Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимическая анодная обработка металлов и сплавов

    Электрохимическая анодная обработка металлов и сплавов [c.371]

    Для изменения размеров и формы, а также состояния поверхности металлических изделий используют электрохимические способы их обработки. Изделие может быть анодом или катодом. Существуют некоторые методы анодной обработки металлов и сплавов, при которых производится электроокисление металлического изделия электрохимическая размерная обработка, электрополирование и анодирование. [c.371]


    ХУ1.3. ЭЛЕКТРОХИМИЧЕСКАЯ АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ И СПЛАВОВ [c.421]

    Электрохимическая анодная обработка металлов и сплавов. Для изменения размеров и формы, а также состояния поверхности металлических изделий используют электрохимические способы обработки, при которых производится электроокисление металлических изделий электрохимическая размерная обработка, анодирование и др. [c.297]

    В основе разработанного метода размерной электрохимической обработки (ЭХО) металлов и сплавов лежит принцип анодного растворения обрабатываемой детали в растворе электролита [43]. В отличие от электрохимического травления и полирования процесс ведется при подаче электролита в узкое (до нескольких сотых миллиметра) щелевое пространство между электродами и характеризуется значительно большей интенсивностью съема металла вследствие увеличения плотности тока до сотен ампер на квадратный сантиметр и локализации анодного растворения. Для понимания основных закономерностей и принципиальных возможностей метода размерной ЭХО очень важно знание процессов, происходящих в ходе обработки на электродах, особенно на аноде, так как обрабатываемость данного металла в конкретном электролите оказывает существенное влияние на производительность, шероховатость поверхности, точность обработки, коэффициент выхода по току и энергоемкость ЭХО. В этой связи представляется правомерным интерес многих исследователей к изучению анодно-растворяющихся металлов как в условиях традиционного электрохимического растворения при низких плотностях тока, так и в условиях размерной ЭХО. [c.5]

    КИМ металлам прежде всего относятся алюминий, магний, титан и их сплавы. Окисные пленки образуются в результате либо химической, либо электрохимической обработки поверхности соответствующих металлов. Электрохимическое анодное окисление позволяет получать пленки различной твердости, пористости и толщины. Ниже рассмотрены наиболее важные случаи анодного оксидирования поверхности металлов. [c.78]

    Электрохимическая размерная обработка металлов и сплавов. Анодная обработка изделий для придания им требуемой формы получила название электрохимической обработки металлов (ЭХОМ). Этот способ обработки металлов во многих случаях имеет важные достоинства, так как позволяет обрабатывать детали сложной конфигурации и металлы, которые механически или вообще не могут быть обработаны, или обрабатываются с большим трудом (например, очень твердые металлы и сплавы). Кроме того, инструмент (катод) при этом не изнашивается, а обработка не влечет изменения структуры металла. К недостаткам ЭХОМ относится большой расход энергии, поэтому этот метод не применяется для обработки обычных металлов, сплавов и изделий простой конфигурации. Как и при обычном электролизе с растворимыми анодами, при ЭХОМ происходит анодное растворение металла М — пе —М" . На катоде, который при электрохимической обработке называют инструментом, обычно выделяется водород 2Н+ + 2е = Нг. [c.421]


    К группе конверсионных относят неметаллические неорганические покрытия, которые не наносятся извне на поверхность деталей, а формируются на ней в результате конверсии (превращений) при взаимодействии металла с рабочим раствором, так что ионы металла входят в структуру покрытия. Основой их являются оксидные или солевые, чаще всего фосфатные пленки, которые образуются на металле в процессе его электрохимической или химической обработки. Наиболее широкое распространение получили оксидные покрытия алюминия и его сплавов. Это связано с тем, что по разнообразию своего функционального применения, определяемого влиянием на механические, диэлектрические, физико-химические свойства металла основы, такие покрытия почти не имеют равных в гальванотехнике. Полученные оксидные пленки надежно защищают металл от коррозии, повышают твердость и износостойкость поверхности, создают электро- и теплоизоляционный слой, легко подвергаются адсорбционному окрашиванию органическими красителями и электрохимическому окрашиванию с применением переменного тока, служат грунтом под лакокрасочные покрытия и промежуточным адгезионным слоем под металлические покрытия. Эти характеристики относятся к оксидным покрытиям, полученным электрохимической, прежде всего анодной обработкой металла. Хотя выполнение химического оксидирования проще, не нуждается в специальном оборудовании и источниках тока, малая толщина получаемых покрытий, их низкие механические и диэлектрические характеристики существенно ограничивают область его применения. [c.228]

    Эффективность химических моющих растворов может быть значительно усилена, а опасность их воздействия на металл уменьшена или предотвращена за счет электрохимического процесса. С этой целью используется поляризирующий ток плотностью примерно 500 А/м при напряжении 3—12 В. Обработка, например, черных металлов производится анодным способом, а сплавов с медью — катодным. Во многих случаях производится быстрое изменение полярности, чтобы снять осажденный шлам с находящегося в растворе изделия. В результате разряда ионов водорода или кислорода на поверхности металла под слоем жира образуются пузырьки газа, которые обеспечивают его механическое разрушение и удаление. Кроме того, щелочи, образованные при катодной обработке, способствуют разрыву масляной пленки и собиранию ее в капельки. Электрохимическое обезжиривание не пригодно для обработки олова, свинца, цинка, алюминия и легких сплавов. [c.57]

    В последние годы все больше применяют электрохимические методы обработки металлов и сплавов. Сущность метода электрохимической обработки (ЭХО) заключается в том, что отдельные участки детали или изделия анодно растворяются в протекающем с большой скоростью электролите. Из-за очень малого межэлектродного расстояния (десятые доли миллиметра) создаются условия, при которых на детали-аноде копируется форма катода. При использовании высоких плотностей тока (до сотен ампер на квадратный сантиметр) процесс обработки протекает с очень большой скоростью, продукты растворения удаляются при этом протекающим в межэлектродном пространстве электролитом. [c.533]

    Электрохимические методы обработки металлов применяются не только для травления, полировки и окисления поверхности, но также и для съема слоев при размерной обработке, для шлифовки, а также для резки, долбления и сверловки металлических изделий. Эти методы возникли в нашей стране в двадцатых годах и особенно после изобретения в 1943 г. Гусевым анодно-механической обработки. Особое значение эти методы имеют для трудно обрабатываемых механически твердых металлов и сплавов. [c.397]

    В настоящее время применяют многие методы борьбы с коррозией главные из которых 1) защитные покрытия (металлические и неметаллические) 2) обработка и изменение состава среды либо состава металла (сплава) 3) электрохимические и электрические методы (протекторная защита, катодная и анодная защита). [c.472]

    Обобщенная теория структурной коррозии металлов, основанная на дифференциальных анодных кривых, позволяет объяснить большое многообразие явлений структурной коррозии, анодное растворение и поверхностную обработку гетерогенных сплавов и агрессивных средах (межкристаллитную коррозию, коррозию под напряжением, ножевую коррозию, точечную и язвенную коррозию, экстрагивную коррозию, коррозию в зазорах, электрополи-рование, химическое полирование, химическое фрезерование , электрохимическое фрезерование и др.) с учетом природы металла и раствора. [c.79]

    В зависимости от стационарного потенциала или наложенного анодного потенциала и состава раствора можно создать условия, при которых будет наблюдаться наибольщая разница в скоростях растворения отдельных структурных составляющих, и, наоборот, могут быть достигнуты условия, при которых разница в скоростях будет наименьшей. Этот эффект, объясняемый с помощью дифференциальных анодных кривых, может быть использован для выяснения механизма химической и электрохимической обработки металлов и сплавов, пспользуемо в настоящее время в практике. [c.68]


    С целью повышения каталитической активности широко применяется модифицирование поверхности трафитов осаждением металлов или их оксидов. При этом изменяются химический состав и строение активных центров на поверхности гра- фита. Так, для электрохимического получения хлора и хлоратов на графит наносят свинец или его сплавы с сурьмой и серебром (яп. лат. 61096), диоксид свинца (яп. пат. 1361), металлы или оксиды металлов подгруппы платины (бельг. пат. 777682), пропитывают солями железа. Для электрохимического окисления органических соединений рекомендуется графит пропитывать солями никеля с последующей анодной обработкой [c.32]

    Применение температурно-кинетического метода при изучении анодного растворения при повышенных плотностях тока алюминиевого сплава показало, что при небольшой величине потенциала преобладают ограничения, обусловленные химической поляризацией. При высоких скоростях обработки электрохимический механизм торможения скорости процесса переходит в диффузионный, и все большую роль начинает играть отвод продуктов реакции из зоны обработки [130]. Наибольшее сопротивление транспортированию вещества при этом оказывает, по-видимому, покрывающая анод фазовая пленка с довольно рыхлой структурой. На основе анализа закономерностей анодного растворения металлов следует подчеркнуть сложность данного процесса, особенно при повышенных плотностях тока, и необходимость его разностороннего исследования в каждом конкретном случае, так как общетеоретические положения не дают практических рекомендаций по выбору оптимальных режимов процесса, [c.37]

    Левин А. И., Евсеева М. А., Нечаев А. В. Кинетика анодного растворения при электрохимической обработке сплава ВК8. В кн. Электрохимическая обработка металлов. Кишинев, Штиинца , 1971, с. 24—28. [c.288]

    Описанный выше процесс электрохимического воронения фактически можно назвать анодированием. Однако этот термин в основном относится к анодной обработке алюминия и его сплавов. Пленки, образующиеся при анодной обработке алюминия, обладают достаточной толщиной и комплексом ценных свойств. Они отлично защищают металл от коррозии и являются хорошим подслоем под лакокрасочное покрытие, что весьма важно, поскольку на необработанный алюминий органическая пленка ложится плохо. [c.162]

    Разработаны технологические процессы нанесения на поверхность алюминиевых деталей различных гальванических покрытий. Развитие электрохимических методов обработки проката в черной металлургии с целью защиты от коррозии неизмеримо увеличило масштабы производства, мощности генераторов постоянного тока низкого напряжения и регулирующей аппаратуры, внедрения автоматического контроля и регулирования основных технологических параметров различных процессов. К этим процессам относятся катодное и анодное обезжиривание, травление и электрополировка металлов, а также нанесение различных покрытий, в том числе лужение и цинкование листового металла, полосы и проволоки, и, наконец, оксидирование алюминия, магния и их сплавов. [c.10]

    Следует отметить, что скорость и чистота обработки сплавов на железной основе зависят также от их структурного состояния. Так, при электрохимической обработке в растворе хлористого и азотнокислого натрия закаленных и термически необработанных сталей величины удельного съема металла и анодного выхода по току в первом случае значительно выше. Шероховатость поверхности закаленных материалов также меньше. Очевидно, что мелкокристаллическая структура сплава способствует получению лучших результатов при анодной обработке. Эго объясняется тем, что процесс анодного растворения металла идет быстрее по границам зерен, где энергия связи отдельных атомов ниже, чем внутри зерен. Поэтому при анодной обработке мелкодисперсных (например, мартенситных) структур, быстрее идет процесс растворения металла и соответственно увеличивается величина удельного съема и анодного выхода по току. Такая структура обусловливает получение обработанной поверхности более высокого класса чистоты. [c.131]

    Сущность электрохимического шлифования заключается в сочетании анодного растворения металла с абразивным съемом продуктов реакции. Этот способ применяется для обработки деталей, изготовленных из твердых сплавов. Например, при обработке сплавов вольфрама на аноде возможна реакция [c.87]

    Однако наличие напряжений и трещин в покрытии и его способность влиять на водородное охрупчивание основного металла может иметь не меньшее значение, чем электрохимическая полярность. Так, в то время как цинк, нанесенный в надлежащих условиях, должен обеспечить определенный минимум протекторной защиты в дефектных участках покрытия, при горячем методе оцинкования может получиться толстый слой сплава, в котором легко образуются трещины в процессе действия знакопеременных напряжений эти трещины могут распространиться внутрь стали и даже при отсутствии коррозии усталостное разрушение наступит быстро. Цинк можно наносить методом распыления, если шероховатость, создаваемая на изделии до нанесения покрытия, не вызовет слишком большого понижения усталостной прочности или гальваническим путем, если при этом можно избежать водородного охрупчивания. Иные предпочитают кадмиевое покрытие, но при этом может быть закрыт выход водороду, оставшемуся в металле от предварительного травления поэтому при травлении требуется так же тщательно соблюдать режим, как и при нанесении покрытия. Можно было бы думать, что применение анодного травления (взамен травления в кислоте) устранит эти трудности, однако известны случаи, когда анодная обработка сама по себе приводит к ухудшению сопротивляемости усталости. Хромовое покрытие само может содержать большие количества водорода в одном французском методе водород затем удаляется путем, который по существу представляет из себя слабую анодную обработку [33]. [c.663]

    Схема электрохимической обработки металла представлена на рис. XVI.7. Обрабатываемое изделие служит анодом и растворяется цри прохождении тока. К отрицательному полюсу источника тока подключается катод (инструмент), обычно изготавливаемый из стали. На катоде выделяется водород. Между электродами сохраняется небольшой зазор, по мере растворения анода передвигают катод, чтобы сохранить малое расстояние между анодом и катодом. В зазор между электродами подается под давлением раствор электролита, в данной установке через полость в центре катода. Раствор электролита выносит из межэлектродного пространства продукты анодного растворения и газообразные продукты катодной реакции. Последние затем удаляются в атмосферу, а продукты растворения тем или иным способом выводятся из раствора электролита. В качестве растворов электролитов для обработки сталей и многих цветных металлов (никель, медь, кобальт, титан) и их сплавов применяется раствор Na l для обработки алюминия, цинка, олова и [c.422]

    Плакирование чистым алюминием или алюминиевым сплавом представляет собой один из методов улучшения коррозионной стойкости деформируемых алюминиевых сплавов. Сначала этот метод применяли для сплавов типа дуралюмина, а затем он нашел применение и для других сплавов. Плакирование создает двойную защиту — механическую и электрохимическую, так как слой чистого алюминия является анодным по отношению к сплаву, содержащему тяжелый металл. Коррозии подвергается преимущественно плакирующий материал. Механические свойства плакирующих сплавов обычно мало отличаются от свойств защищаемого металла, и коррозия редко проникает глубже плакирующего материала. При термической обработке плакированных сплавов легирующие элементы сплава диффундируют в покрытие и образуют дис узионную зону. Следовательно, имеются три зоны, и коррозия обычно бывает только в первой. [c.20]

    Соединяемые пов-сти подгоняют друг к другу, очищают и(шш) модифицируют их. При С. мн. металлов и пластич. масс на основе полярных полимеров пов-сти обрабатывают струей мелкодисперсного абразивного материала (струйная обрабртка) с послед, обезжириванием, при С. А1 и его сплавов используют травление или анодное оксидирование (см. Электрохимическая обработка металлов). Обезжири- [c.362]

    Дамаскин Б. Б Петрий О. А., Введение в электрохимическую кинетику, М., 1975. Б. Б. Дамаскин. ЭЛЕКТРОХИМИЧЕСКАЯ РАЗМЕРНАЯ ОБРАБОТКА металлов и сплавов, основана на анодном растворении участков заготовки, подлежащих удалению, при пропускании пост, электрич. тока. Препятствующие растворению атомы пассивирующего О (см. Пассивность металла) вытесняются с пов-стя металлов активирующими анионами р-ра, если на металл наложено достаточно высокое электрич. напряжение. Вытеснение обусловлено большей полярностью хим. связи металла с анионом, чем с кислородом. На катоде образуются Нг и ионы ОН", на аноде — Ре " ", к-рые удаляются из р-ра, напр, по р-ции 20Н ре + Ре(ОН)2. Вредное влияние растворенных, твердых и газообразных отходов, возникающих при обработке, и перегрева в меж-электродйом пространстве устраняется протеканием электролита у растворяемых участков. [c.704]

    Электролиты № 1 и 2 применяются для обезжиривания черных металлов № 2 — для меди и ее сплавов № 3 — для цинка и его сплавов № 4 — для алюминия, сплавов цинка, свинца и кадмия № 5 предлагается для обезжиривания металлов с использованием переменного тока. В более концентрированных растворах обезжиривают сильно загрязненные детали, нижний предел концентрации рекомендуется для обезжиривания полированных деталей. С. А. Вишенков [20] предлагает для электрохимического обезжиривания нержавеющих сталей 1X13 и 1Х18Н9Т (перед нанесением никель-фосфорного покрытия химическим способом) слегк, опескоструенные детали обрабатывать на аноде в 10—] 5-ном растворе едкого натра при анодной плотности тока 5—10 Щдм температуре раствора 60—70°, в течение 5—10 мин. до получения равномерного красно-коричневого налета по всей поверхности детали. После анодной обработки де- [c.17]

    В отличие от химических способов электрохимическое оксидирование более универсально и позволяет производить обработку не только меди, но и ее сплавов оловянистой бронзы, латуни марок Л62, Л68, ЛС59 и других. Образование оксидной пленки происходит при анодной обработке металла в горячем растворе едкой щелочи (дешевый и устойчивый в эксплуатации электролит). Хотя электрохимическое оксидирование связано с дополнительными затратами на электроэнергию, все же этот способ наиболее пригоден для производственных условий. [c.56]

    Электрохимия интерметаллических фаз (ёплавов) является теоретической основой таких технологических процессов, как электрорафинирование металлов, электрохимическая размерная обработка, получение скелетных катализаторов. Анодные реакции на сплавах представляют собой один из парциальных коррозионных процессов, который определяет характер их коррозионного поражения (селективная коррозия, коррозионное растрескивание,- пробочное или язвенное разрушение и т. Д.). Знание механизма и кинетики растворения сплава-анода определяет успех создания некоторых химичес-. ких источников тока. [c.3]

    Электрохимическое полирование представляет собою процесс растворения металла в условиях частичной пассивности. В результате изменения состояния поверхности металл приобретает блеск. Первоначально этот процесс рассматривался как способ декоративной отделки изделий и обработки шлифов при металлографических исследованиях. Затем его стали использовать также для улучшения эксплуатационных характеристик аппаратуры. Благодаря специфическим условиям анодного растворения металла при алектрохимическом полировании удаляется поверхностный слой с повышенябй концентрацией напряжений, инородных включений, скрытых дефектов, весьма неблагоприятно влияющих на механические, электрические и физико-химические свойства материала. Изменение класса шероховатости поверхности происходит прежде всего в результате удаления острых неровностей, а также сглаживания высокочастотных микрошероховатостей и образования волнообразного рельефа. Эффективность влияния процесса на свойства металлов и сплавов связана с их составом, степенью деформации, толщиной обрабатываемой детали. [c.330]

    Электрохимическое растворение ниобия, тантала и сплавов на их основе затруднено, что обусловлено образованием плотной полупроводниковой окисной пленки на поверхности металла на воздухе и утолщением этой пленки при анодной, поляризации в водных растворах электролитов. Авторы работы [95], изучавшие возможность ЭХРО изделий из ниобие-вых сплавов, нашли, что во всех использованных ими электролитах анодное растворение этих сплавов крайне мало или вообще отсутствует. Ниобий, тантал и сплавы с очень высоким содержанием этих металлов могут быть обработаны только в растворах, имеющих в своем составе высокое содержание бромид-ионов [96—100]. Более подробные сведения о составах электролитов для ЭХРО ниобия и об особенностях обработки имеются в работе [100]. [c.181]

    Каданер Л. И., Котляр А. М., Сулковская Ю. С. Влияние состава электролита на электрохимическое поведение, съем и характер анодного растворения легированных сталей и твердых сплавов. — В кн. Размерная электрохимическая обработка металлов. Тула, ЦНТИ, 1969, с. 123—130. [c.287]

    Для обработки высокопрочных и коррозионностойких сталей, жаропрочных, магнитных и твердых сплавов, полупроводниковых и других материалов, а также изделий сложной конфигурации из легированных сталей весьма эффективны электрохимические методы размерной обработки, основанные на принципе анодного растворения металла. За последние годы появились различные разновидности электрохимической размерной обработки (ЭХО) металлов, отличающиеся способами разрушения металла и удаления с обрабатываемой поверхности продуктов реакции. По этим двум определяющим признакам ЭХО можно разделить на три группы собственно электрохимические электрохимико-механические и комбинированные, электрофизико-химические методы обработки. [c.85]


Смотреть страницы где упоминается термин Электрохимическая анодная обработка металлов и сплавов: [c.162]    [c.2]   
Смотреть главы в:

Курс общей химии -> Электрохимическая анодная обработка металлов и сплавов

Курс общей химии -> Электрохимическая анодная обработка металлов и сплавов

Курс общей химии -> Электрохимическая анодная обработка металлов и сплавов

Предмет химии -> Электрохимическая анодная обработка металлов и сплавов




ПОИСК





Смотрите так же термины и статьи:

Анодная обработка металлов

Металлы сплавы

Сплавы и металлы металлов

Ток анодный

Электрохимическая обработка металла ЭХО

Электрохимический ряд металлов



© 2025 chem21.info Реклама на сайте