и выше. [c.204]

    В основу таких методов положено измерение величины деформации при одноосном сжатии испытуемого материала. Изменение деформации в зависимости от температуры позволяет проследить развитие упругой, высокоэластической деформации и пластического течения материала. Однако этот вид деформирования позволяет получить только качественную оценку изменения свойств полимера под действием температуры, так как всегда присутствующие остаточные напряжения искажают измерения и затрудняют получение воспроизводимых результатов. Поэтому во многих случаях теплостойкость исследуют по изменению модуля упругости под действием температуры. [c.103]

    Общим между процессами переработки термопластичных и термореактивных материалов является то, что в обоих случаях процессу формования изделия предшествует нагрев и пластическая деформация полимера. Поэтому теоретическое описание этих процессов в значительной мере связано с проблемами механики сплошной среды. При этом существенное значение имеют не только сами процессы деформации, но и сопутствующие им тепловые и структурные эффекты. [c.8]

    Поскольку каждый из обрывков полимерной цепи является, по существу, свободным радикалом, он может рекомбинировать, встретившись с другим свободным радикалом, образовавшимся аналогичным образом. При этом вновь возникает полимерная молекула, в принципе мало отличающаяся от исходной. В ряде случаев, как это впервые указывалось в работах В. А. Каргина [26], при очень больших значениях сил взаимодействия пластическая деформация полимера возможна только под действием больших напряжений сдвига при условии разрыва и последующей рекомбинации образовавшихся свободных радикалов. [c.227]


    В работах Ю. С. Лазуркина было показано, что в интервале между температурами стеклования и хрупкости (т. е. ниже температуры стеклования) полимеры под действием больших внешних сил могут подвергаться значительным деформациям без разрушения. Такие деформации коренным образом отличаются от обычной пластической деформации, так как исчезают при нагревании разгруженного образца. Это явление получило название вынужденной эластичности. Оно обусловлено высокоэластической деформацией полимера, вызываемой действием больших внешних сил при температуре ниже температуры стеклования, так как в этих условиях снижается энергия активации молекулярных перегруппировок. [c.579]

    В процессах переработки при каландровании (шприцевании), прессовании или литье под давлением под действием приложенных напряжений, высокоэластических и пластических деформаций полимеры подвержены течению. [c.195]

    Теплостойкость по Вика (Т Вика) Температура, при которой происходит пластическая деформация полимера под нагрузкой 5 кгс/см (0,5 МПа) [c.228]

    Теплостойкость по АЗТМ 0 648 Температура, при которой происходит пластическая деформация полимера под нагрузкой 18,5 кгс/см (1,85 МПа) [c.228]

    Теплостойкость по Мартенсу Март) Температура при которой происходит пластическая деформация полимера под нагрузкой 50 кгс/см (5 МПа) [c.228]

    Следует ожидать некоторого понижения плотности, так как цепи с поперечными связями не смогут кристаллизоваться обычным для полиэтилена способом,— Гс и Гпл должны увеличиться. Материал не должен обладать особой эластичностью движение цепей будет затруднено. Следует ожидать значительного понижения пластической деформации полимера и увеличения температуры размягчения (а также температуры формования). [c.821]

    Полная деформация полимера складывается, таким образом, из трех деформаций — упругой, высокоэластической и пластической  [c.57]

    Для полимеров характерна также пластическая деформация, которая заключается в том, что под влиянием внешних усилий изменяется взаимное расположение частиц тела без нарушения их взаимной связи и без изменения энергии системы. Пластическая деформация необратима. Практически часто наблюдаются одновременно различные виды деформаций, например пластическая и высокоэластическая. Поскольку энергия системы в результате пластической деформации не изменяется, новое расположение частиц сохраняется после снятия напряжения. [c.32]

    В книге изложены современные представления о структурных особенностях и механизме холодной вытяжки полимеров. Описаны закономерности процесса фибриллизации, сопровождающего холодную вытяжку полимеров. Особое внимание уделено влиянию жидких адсорбционно-активных сред на пластическую деформацию полимеров. Рассмотрены основные физико-механические, термомеханические, физико-химические и другие свойства полимеров, подвергнутых холодной вытяжке в адсорбционно-активных средах. Показаны перспективы практического использования полимеров, деформированных в адсорбционно-активных средах. [c.2]

    С ролью гидростатического давления следует связывать некоторые необычные объемные эффекты, сопровождающие пластическую деформацию полимера [41, 42]. Дело в том, что при деформации полимеров даже в условиях одноосного сжатия объем полимера может увеличиваться. Например, при нагружении поливинилформаля наблюдается заметное увеличение объема, а в процессе релаксации напряжения происходит заметное уменьшение объема. Характер влияния гидростатического давления на механическое поведение полимера и наблюдаемые объемные эффекты, сопровождающие неупругую деформацию [c.10]

    Из предыдущих разделов следует, что при нагружении полимера в некоторых условиях в них возникают и распространяются специфические зоны пластической деформации (микротрещины). Важным обстоятельством является способность микротрещин полностью пересекать поперечное сечение образца. Следует, однако, отметить, что реализовать микротрещину в материале можно при очень малой общей макроскопической деформации образца (3—5%). Поэтому, как правило, структурные перестройки в области высоких значений деформации полимера не изучались, а исследования собственно процесса вытяжки полимера в жидких средах посвящались механическому поведению материалов без сопоставления со структурными данными. [c.27]

    Полученная теория качественно описывает механическое поведение полимеров при криогенных температурах в окружении газов. Однако теория, построенная исключительно на представлениях об адсорбционном действии среды, содержит ряд противоречий. Она не учитывает процесс пластической, вынужденной эластической деформации полимера при криогенном микрорастрескивании. Действительно, как было показано выше, микрорастрескивание — это не только образование новых поверхностей раздела — микропустот внутри микротрещии, но и процесс ориентации полимера внутри фибрилл. [c.110]

    Другими словами, на первой стадии растяжения полимера, в интервале деформаций от предела вынужденной эластичности до выхода кривой растяжения на плато, происходит формирование сравнительно узкой зоны пластически деформированного полимера и ее прорастание через все поперечное сечение испытываемого образца. Дальнейшая деформация осуществляется путем распространения сформировавшейся узкой зоны — шейки — на всю рабочую часть образца. Процесс холодной вытяжки полимера в адсорбционно-активной среде, несмотря на отмеченные выше различия, имеет много общего с хорошо изученным процессом деформации полимера на воздухе. Хотя при растяжении полимера в адсорбционно-активной среде не происходит образования монолитной шейки, пластическая деформация полимера на первых стадиях растяжения осуществляется в области вершин специфических микротрещин, прорастающих, так же, как и шейка, через поперечное сечение деформируемого полимера. [c.137]


    ДЕФОРМАЦИЯ полимеров (deformation, De-formation, deformation) — изменение формы или объема полимерного те.та. Д. полимеров обусловлена перемещением макромолекул или их агрегатов. Д. делят па упругую, высокоэластическую и пластическую (необратимую). [c.341]

    Деформация полимеров в общем случае может содержать три составляющие 1) упругую, связанную с изменением межатомных расстояний и валентных углов в макромолекулах развитие ее сопровождается изменением внутренней энергии и в чистом виде осуществляется при достаточно низких температурах или при очень больших деформациях 2) высокоэластическую, характерную только для полимеров в определенном температурном интервале и связанную с изменением конформации макромолекул ее развитие сопровождается изменением энтропии 3) пластическую, связанную с необратимым перемещением макромолекул относительно друг друга она полностью реализуется, когда полимер находится в вязкотекучем состоянии. [c.7]

    Высокоэластическая деформация, вынужденно-эластическая деформация стеклообразных полимеров, пластическая деформация кристаллических полимеров приводят к развертыванию молекулярных клубков и ориентации макромолекул в нанравлении действия силы. Ориентированные эластомеры можно охладить до Т<Тс и таким образом зафиксировать состояние ориентации макромолекул. Все ориентированные полимеры имеют одно общее свойство их прочность и модуль упругости при растяжении в направлении ориентации много больше, чем у неориентированного полимера, а гфочность и модуль при деформации в перпендикулярном направлении ме]Н)Ше, чем у исходного пеорисптиронанпого полимера. [c.191]

    Известно, что в основе износостойкости и твердости пластичных материалов лежат пластические деформации. Величина пластических деформаций фторопласта-4 определяется внутренним трением полимера в блоке Р тр (коэффициент трения фторо-лласта-4 в блоке равен 0,04 . Сила Ртр зависит от вида и коли чества введенного наполнителя. [c.75]

    Релаксационный характер процессов деформации полимеров приводит к тому, что границы между релаксационными (физическими) состояниями определяются не только температурой, но и прилагаемой нагрузкой (значением, скоростью и длительностью приложения). Поэтому релаксационные состояния называют также деформационными состояниями. В зависимости от характера нагрузки один и тот же полимер при данной температуре может вести себя как упругое, высокоэластическое или пластическое (текучее) тело. При действии быстрых сил -ударной нафузки - главным образом проявляется упругость, а в случае медленных сил - текучесть. Полимер, яааяющийся при данной температуре высокоэластическим, при большой скорости приложения кратковременных нафузок ведет себя как упругое тело (явление механического стеклования), а при длительно действующей силе обнаруживает текучесть. Жидкий полимер может в определенных условиях проявить высо-коэластичность и даже упругость. [c.156]

    С дальнейшим повышением температуры энергия теплового движения макромолекул становится выше энергии межмолекулярного взаимодействия, при этом возможно передвижение макромолекул друг относительно друга и появляется пластическая деформация полимера, называемая также вязким течением. В отличие от упругой и высокоэластической деформации, пластическа деформация необратима—она сохраняется и после снятия нагрузки. [c.375]

    Вообще, электрические явления в ряде случаев возникают и при разрушении монолитных тел. Известно, например, что при разрыве однородных твердых тел могут возникнуть электрические поля [317, 318], вызывающие триболюминесценцию. Это явление объясняют свечением газа, заполняющего трещины, покрытые зарядами с большой поверхностной плотностью. При разрывах жидкости под действием ультразвука (кавитации) наблюдается люминесценция [319]. При разрушении на воздухе или в среднем вакууме диэлектриков можно наблюдать разряд поверхностных зарядов через газовый промежуток, а раскалывание в глубоком вакууме сопровождается электронной эмиссией [320, 321]. Работа разрушения зависит от скорости, а также от давления и природы газа, в котором происходит разрушение [321]. Эмиссия электронов протекает не только нри разрушении, но и при деформации полимеров. Например, растяжение пленок гуттаперчи, сопровождаемое пластической деформацией, приводит к появлению сильной эмиссии электронов [322]. Вибрационно-механическое воздействие на полимеры также сопровождается эмиссией электронов [323]. Показано [324], что фотоэмиссия, возникающая при нагружении и разрушении полимеров, связана с процессами деструкции макромолекул. Образование свободных радикалов при деформации полимеров зарегистрировано с помощью метода ЭПР. Авторы этой работы предполагают, что люминесценция в момент разрыва химических связей обусловлена реакциями рекомбинации и диснропорционирования свободных радикалов, возникших в зоне роста главной трещины. [c.202]

    Измерить непосредственно напряжения, необходимые для реализации той или иной моды деформации монокристалла, и сравнить их с рассчитанными теоретически невозможно. Единственное экспериментальное доказательство дислокационного механизма скольжения вдоль направления цепей — легкость сдвига монокристаллических ламелей, высаживаемых на подложку из разбавленного раствора под действием собственной массы. Кроме того, небольшие — по сравнению с теоретическими— значения сдвиговых напряжений, создающих скольжение по некоторым системам скольжения не в самих монокристаллах, а в образцах полимеров с текстурой монокристаллов, также свидетельствует о возможности дислокационного механизма пластической деформации полимеров (см. раздел П1.3). [c.169]

    Особый интерес представляет случай больших обратимых деформаций в условиях, когда гибкость макромолекул полностью подавлена. Например, пленки изотактического ПП с размерами сферолитов 80—150 мкм обнаруживают способность к пластической деформации даже при Гв = —196°С, что примерно на 180 °С меньше Гст [88]. Предельное удлинение, полученное при растяжении этих пленок со скоростью 0,5 мм/мин, составляло 140 /о. Но, несмотря на образование шейки, никаких структурных превращений на молекулярном уровне не наблюдалось (большеугловые рентгенограммы имеют вид колец с равномерным распределением интенсивности). Упругий возврат образца после снятия нагрузки происходит сразу на большую величину, а при постепенном размораживании всего лишь до 10 °С исходные размеры полностью восстанавливаются. По-видимому, здесь мы действительно имеем в чистом виде деформацию полимера, протекающую только на надмолекулярном уровне, без разрушения порядка в расположении молекулярных цепей. Возможно, упругий возврат в этом случае протекает за счет энергетической упругости, возникшей как следствие образования в системе новых свободных поверхностей, поскольку при отсутствии сегментального движения энтропийных сил недостаточно, чтобы вызвать сокращение образца после разгрузки. Предположение это достаточно правдоподобно, но нуждается в дополнительной экспериментальной проверке. [c.207]

    Р1зменение форм (конформаций) молекул при воздействии нагрузки и после снятия нагрузки есть проявление высокоэластических свойств полимера, ибо эти изменения являются полностью обратимыми. В то же время передвижение самих цепных молекул полимера друг относительно друга в условиях вязкого (пластического) течения приводит уже к необратимым удлинениям при воздействии силы, которые после ее снятия, не уменьшаются. Величина необратимой деформации полимера определяется отрезком АЕ на оси ординат рис. 113. [c.374]

    Придание формы изделию из термопластов м. б. достигнуто в результате развития в полимере пластической или высокоэластич. деформации. Из-за высокой вязкости материала эти процессы деформирования протекают с низкой скоростью. В зависимости от физич. состояния, в к-ром полимер находится в момент формования, в готовом изделии достигается различная степень неравновесности из-за неполной релаксации внутренних напряжений. Это накладывает определенные ограничения на температурный интервал экс-плуатацпп изделий, полученных различными методами. Увеличение доли высокоэластич. составляющей деформации ведет к снижению верхнего температурного предела эксплуатации вплоть до темп-ры стеклования. Это особенно заметно проявляется при обработке изделий и полуфабрикатов из полимерных материалов, находящихся в стеклообразном состоянии, при напряжениях, превышающих предел вьшуждеппой высокоэластичности. Такой прием позволяет в значительной стеиепи увеличить прочностные показатели вследствие ориентации надмолекулярных образований и уплотнения рыхлой структуры полимера (напр., при прокатке пленок и труб). Однако изделия, полученные этим методом, должны эксплуатироваться при темп-рах ниже темп-ры стеклования полимера, т. к. при более высоких темп-рах они начинают необратимо деформироваться из-за резкого ускорения релаксационных процессов. [c.291]

    Выше температуры стеклования аморфные неструктурированные полихмеры находятся в высокоэластическом или в текучем состоянии (см. стр. 106). Кристаллические полимеры при температурах выше их температуры плавления также переходят в текучее состояние. Между высокоэластическим и текучим состояниями высокомолекулярных соединений не существует четкой границы. Для полимеров, у которых проявляются оба состояния при высоких температурах и невысоких скоростях деформаций, определяющее значение имеет их текучесть — способность к необратимому направленному перемещению макромолекул друг относительно друга без нарушения целостности (сплошности) тела. Необратимые деформации называются пластическими. У полимерных систем в текучем состоянии необратимые деформации могут быть неограниченно большими. Если энергия, необходимая для необратимого перемещения макромолекул, существенно меньше энергии химических связей, то процесс течения не сопровождается их разрывом. Однако при высоких напряжениях вследствие разрыва химических связей может происходить деструкция полимера, что приводит к снижению средней молекулярной массы и изменению молекуляр-но-массового распределения (ММР). [c.208]

    Подтверждением изложенных выше представлений является известный факт зависимости пластической деформации полимеров от гидростатического давления, которое препятствует увеличению свободного объема полимера. Впервые подробное исследование влияния гидростатического давления (до 2 кбар) на поведение полиметилметакрилата, полистирола, капрона, фторопласта, винипласта в условиях одноосного растяжения и сжатия было проведено Айнбиндером с сотр. [38]. В дальнейшем подобные исследования при давлениях до 7 кбар были проведены для ацетата целлюлозы, поливинилхлорида, полиимида и полисульфона, полиуретана, полиэтилентерефталата, поликарбоната, полиэтилена, полипропилена, политрихлорэтилена, поли-оксиметилена, и др. [39, 40]. Гидростатическое давление повышает предел текучести всех исследованных материалов и умень-шает их способность к пластической деформации, т. е. уменьшает удлинение при разрыве. [c.10]

    Таким образом, кроме хорошо известного способа развития вынужденной эластической деформации с образованием шейки, существует еще один вид холодной вытяжки полимера — возникновение и развитие специфических микротрещин. Оба вида холодной вытяжки приводят к образованию фибриллизован-пого ориентированного материала различие заключается в том, что в первом случае фибриллы слипаются в монолитную шейку, а во втором оказываются разобщенными в объеме микротрещин. Принципиального различия между этими видами неупругой деформации полимера не существует, о чем свидетельствует как близость энергетических параметров обоих видов пластической деформации [97], так и морфологическое сходство получаемых материалов [98]. И в том, и в другом случае на первой стадии на концентраторе напряжения появляется зародыш локализованной деформации фибриллярной структуры (рис. 1.9,а). Дальнейшая эволюция этого зародыша в процессе деформации во многом определяется процессами, протекающими на поверхности раздела фаз, и в первую очередь — межфазной поверхностной энергией. Холодная вытяжка в присутствии адсорбционноактивной жидкости сопровождается ее капиллярным всасыванием [99] в объем концентратора напряжения, адсорбцией на возникающей высокоразвитой поверхности и, следовательно, эффективным понижением межфазной поверхностной энергии полимера (рис. 1.9,6). [c.26]

    В наиболее общем виде механизм криогенного микрорастрескивания сформулирован в работе Петерлина и Олфа [194]. Согласно развиваемым ими представлениям, деформация полимера приводит в первую очередь к увеличению его удельного объема и доли свободного объема. Этот эффект во многом эквивалентен понижению температуры стеклования полимера до температуры, меньшей температуры эксперимента. Особенно сильное увеличение удельного объема и доли свободного объема происходит в местах концентрации напряжения в материале и, естественно, в вершинах трещин и микротрещин. Как следствие высокой локальной концентрации напряжения, полимер в этой области переходит в каучукоподобное состояние, в результате чего оказывается способным к большим деформациям при напряжениях, значительно ниже предела текучести материала, окружающего концентратор напряжения. В связи с этим, полимеры даже при очень низких, вплоть до 4 К [195], температурах разрушаются нехрупко. Об этом свидетельствует анализ поверхностей разрушения полимеров, из которого следует, что истинной трещине разрушения всегда предшествует зона пластической деформации, которую, как правило, отождествляют с микротрещиной. [c.110]

    Присутствие газа, обладающего высокой термодинамической активностью, т. е. находящегося вблизи его точки конденсации, резко облегчает развитие пластических деформаций и поверхностей раздела, характерных для структуры микротрещины. Это объясняется объемной и поверхностной сорбцией газа. Объемное пластифицирующее действие газа возможно в том случае, если газ способен с высокой скоростью мигрировать в зону активной деформации полимера. Однако при криогенных температурах диффузионный транспорт газа весьма за-медлен. Так, коэффициент диффузии азота в полипропилене при 77 К равен 6-10- мV [75], т. е. для проникновения газа в полимер на расстояние 10 нм требуется время около 300 с. Это время велико, и такой транспорт не может обеспечить облегчение криогенной деформации, наблюдаемой в экспериментах. [c.110]

    Эти результаты представляются весьма важными, поскольку они позволяют получить информацию не только о характере деформации полимера в ААС, но и о его исходной структуре. Действительно, обнаруженные особенности возникновения и роста мнкротрещин свидетельствуют о важной роли микродефектности полимера в его механическом поведении. Проявлением неоднородности является, в частности, возникновение щейки в деформируемом полимере в каком-либо одном, самом опасном , месте. Наличие распределения скоростей роста микротрещии в деформируемом полимере свидетельствует о существовании в материале набора микродефектов, создающих множество концентраторов напряжения, инициирующих локализованную пластическую деформацию. Эти концентраторы напряжения различаются ио опасности и вовлекаются в процесс инициирования локализованной пластической деформации или, что то же, в процесс зарождения микротрещии, при различных уровнях напряжения, запасенных образцом. В силу замедленности релаксационных процессов, протекающих в стеклообразных полимерах, уровень запасаемых полимером напряжений легко изменять, меняя скорость его деформации. Как видно из рис. 5.29, при этом не только возрастает наиболее вероятная линейная скорость роста микротрещин, но и заметно расщиряется их распределение, что свидетельствует о вовлечении в процесс деформации множества новых концентраторов напряжения. [c.145]


Смотреть страницы где упоминается термин Деформация тел полимеров пластическая: [c.345]    [c.318]    [c.360]    [c.813]    [c.294]    [c.442]    [c.293]    [c.344]    [c.314]   
Краткий курс физической химии Изд5 (1978) -- [ c.564 , c.565 , c.584 , c.585 ]




ПОИСК





Смотрите так же термины и статьи:

Высокоэластическая и пластическая деформация полимеров

Деформации полимера

Деформация пластическая

Пластическая



© 2025 chem21.info Реклама на сайте