Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции электрофильного присоединения к атому азота

    В настоящей главе рассматриваются реакции присоединения к ДВОЙНЫМ связям углерод — кислород, углерод — азот, углерод— сера и к тройной связи углерод—азот. Исследование механизма этих реакций намного проще, чем процессов присоединения к кратным связям углерод — углерод, описанных в гл. 15 [1]. Большинство вопросов, обсуждавшихся при рассмотрении последних реакций, либо не возникают здесь вообще, либо на них очень легко дать ответ. Поскольку связи С = 0, С = Ы и С = М сильнополярны и положительный заряд локализован на атоме углерода (кроме изонитрилов, см. разд. 16.3), то нет сомнений относительно ориентации несимметричного присоединения к ним нуклеофильные атакующие частицы всегда присоединяются к атому углерода, а электрофильные — к атому кислорода или азота. Реакции присоединения к связям С = 5 встречаются значительно реже [2], и в этих случаях может наблюдаться противоположная ориентация. Например, из тиобен-зофенона РЬ2С = 5 при обработке фениллитием с последующим гидролизом получается бензгидрилфенилсульфид РЬгСНЗРЬ [3]. Стереохимию взаимодействия, как правило, рассматривать не приходится, так как невозможно установить, происходит ли син- или анти-присоединение. При присоединении УН к кетону, например  [c.321]


    Реакции с электрофильными реагентами проходят по положению 3 либо происходит присоединение к пиридиновому атому азота. Все азаиндолы гораздо более устойчивы по отношению к кислотам, чем индол (см. для сравнения разд. [c.447]

    На этом основании могут быть сформулированы вероятные механизмы тиамин-зависимых реакций (фиг. 73). Во всех случаях первичная реакция включает присоединение карбаниона к карбонильному атому углерода а-кетокислоты с образованием, например, соединения VI. Сильно электрофильный атом азота в этом соединении способствует его декарбоксилированию, что приводит к соединению VII. Присоединение одного из электрофильных [c.225]

    В реакции электрофильного присоединения атом углерода, образующий кратную связь, отдает электронный заряд электрофилу. Поскольку такой атом углерода обычно не несет формального заряда (в этом отношении изо-нитрильная группа представляет исключение), то очевидно, что единственный вид заряда, который он может отдать,— это относительно подвижный л-электронный заряд кратных связей. Если атом углерода связан с атомом более электрофильным, чем он сам, например с кислородом или азотом, то я-связь будет поляризована таким образом, что углерод станет относительно электронодефицитным атомом и, следовательно, не будет центром атаки электрофила. Поэтому очевидно, что электрофильное присоединение должно обычно происходить по кратным связям между одинаковыми атомами, например по связям С = СиС = С, и почти также очевидно, что электрофил должен вызывать поляризацию я-связи при взаимодействии с я-электронами. Если электрофил представляет собой поляризованную молекулу А — В или катион А , то легко понять, каким образом он может вызвать необходимую поляризацию связи однако не все электрофилы относятся к этим типам, и, как уже отмечалось выше, электрофильность симметричных молекул, таких, как галогены, проявляется лишь в определенных условиях и только в этих условиях возможно их взаимодействие со связью С == С или С = С (ср. гл. 12, разд. 3,А). Так, молекула хлора должна быть поляризована 01 — С1 " для того, чтобы она могла взаимодействовать с одной из этих связей. [c.198]

    РЕАКЦИИ ЭЛЕКТРОФИЛЬНОГО ПРИСОЕДИНЕНИЯ К АТОМУ АЗОТА [c.33]

    В данной главе заканчивается описание реакций электрофильного присоединения нитрилов, приводящих к образованию новой связи С—N, рассматриваются реакции нитрильной группы с группами —NHR, в которых атом азота непосредственно связан с кислородом, азотом или серой. [c.164]

    Формальное замещение группы СН в бензоле на атом азота приводит к весьма существенным изменениям реакционной способности пиридин гораздо в меньшей степени склонен к реакциям электрофильного замещения, чем бензол, и в большей степени подвержен атаке нуклеофилами. В то же время пиридин вступает в реакции присоединения с рядом электрофильных агентов в некоторых случаях такие реакции обратимы, а иногда приводят к образованию [c.93]


    Электрофильные агенты направляют свою атаку в первую очередь на атом азота. Однако такие реакции часто обратимы, поэтому даже в сильнокислых растворах присутствует небольшое количество свободного основания. Следовательно, пиридин может нитроваться и сульфироваться при высоких температурах, но с трудом (см. стр. 59). Галогенирование пиридина (см. стр. 59) происходит легче, так как продукты присоединения галогенов к пиридину заметно диссоциированы. [c.47]

    С-Сульфирование 2,6-ди-/ирет-бутилпиридина [22] хорошо иллюстрирует подлинную реакционную способность пиридинового цикла в реакциях электрофильного замещения. Объемные заместители эффективно препятствуют присоединению триоксида серы по атому азота пиридина, и сульфирование протекает как нормальное электрофильное замещение скорость этого процесса такая же, как и скорость сульфирования нитробензола. Максимально достижимая конверсия этого процесса 50%, что связано с образованием протона по ходу реакции и его связыванием с молекулой исходного пиридина. [c.110]

    В системах, содержащих более двух гетероатомов в одном цикле, мы наблюдаем тенденцию к усилению всех свойств, описанных ранее в этой книге. В частности, наличие дополнительных гетероатомов как в шести-, так и в пятичленном циклах затрудняет электрофильное замещение и замедляет скорость электрофильного присоединения к атому азота. Кроме того, повышается склонность к реакциям нуклеофильного замещения и присоединения, а в пятичленных соединениях растет кислотность Н-водорода. [c.625]

    Было высказано предположение, что реакции этого типа, протекающие с присоединением амида натрия, металлоорганических соединений и т. п., состоят либо в электрофильном действии катиона реагента на атом азота цикла [759], либо в нуклеофильном действии аниона реагента на центр с наименьшей электронной плотностью [760]. Третья возможность включает комбинацию обеих схем. В виду того что механизм этой реакции не выяснен, в настоящем обзоре" этому вопросу не уделяется много внимания и при рассмотрении реакций предполагается, что присоединение происходит по азометиновой связи. [c.175]

    Скорость гидрогенолиза различных производных со связью Sn—N замедляется электроноакцепторными и ускоряется электронодонорными заместителями. Эти данные указывают на электрофильную атаку атома водорода оловоорганического гидрида на атом азота (ср. с реакциями присоединения гидридов к изоцианатам, стр. 307). [c.309]

    Во-вторых, атом азота изонитрильной группы имеет тенденцию переходить в простое трехвалентное состояние. Для того чтобы это произошло, необходимо, чтобы связанный донорной связью атом углерода присоединил оба фрагмента, образуемые из реагента (эта особенность делает эту реакцию присоединения уникальной). Возникающий при этом продукт может изомеризоваться в более устойчивый изомер или снова присоединять реагент по своей кратной связи. Поскольку начальной стадией безусловно является электрофильная атака по концевому атому углерода, то в реакцию присоединения к изонитрилам должны вступать в основном те же самые реагенты, что и реагенты присоединения к алкенам. В какой степени оправдывается это предположение, будет показано на следующих примерах. [c.488]

    Соли очень слабых кислот, легко получаемые в жидком аммиаке, могут быть использованы в реакциях присоединения к некоторым ненасыщенным соединениям. Процесс присоединения чаще всего включает атаку карбанионов на электрофильный атом углерода, который связан с кислородом (как в карбонильных соединениях, эпоксидах и в диоксиде углерода), либо с азотом (как в нитрилах). [c.200]

    Такую устойчивость можно объяснить влиянием двух карбонильных групп имидного цикла, приводящим к дезактивации неподеленной электронной пары на атоме азота и затруднению электрофильной атаки на него. В некоторых реакциях действие электрофила направлено на имеющий положительный эффективный заряд углеродный атом карбонильной группы и может приводить к расщеплению имидного цикла по связи С—N. Если в гетероцикле имеется кратная углерод-углеродная связь, например, в. малеинимиде, возникает возможность протекания реакций присоединения, полимеризации и т. д., что расширяет химию этих соединений.  [c.19]

    Интересной и важной в плане получения биологически активных веществ реакцией является восстановление квазиароматических гетероциклических систем с помощью комплексных гидридов металлов, которое рассматривается как нуклеофильная атака гидридиона на наиболее электрофильный центр. Квазиарома-тические системы, у которых атом азота вносит лишь один электрон в совместную я-систему, восстанавливаются значительно легче бензоидных. Образование четвертичных солей еще более облегчает тенденцию к присоединению к ним нуклео- [c.240]


    При рассмотрении реакций ароматического электрофильного замещения следует разделить гетероциклические соединения на две группы к первой группе относятся те, которые проявляют свойства оснований, ко второй — те, которые не проявляют основных свойств. Для представителей первой группы характерно взаимодействие неподеленной пары электронов атома азота с электрофильными реагентами (разд. 2.1), присутствующими в реакционной смеси (протон в случае нитрующей смеси, хлорид алюминия в случае реакции Фриделя — Краф-тса), которое проходит быстрее, чем какое-либо замещение при атоме углерода, И превращает субстрат в положительно заряженный катион, склонность которого к взаимодействию с электрофильной частицей Х+ существенно понижена. Стоит вспомнить понижение скорости реакции электрофильного замещения при переходе от незамещенного бензола к катиону N,N,N-тpимeтилaнилиния (РЬЫ Мез) в 10 раз, хотя в этом случае фрагмент, несущий положительный заряд, лишь присоединен к ароматической системе, а не является ее частью. Таким образом, все гетероциклические соединения, содержащие атом азота пиридинового типа (т. е. фрагмент С=Н), с трудом вступают в реакции электрофильного замещения, если (а) в молекуле отсутствуют заместители, активирующие кольцо к атаке электрофилами, (б) в молекуле нет конденсированного бензольного кольца, в котором могут проходить реакции электрофильного [c.35]

    Взаимодействие с аминами. Взаимодействие оксосоединений с первичными аминами протекает по механизму присоединения — отщепления. На первой стадии реакции происходит нуклеофильное присоединение амина по двойной связи С=0 карбонильной группы. Амины являются сильными нуклеофилами и в данном случае нет необходимости активировать электрофильный центр оксосоединения. Пфвичным продуктом присоединения является биполярный ион, который стабилизируется в результате внутримолекулярного переноса протона от атома азота к атому кислорода, превращаясь в аминоспирт. Однако реакция не останавливается на этой стадии. Уже подчеркивалось, что соединения, содержащие две электроноакцепторные группы при одном атоме углерода, неустойчивы и стремятся к стабилизации путем отщепления одной из групп в виде нейтральной термодинамически стабильной молекулы. В данном случае происходит отщепление молекулы воды от молекулы аминоспирта (вторая стадия реакиии) и образуется имин (основание Шиффа). [c.240]

    Пиридин-Ы-оксиды — особенно важные и полезные в синтетическом плане производные пиридина, не имеющие аналогий в ряду производных бензола. Строение N-оксидов пиридинов обеспечивает их большую склонность к реакциям электрофильного замещения и одновременно к реакциям с нуклеофилами по сравнению с самими пиридинами, что может показаться на первый взгляд удивительным. Действительно, с одной стороны, формально отрицательно заряженный атом кислорода nnpHflHH-N-OK naoB способен принимать участие в стабилизации интермедиатов реакции электрофильного замещения, а, с другой, положительно заряженный атом азота облегчает присоединение нуклеофилов. [c.99]

    Диазины — пирицазин, пиримицин и пиразин — представляют собой гетероциклические соединения, содержащие два иминных атома азота, и, следовательно, все свойства, присущие пиридину (гл. 5), в еще больщей степени проявляются у этих гетероциклических соединений. Два гетероатома оттягивают электронную плотность от атомов углерода, включенных в цикл, еще в больщей степени, чем в пиридине. Вследствие этого незамещенные диазины еще менее склонны к реакциям электрофильного замещения, чем пиридин. Понижение электронной плотности на атомах углерода гетероциклов закономерно приводит к облегчению атаки диазинов нуклеофильными реагентами по сравнению с пиридином. Диазины в меньшей степени, чем пиридин, проявляют свойства оснований, поскольку сказывается дестабилизирующее влияние второго атома азота на катион диазиния. Тем не менее, диазины образуют соответствующие соли при реакции с алкилгалогенидами и при взаимодействии с надкислотами превращаются в соответствующие N-оксиды. Электрофильное присоединение идет только по одному атому азота, поскольку возникающий при этом положительный заряд значительно понижает нуклеофильные свойства второго атома азота. [c.251]

    Оксазолы легко вступают в реакции циклоприсоединения по положениям 2 и 5 аналогично фуранам (разд. 15.8), тиазолы реагируют с алкинами подобным же образом (например, см. разд. 14.111.7), однако существует только один пример такого циклоприсоединения в химии имидазола. Тиазол и имидазол реагируют с высокоэлектрофильными алкинами через первоначальное электрофильное присоединение по атому азота с последующей внутримолекулярной нуклеофильной циклизацией [93]. [c.518]

    Представляется довольно вероятным, что реакция в у сазанном выше случае происходит не путем прямого нуклеофильного воздействия амина на двойнук> связь, а что она состоит в первоначальном присоединении протона к двойной связи с последующим (или одновременным) сдвигом свободной электронной пары азота к приобретшему сильный электрофильный характер атому углерода при двойной связи. Этот процесс сходен с превращением изооснования в соответствующую четвертичную аммонийную соль (стр. 343 и 349). Тот факт, что для соединения XI наблюдается внутримолекулярное присоединение амина, но не наблюдается межмолекулярного, связан, вероятно, с благоприятным для замыкания кольца расположением атомов в случае десятичленного цикла и отсутствием такового в случае межмолекулярной реакции. Аналогичный случай обратимого гофмановского расщепления известен и в ряду производных стрихнина, где также затруднена свобода движения реагирующих групп [572]. [c.354]

    Влияние заместителей. Легкость атаки электрофильных агентов на атом азота пиридина зависит от электронной плотности у этого атома и стерических препятствий. Сильные электроноакцепторные заместители (например NO2, OR, С1) затрудняют эти реакции при уменьшении электронной плотности у атома азота. Это влияние является в значительной степени индуктивным и поэтому особенно сильно сказывается из а-положения. Сильные элек-тронодонорные заместители (например NH2, 0R) облегчают элек-трофильную атаку при увеличении электронной плотности у атома азота. Это обусловлено эффектом сопряжения и, следовательно, усиливается в а- и 7-положениях. Конденсированные- бензольные кольца, арильные и алкильные группы и другие группировки атомов со сравнительно слабым электронным эффектом оказывают небольшое влияние. Указанные эффекты иллюстрируются величиной рКа, приведенной на стр. 55. Реакции другого типа, чем протонное присоединение, затрудняются всеми типами а-групп (ср. стр. 56—57). [c.52]

    В положения 6 и 8. Предположение о присоединении при низкой кислотности электрофильного реагента к атому азота, конечно, правильно таким способом, например, можно получить ион М-ни-трохинолиния [51] и комплекс Вг+ с двумя молекулами хинолина в виде перхлората [39]. Последующие стадии такого механизма еще не доказаны, но интересно отметить, что взаимодействие иона Ы-цианопиридиния с бромом при низки)( кислотностях также приводит к образованию 3-бром-, 3,6-дибром- и 3,6,8-трибромхиноли-нов. Механизм этой реакции был изучен несколько подробнее и в общих чертах показан на схеме 4. [c.142]

    Присутствие двух карбонильных групп в молекуле имидов увеличивает кислотность атома водорода аминогруппы, снижает нуклеофильность как атома кислорода, так и азота, а также увеличивает дефицит электронов на карбонильном атоме углерода. Если принять во внимание указанные различия, то реакции имидов можно рассматривать как достаточно близкие к реакциям амидов. Так, например, с большим трудом, чем в случае имидов протекают хорошо известные реакции нуклеофильного присоединения к карбонильному атому углерода (гидролиз или реакция с реактивами Гриньяра), а также реакции с электрофильными реагентами (алкилгалогенидами, ацилирующими и галогенирующи-ми агентами и карбонильными соединениями). Вместе с тем [c.492]

    Амиды ацилкарбоновых кислот (X = NHR ), как и следовало ожидать, более стабильны, чем соответствующие кислоты, поскольку амидный атом азота проявляет слабоосновные свойства и вероятность его присоединения к карбонильной группе в нейтральных апротонных средах мала. Кислоты или основания, добавленные к растворам амидов ацилкарбоновых кислот, катализируют внутримолекулярную реакцию присоединения за счет повышения либо электрофильности кетогруппы (кислотный катализ), либо основности амидной группы (основный катализ). В последнем случае механизм изомеризации можно представить следующей схемой  [c.65]

    Первой стадией реакции диазотирования является присоединение атакующей электрофильной частицы 0N—X к атому азота аминогруппы за счет неподеленной пары электронов (1), затем быстро образуется протонированный N-нитрозамин (2), который переходит в нейтральный N-нитрозамин (3). Последний претерпевает прототропную нерегруппировку в диазогидрат (4), кото(рый под действием гидроксоюий-катиона цревращается в диазоннй-ка-тион (5)  [c.85]

    Начнем наш обзор с рассмотрения кислотности протона различных кислот (общей формулы НХ). Количественной мерой кислотно-основных взаимодействий для соединений, имеющих способные к диссоциации протоны, является величина Величины охватывают большой диапазон от -10 (НСЮ ) до 44 (Ме СН—Н). Приведем на выбор несколько величин НС1 -7 Н3О+ -1,74 НР 3,17 КСО Н от 4 до 5 [ Нз(Ср)2]+ 5,4 Н СОз 6,35 NH 9,24 КЗН 12 СН ССЮ 12 Н2015,7 РЬС=СН 18,5. Кроме протона имеется много электрофиль-ных центров другого рода, например, углерод карбонильной группы или азот в ионе нитрония (N0 . Один из способов количественной оценки силы донорно-акцепторных взаимодействий в реакциях с участием электрофилов с положительно заряженными атомами углерода или азота заключается в исследовании конкурирующих реакций Фриде-ля - Крафтса, протекающих с промежуточным образованием этих электрофильных частиц. Молярное отношение конечных продуктов, образующихся при проведении реакции Фриделя - Крафтса (см. ниже) в смеси бензола и толуола, является отражением электрофильной силы атакующей частицы по отношению к яр -гибридизованному атому углерода (в ароматическом кольце). Чем слабее электрофил, тем выше селективность его присоединения (высокие величины толуол/ бензол и соотношения пара мета, см. табл. 2) [ 2 ]. [c.60]


Смотреть страницы где упоминается термин Реакции электрофильного присоединения к атому азота: [c.547]    [c.517]    [c.32]    [c.63]    [c.95]    [c.173]    [c.463]   
Смотреть главы в:

Химия гетероциклических соединений -> Реакции электрофильного присоединения к атому азота




ПОИСК





Смотрите так же термины и статьи:

Присоединение электрофильное

Реакции присоединения

Реакция электрофильного

Электрофильность

Электрофильные атомы



© 2024 chem21.info Реклама на сайте