Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходное состояние и реакционная способность

    Методы получения. Как было отмечено выше, скорость реакции ароматических аминов с азотистой кислотой определяется стадией образования шестичленного переходного состояния. Легкость образования цикла в первую очередь зависит от нуклеофильной реакционной способности и основности атома азота аминогруппы. Последняя в свою очередь в значительной степени зависит от характера заместителей в бензольном, ядре. [c.433]


    Как отмечалось в разд. 14.5, некоторые радикалы оказываются более селективными, чем другие. Так, атом брома настолько селективен, что если в субстрате имеются только первичные атомы водорода, как в неопентане или трет-бутил-бензоле, то реакция протекает очень медленно или вообще не идет в то же время изобутан можно селективно бромировать до трег-бутилбромида с высоким выходом. Однако толуол реагирует с атомами брома почти мгновенно. Бромирование других алкилбензолов, например этилбензола и кумола, происходит исключительно по а-положению [60], что указывает на селективность Вг-. Энергия диссоциации (О) связи С—Н более важна для радикалов с низкой реакционной способностью, чем для высокореакционноспособных радикалов, из-за большей степени разрыва связи в переходном состоянии. Так, по сравнению с хлором бром проявляет большую склонность к атаке а-положения по отношению к электроноакцепторной группе, поскольку энергия связи С—Н в этом положении ниже, чем в других положениях молекулы. [c.68]

    I. Законы фотохимии. В фотохимии рассматриваются закономерности влияния электромагнитных колебаний видимого и ультрафиолетового участков спектра на реакционную способность химических систем. Общая реакционная способность химической системы характеризуется значениями стандартного сродства реакций АО (Т) и стандартного сродства в процессе образования переходного состояния Значения А0 (7 ) и АС (7) изменяются с изменением температуры. При повышении температуры в системе изменяется кинетическая энергия поступательного и вращательного движения молекул и энергия колебательного движения ядер атомов. В области средних температур энергия движения электронов при изменении температуры практически остается постоянной. Чтобы перевести электроны на более высокие электронные энергетические уровни, надо нагреть систему до высоких температур, при которых многие реагенты разлагаются. При воздействии на химическую систему электромагнитными колебаниями с частотой видимого и ультрафиолетового участков спектра изменяется энергия движения электронов. Поглощая квант энергии, электроны переходят с ВЗМО на НО Ю. Образуется возбужденная молекула, обладающая избыточной энергией. Распределение электронной плотности в возбужденных молекулах существенно отличается от распределения электронной плотности в исходных молекулах. Повышается энергия колебательного движения ядер. Физические и химические свойства возбужденных молекул отличаются от свойств молекул в невозбужденном состоянии. Появляется возможность получения новых веществ, синтез которых невозможен при термическом воздействии на систему. [c.610]


    Подход К анализу реакционной способности, основанный на изучении особенностей электронного распределения в исходном соединении, назван приближением изолированной молекулы или статическим приближением. Подход, требующий оценки энергии переходного состояния реакции, называют приближением реагирующей молекулы или приближением локализации. В пределах каждого из этих приближений предложены характеристики электронного распределения и энергии, которые коррелируют с экспериментальными данными о реакционной способности. Эти характеристики называют индексами реакционной способности (ИРС). [c.319]

    Лучшее доказательство н пользу некоторых из таких специфических пидов взаимодействия получается в результате изучения относительных реакционных способностей замеш енных стиролов и а-метилстиролов с радикалами, имеющими электроноакцситорные группы. Графики, построенные для зависимости этих величин от значений <т Гамметта [65] для замещенных стиролов, например приведенные на рис. 18, показывают возрастающее отклонение от линейной зависимости с увеличением тенденции системы к чередованию наряду с весьма высокими реакционными способностями стиролов, имеющих группы, являющиеся донорами электронов (отрицательные значения). Эти свойства, по-видимому, характеризуют системы, 1 которых участие дополнительных резонансных структур понижает энергию переходного состояния [65, 101а]. [c.152]

    Теория переходных состояний связывает скорость реакции с изменением свободной энергии Гиббса ДО при образовании переходного состояния из основного состояния. Эту теорию можно использовать для количественной оценки реакционной способно- [c.190]

    В соответствии с этими данными, большая активность рубидиевого производного метиленового компонента по сравнению с литиевым определяется большей степенью ионности связи О—М, что увеличивает нуклеофильную реакционную способность аниона. Возможно, на легкость образования шестичленного переходного состояния влияет размер иона металла, который увеличивается с увеличением атомной массы, так как он координируется одновременно по двум атомам кислорода. [c.231]

    Реакционная способность нуклеофила, действующего в фермент-субстратном комплексе. Для более детального обсуждения реакционной способности составного нуклеофила, действующего в активном центре, обратимся к механизмам, по которым силы сорбции субстрата на ферменте стабилизируют переходное состояние химической реакции. [c.162]

    Более сложным представляется вопрос о механизме стабилизации переходного состояния за счет гидрофобного взаимодействия с ферментом второго субстратного фрагмента, а именно боковой группы К. Из механизма (4.41) следует, что реакционная способность нуклеофила. [c.162]

    Механизм мицеллярного катализа сложен, зависит от специфики реагентов и ПАВ и выяснен далеко не в полной мере. Влияние мицелл на химические реакции определяется двумя основными факторами — изменением реакционной способности веществ при переходе их из воды в мицеллярную фазу и эффектом концентрирования реагентов в мицеллах, причем второй фактор во многих случаях является единственным источником мицеллярного катализа. Изменение реакционной способности вещества в мицеллах обусловлено совокупностью электростатических и гидрофобных взаимодействий между молекулами реагента и мицеллами, что приводит к изменению энергий основного и переходного состояний реагентов На роль электростатических взаимодействий указывает, в частности, тот факт, что обычно реакции нуклеофильных анионов с нейтральными молекулами ускоряются катионными мицеллами, замедляются анионными, а мицеллы НПАВ практически не оказывают на них влияния. Во многих случаях мицеллы влияют не только на кинетику, но и на равновесие реакций, что не свойственно истинным катализаторам. [c.86]

    Аллил -алогениды обладают большей реакционной способностью по сравнению с насыщенными соединениями благодаря участию электронов кратной связи в стабилизации промежуточно образующегося карбокатиона (реакции ,у1) и переходного состояния (реакции 5 2). [c.99]

    Температура и среда также влияют на реакционную способность. Обычно с повышением температуры наблюдается нивелировка активности частиц. Растворитель влияет, если он полярен, и, по крайней мере, одна из частиц также полярна, т. е. имеет функциональные группы. Тогда на активности сказывается сольватация исходного и переходного состояний. Растворитель, молекулы которого образуют комплексы со свободными радикалами и атомами, вносит существенные изменения как в абсолютную, так и в относительную реакционную способность этих частиц. [c.141]

    В первом приближении реакционная способность молекулы зависит только от распределения электронных индексов в ее статическом состоянии. Но этот под.ход не учитывает поляризационные эффекты молекул в условиях реакции. Переходное состояние позволяет связать строение реагирующих частиц с энергетическими характеристиками про- [c.163]


    Вообще говоря, возможны четыре типа факторов, определяющих каталитическую активность фермента. Во-первых, необходим химический аппарат в активном центре, способный деформировать или поляризовать химические связи субстрата, что делает последний более реакционноспособным, во-вторых,— связывающий центр, иммобилизующий субстрат в правильном положении к другим реакционным группам, участвующим в химическом превращении, в-третьих,— правильная и точная ориентация субстрата, благодаря которой каждая стадия реакции проходит с минимальным колебательным или вращательным движением вокруг связей субстрата, и, наконец, в-четвертых, способ фиксирования субстрата должен способствовать понижению энергии активации ферментсубстратного комплекса в переходном состоянии. Соответствующее распределение зарядов в активном центре и геометрия активного центра входят в число факторов, определяющих снижение суммарной энтропии переходного состояния. Все эти факторы в той или иной степени влияют на структуру активного центра фермента, и их нельзя рассматривать изолированно, вне связи друг с другом. В совокупности они увеличивают скорость ферментативной реакции и позволяют ферменту выступать в роли мощного катализатора [77]. [c.209]

    Это простое рассуждение, иллюстрированное на рис. 8.21, есть не что иное, как одно из следствий принципа Белла—Эванса—Поляки, известное в теории реакционной способности как правило Хэммонда электронное строение переходного состояния быстро протекающих реакций близко к строению исходных реагентов. Исходя из этого можно ожидать, что, располагая данными об электронном распределении (например, электронными плотностя ш на атомах) в исходной изолированной молекуле А, можно предвидеть свойства переходного состояния. [c.318]

    Расчет поверхностей потенциальной энергии (ППЭ) реакции, выявление координаты реакции и переходного состояния (седловой точки ППЭ) представляют собой наиболее прямой и строгий подход к анализу проблемы реакционной способности. Такой подход, однако, сопряжен обычно с весьма большим объемом вычислений. Между тем во многих случаях не обязательно знать полную ППЭ реакции и достаточно сведений о структуре ее отдельных участков, определяющих способ сближения реагентов и тип переходного состояния реакции. По этим причинам, а также вследствие потребности в выработке концепций и правил, способных описывать реакционную способность и механизм реакций в качественной или полу-количественной формах, возникает необходимость в создании эффективных упрощенных методов рассмотрения указанных задач. [c.312]

    По мнению Коккерила, в предельном случае, когда практически не происходит разрыва связи С—Т в переходном состоянии, реакционная способность субстрата определяется злектрофильностью углерода, связанного с уходящей группой V. Поскольку индуктивный эффект тозильной группы больше, чей брома, отноиение [c.104]

    Такую огромную разницу в реакционной способности In—Н-и К—Н-связей можно объяснить тем, что переходные состояния PhO- -Н---00R и AriAr2N- -Н- -ООК имеют биполярную структуру, в которой положительно заряженный атом водорода находится между двумя отрицательно заряженными атомами кислорода в случае фенола и между отрицательно заряженными атомами азота и кислорода в случае ароматического амина [171] [c.102]

    В сущности железо обладает не большей реакционной способностью, чем другие обсуждавшиеся выше переходные металлы. Однако, к сожалению, оксиды железа непрочно пристают к поверхности металлического железа, Ржавчина (оксид железа) отслаивается по мере образования и предоставляет возможность новой поверхности металла реагировать с окружающей средой. Содержащая хром нержавеющая сталь больше сопротивляется коррозии, но для защиты железа чаще используются покрытия из хрома, олова, никеля или красок. Соединения железа(П) обычно имеют зеленую окраску, а гидратированный ион железа(Ш), Ре(Н20) , окрашен в бледно-фиолетовый цвет. В состояниях окисления - - 2 и -Ь 3 железо образует октаэдрические комплексы с цнанидными ионами, Ре(СК) и Pe( N)g . Традиционные названия этих иоиов - ферроцианид и феррициа- ид. Согласно ссБрсмснной систематической номенклатуре, их называют гексацианоферрат 11) и гексацианоферрат(Ш). Номенклатура комплексных ионов излагается в гл. 20. [c.445]

    В четвертой главе рассмотрена проблема стерических факторов обычных (молекулярных) и радикальных реакций как часть проблемы реакционной способности частиц. На основе метода переходного состояния получены формулы для вычисления стерических факторов мономолекулярных и бимолекулярных реакций и зависимости их от температуры. Разработан приближенный метод расчета стерических факторов реакций присоединения и замещения радикалов с непредельными и предельными углеводородами, а также реакций диспропорционированияи рекомбинации радикалов. Этот метод расчета стерических факторов радикальных реакций основан на квантово-механических соображениях и апрокси-мации сумм состояний радикалов при помощи сумм состояний молекул, близких по своему химическому строению к радикалам. Приближенный способ расчета применен к вычислению стерических факторов обратимых реакций присоединения радикалов —Н, СНз к непредельным углеводородам (этилен, пропилен, изобутилен, аллен, ацетилен и др.), обратимых реакций замещения этих радикалов с непредельными и предельными углеводородами (метан, этан, пропан, бута- [c.10]

    Более глубокое понимание проблемы реакционной способности достигается в приближении реагирующих молекул (ПРМ). В нем учитываются более или менее полно те возмущения, под действием которых исходная система переходит в активированное состояние. В принципе, для того чтобы учесть измeнetIиe энергии при переходе к конфигурации активированного комплекса, следует рассчитать энергетическую поверхность (2.3). Трудности такого расчета стимулируют развитие приближенных методов сравнительного изучения кинетики ряда однотипных реакций, когда переходное состояние представляется в виде модели (гипотетический активированный комплекс), отражающей некоторые особенности строения реагентов и их взаимодействия. Расчет энергии такой модели опирается на один из вариантов теории МО и представляет собой значительно более простую задачу в сравнении с отысканием оптимального пути реакции на энергетической поверхности. Найденная энергия гипотетического активированного комплекса позволяет судить о том, велика или мала энергия активации реакций, и сравнивать, таким образом, кинетические свойства частиц в ряду однотипных реакций.  [c.61]

    Одно из обстоятельств, усложняющих изучение этих эффектов, состоит в том, что каждая группа в переходном состоянии может проявлять эффект, значительно больший или меньший, чем в нереагирующей молекуле. Рассмотрим в качестве примера молекулу СбНбСНаУ, где V — реакционный центр. При замещении одного из атомов водорода, например, в пара-положении, на группу X образуется соединение ХСеН4СН2У, в котором электронная плотность вокруг группы СНг будет больше или меньше, чем в исходном соединении, в зависимости от того, какой эффект проявляет группа X, резонансный или поля. Если молекула вступает в реакцию, связь между СНг и V начинает разрываться и в результате чего в зависимости от типа реакции СНг частично приобретает характер карбаниона, карбокатиона или свободного радикала. Электронодонорная способность группы X, очень слабо выраженная в нереагирующей молекуле, в ходе реакции может либо усиливаться, либо ослабевать. Некоторые группы X могут даже быть в одной реакции электронодонорными, а в другой — электроноакцепторными. [c.360]

    Образование водородной связи фермент — субстрат (пунктир) стабилизирует переходное состояние нуклеофильной атаки, что приводит к ускорению реакции (табл. 7). Соединения I, III и IV (не содержащие а-ациламидного фрагмента) лишь слабо отличаются по относительной реакционной способности их на активном центре фермента (см. примечание к табл. 7). В то же время наличие донора водородной связи в молекуле субстрата (а-ациламидный фрагмент) приводит к ускорению реакции на один (соединения П1 hV) или на два (соединения и II) десятичных порядка. Интересно отметить, что в случае субстратов VI и VII с жесткой (циклической) структурой наблюдаемое ускорение (110 раз) значительно превосходит эффект (16 раз), свойственный соединениям III и V с незакрепленной структурой. Можно полагать, что в последнем случае образование водородной связи фермент — субстрат накладывает более существенные энтропийные ограничения на подвижность (внутренние вращательные степени свободны) субстратной молекулы. Это и должно уменьшить (как уже было сказано) суммарный вклад комплексообразование E-R в ускорение реакции. [c.47]

    Внутренняя реакционная способность нуклеофила, действующего в свободном ферменте. В итоге проведенного анализа можно считать доказанным постулат Бендера и Кежди [7] о том, что эффекты субстратных заместителей в химотрипсиновом катализе имеют аддитивный характер. Такое свойство ферментативного процесса означает, что свободная энергия того или другого сорбционного фермент-субстратного взаимодействия (стабилизирующего переходное состояние) входит в общую свободную энергию активации химической реакции в виде взаимно независимых слагаемых, а именно  [c.160]

    К настояш,ему времени сложилась точка зрения, что ди- и трисахариды связываются с активным центром лизоцима в основном непродуктивно (в геометрическом отношении) и именно этим обусловлена их малая реакционная способность. Однако в качестве альтернативы можно выдвинуть то, что малое число специфических контактов субстратов низкой степени полимеризации с активным центром фермента не приводит к достаточному снижению свободной энергии активации переходного состояния реакции относительно энергетического уровня исходного состояния (E + S) или фермент-субстратного комплекса (ES) именно это является основной причиной малой реакционной способности коротких олигосахарндов. [c.195]

    Достаточно указать, что она определяет равновесие и скорость растворения твердых и жидких веществ, разнообразных химических превращений в растворах и.т. д. Сольватация приводит, с одной стороны, к изменению природы реагирующих частиц (образованию сольватокомплексов, перераспределению ионного заряда, поляризации, блокированию реакционных центров и т. п.), с другой — структуры растворителя и его свойств. Своеобразно проявление сольватации в явлениях химической кинетики. Здесь сольватация исходных веществ, переходного комплекса и продуктов реакции определяет не только скорости и другие кинетические параметры рва кций, но также и их механизмы. Следует отметить, что учет и детальный анализ сольватационного взаимодействия растворителя с переходным комплексом необходим для построения теории реакционной способности молекул и ионов. Так, например, издавна считается, что полярный растворитель благоприятствует протеканию химических реакций, переходный комплекс которых более полярен, чем исходное состояние реагентов. [c.237]

    Влияние различных групп на реакционную способность и ориентацию объясняется на основании резонансных эффектов и эффектов поля, поскольку они связаны со стабильностью промежуточно образующихся аренониевых ионов. Для того чтобы понять, почему можно использовать такой подход, необходимо убедиться в том, что в этих реакциях образование продукта контролируется кинетически, а не термодинамически (см. т. 1, разд. 6.6). Некоторые из этих реакций необратимы, другие же обычно завершаются задолго до достижения равновесия. Следовательно, какой из трех возможных интермедиатов образуется, зависит не от термодинамической стабильности продуктов, а от энергии активации, необходимой для получения каждого из трех интермедиатов. Нелегко предсказать, какая из трех величин энергии активации наименьшая, но можно предположить, что профиль свободной энергии должен быть аналогичен приведенным на рис. 6.2, а или 6.2,6 (т. 1 гл. 6). В каждом из этих случаев переходное состояние ближе по энергии к промежуточному аренониевому иону, чем к исходным соединениям. Применяя постулат Хэммонда (т. 1, разд. 6.7), можно считать, что геометрия переходного состояния также аналогична геометрии интермедиата, и что все, приводящее к увеличению стабильности интермедиата, будет понижать также и энергию активации процесса образования этого интермедиата. [c.313]

    Влияние субстрата. Электронодонорные группы понижают, а электроноакцепторные повышают скорость реакций SeI, что и следует ожидать, если лимитирующая стадия реакции подобна отщеплению протона от кислоты. Дженсен и Дэвис показали, что в случае механизма Se2 (с тыла) реакционная способность алкильных групп аналогична реакционной способности их в реакциях Sn2 и соответствует ряду Me>Et>Pr>u30-Pr> >неопентил это следовало ожидать, поскольку оба механизма включают атаку с тыла и одинаково чувствительны к стерическим затруднениям [10]. Действительно, указанный порядок реакционной способности можно рассматривать как доказательство наличия механизма Se2 (с тыла) в тех случаях, когда невозможно выполнить стереохимические исследования [35]. При изучении реакций Se2, происходящих с сохранением конфигурации, результаты не были однозначными [36]. Так, в случае зеакции RHgBr + Br2- -RBr, катализируемой Вг (табл. 12.1) 37], а-разветвление повышает, а -разветвление понижает скорость реакции. Сайре и Дженсен связывают уменьшение скорости со стерическим затруднением, хотя атака в данном случае явно фронтальная, а увеличение скорости объясняют электронодонорным эффектом алкильных групп, стабилизирующим электронодефицитное переходное состояние [38]. Конечно, стерическое затруднение должно также существовать и в а-раз- [c.419]

    Однако представление о механизме Е2С подвергалось критике высказывалось утверждение, что все экспериментальные результаты можно объяснить с помощью обычного механизма Е2 [66]. МакЛеннан предложил для описания переходного состояния структуру 17 [67]. Предлагался также механизм с образованием ионной пары [68]. Несмотря на противоречивые представления о том, какой механизм истинный, несомненно, что существует класс реакций элиминирования, для которых характерна атака слабыми основаниями по кинетике второго порядка [69]. Помимо этого для указанных реакций характерны следующие общие признаки [70] 1) протеканию реакции благоприятствуют подвижные уходящие группы 2) реакции способствуют полярные апротонные растворители 3) реакционная способность субстратов уменьшается в ряду третичный>вто-ричный>первичный, что обратно порядку реакционной способности в обычных реакциях Е2 (разд. 17.8) 4) реакции син-элиминирования для рассматриваемого класса не известны, всегда происходит анти-элиминирование однако в случае производных циклогексана диэкваториальное анга-элиминирова-ние наблюдается так же часто, как и диаксиальное анги-эли-минирование (в отличие от обычных реакций Е2, см. разд. 17.1)  [c.25]


Смотреть страницы где упоминается термин Переходное состояние и реакционная способность: [c.115]    [c.343]    [c.10]    [c.175]    [c.217]    [c.405]    [c.576]    [c.185]    [c.78]    [c.33]    [c.100]    [c.49]    [c.78]    [c.161]    [c.576]    [c.211]    [c.328]    [c.412]   
Органическая химия (1974) -- [ c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Коновалов. Положение переходного состояния на координате реакции и факторы, определяющие реакционную способность аддендов в реакции диенового синтеза

Состояние переходное



© 2025 chem21.info Реклама на сайте