Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции присоединения атомов Н к СгН

    В этой реакции присоединения атом водорода вступает к наименее гидрогенизированному атому углерода, т. е. эта реакция протекает против правила Марковникова. Следовательно, несимметричные алкены присоеди- [c.323]

    В этих реакциях присоединения атом галоида занимает более удаленное от карбонильной группы положение. [c.10]

    Реакции присоединена я. В реакциях присоединения атом углерода карбонильной группы взаимодействует с нуклеофильным реагентом, двойная связь разрывается с образованием аниона, вступающим на втором этапе реакции во взаимодействие с протоном  [c.120]


    Интересную возможность непрямого получения хлоруглеводородов представляет реакция присоединения к олефинам хлористых алкилов, содержащих атом хлора при вторичном или третичном углероде, в присутствии катализаторов Фриделя — Крафтса. [c.196]

    При более высоких температурах это промен уточное соединение должно диссоциироваться на ароматическое соединение и свободный атом хлора. Затем идет атака боковой цепи (СИ). Подобное объяснение справедливо и для реакции присоединения хлора к пропилену нри низких температурах, а нри высокой температуре происходит замещение водорода в метильной группе [5]  [c.469]

    Реакции окисления олефинов можно разделить на реакции присоединения по двойной связи с разрывом (или без) оставшейся связи С—С — и реакции замещения у атома углерода, соседнего с тем атомом углерода, у которого есть двойная связь (т. е. у атома, находящегося в а-положении по отношению к атому с двойной связью это а-положение называют также аллильным). [c.162]

    Плоское строение молекулы и угол между связями 120 позволяют в методе ЛМО считать, что в локализованных а-связях атом углерода участвует гибридными хр -орбиталями. Каждый атом углерода участвует своими тремя электронами в трех таких о-связях двух С—Н и одной С—С. Еще одну связь С—С образуют не участвующие в гибридизации р -электроны, по одному от каждого атома. Так как р -орбитали направлены перпендикулярно плоскости молекулы, их перекрыванием образуется я-орбиталь, электронная плотность которой располагается над и под плоскостью молекулы. Таким образом, связь С=С оказывается двойной симметричной о л -связью. Разделяя связь между углеродными атомами в этилене на о- и л-связь и принимая энергию разрыва о-связи равной Е (С—С) = 347 кДж/моль. можно приписать л-связи в этилене энергию 250 кДж/моль. Таким образом, л-связь (С—С) в этилене менее прочна, чем а-связь, и легче разрывается, чем объясняется склонность этилена к реакции присоединения. [c.107]

    Реакция присоединения активных радикалов (Н, СНз) к олефинам, при которой радикалы атакуют двойную связь, имеет малую энергию активации (1—2 ккал) и низкий стерический фактор [62, 63] (порядка 10 —10 для Н-ато-мов). [c.33]

    В рассмотренных реакциях присоединения атомов Н к олефинам, атомы водорода в случае молекул пропилена И изобутилена присоединяются к наиболее гидрогенизированному атому углерода в этих молекулах, т. е. в соответствии как бы с правилом Марковникова, которое было сформулировано для взаимодействия молекул олефинов и НХ. Вероятность образования пропильных радикалов из молекул пропилена и атомов Н достаточно велика, так как в условиях крекинга пропильные радикалы по отношению к диссоциации на атомы Н и пропилен довольно устойчивы, но зато они легко распадаются на этилен и СНз-радикалы  [c.255]


    Рассмотрим гетеролитические реакции присоединения и отметим весьма существенное для их описания обстоятельство. В результате поляризации кратной связи непредельных соединений под влиянием соседних алкильных групп наиболее гидрогенизированный атом углерода всегда, хотя и в небольшой степени, заряжен. Этот факт можно отразить в структурной формуле, например, пропилена следующим образом [c.167]

    Поэтому водород присоединяется к отрицательному атому углерода а галоген — к положительному. Если значения электроотрицатель ности заместителей в молекуле одного и того же порядка, в резуль тате реакции присоединения получается смесь изомеров. Если не которые группы атомов субстрата обусловливают обратную поляри зацию двойной связи (например, как в молекуле акрилонитрил  [c.167]

    Таким образом, кинетическое исследование реакций торможения при крекинге алканов показывает, что эти реакции можно рассматривать как характерные модельные реакции Н-отрыва (в случае радикалов-СНз), приводящие к образованию малоактивных аллиль-ных радикалов, или как реакции присоединения (в случае Н-ато-мов) с образованием горячих радикалов, претерпевающих изомеризацию с последующим распадом по другому направлению (отклонение от р-правила), в результате чего возникают менее активные радикалы. [c.224]

    П. В. Пучков и А. Ф. Николаева [93] одни из первых исследовали вопрос низкотемпературной гидрогенизации мазута ишим-байской нефти и влияние этих условий на изменение углеводородного состава и выход масляных фракций. Результаты их исследований показали, что при изменении условий гидрогенизации, а именно при понижении температуры до 360—400°, повышении начального давления водорода до 200 ат и увеличении количества катализатора (сернистого молибдена) до 10%, уменьшается разложение и усиливаются реакции присоединения водорода по сравнению со среднетемпературной гидрогенизацией при 420 — 460° и при начальном давлении водорода 100 ат. [c.253]

    Рассмотрите реакцию присоединения бромоводорода к 2-метилбутену-1. Рассмотрите механизм этой реакции и объясните, почему атом брома будет присоединяться ко второму, я не к первому атому С. [c.218]

    Выступая в качестве донора электронной пары, атом азота может участвовать в образовании по донорно-акцепторному способу четвертой ковалентной связи с другими атомами или ионами, обладающими электроноакцепторными свойствами. Этим объясняется чрезвычайно характерная для аммиака способность вступать в реакции присоединения. [c.430]

    Комплексообразование с участием поверхностных лигандов — пример реакций функциональных групп, которые относятся к реакциям присоединения за счет донорно-акцепторных взаимодействий (продукты реакции (1.17)). В группировке = 51—ОН на поверхности кремнезема атом кремния может участвовать в образовании координационной связи с молекулами воды [c.25]

    Более интересные свойства в реакциях присоединения проявляют другие функциональные группы, полученные из =51—ОН-групп с помощью реакций замещения (см. выше). Так, в группировке ( = 51—0—)зР (см. реакцию (1.6)) атом фосфора обладает неподеленной парой электронов, которые участвуют в образовании координационной связи между атомом фосфора и атомом, имеющим незаполненные. -орбитали  [c.25]

    Атом алюминия отличается от атома бора наличием свободного -подуровня во внешнем слое, что создает возможность увеличения числа донорно-акцепторных связей. Поэтому для алюминия характерно не только координационное число 4, но и 6. Наличием свободных орбиталей во внешнем электронном слое обусловлена склонность соединений бора и алюминия к полимеризации и реакциям присоединения. [c.251]

    Присоединение к изонитрилам Н—N = 0 — это не просто реакция, в которой частица с электронной парой присоединяется к одному атому, а частица без электронной пары — к другому, как происходит в большинстве реакций присоединения к двойным и тройным связям, обсуждавшихся в этой главе и гл. 15. В этих реакциях и электрофил, и нуклеофил присоединяются к атому углерода. Никакие частицы не присоединяются к атому азота, который однако теряет свой положительный заряд за счет перехода к нему пары электронов от тройной связи  [c.427]

    С одной стороны связи карбонильного атома углерода в них должны располагаться под угом 116° (5/> -гибридное состояние), однако, с другой стороны, этот угол должен определяться размером карбоцикла, поскольку карбонильная группа является эндо-циклической Таким образом, во всех циклоалканонах от цикло-пропанона до циклогексанона, валентный угол, образованный эндоциклическими связями карбонильного атома углерода, будет искажен и тем сильнее, чем меньше размер цикла В реакциях присоединения атом углерода карбонильной группы переходит из в 5р -гибридное состояние и рассматриваемое угловое напряжение будет частично сниматься При этом наибольший выигрыш энергии будет в случае циклопропанона, который и проявляет наибольшую карбонильную активность [c.59]


    В настоящем разделе рассмотрены механизмы двух разных реакций присоединения водорода к циклическим соединениям — к двойной или ароматической связям. Сравнительно недавно выяснилось, что существует особый тип реакций присоединения атомов водорода к цик-лоалканам, при котором число Н-атомов в молекулах не меняется, поскольку каждому присоединившемуся атому водорода соответствует другой атом водорода, уходящий из молекулы. Такие реакции и воирос о том, происходят ли эти присоединения и отрывы одновременно или последовательно, рассмотрены в следующем разделе. [c.58]

    По Уитмору при реакции присоединения галоидоводородов к олефинам сначала протон присоединяется к олефину с образованием карбоний-иона, затем отрицательный ион галоида присоединяется к атому углерода с недостаточным количеством электронов. Так, для пропилена реакцию можно написать так  [c.367]

    Как было показано выше, вклад я-аллильного лиганда в дативное связывание с металлом невелик и устойчивость этих комплексов обусловлена в основном донорно-акцепторным взаимодейст вием [61]. Из всех трех атомов углерода л-аллильного лиганда лишь центральный углеродный атом участвует только в донорно-акцепторном взаимодействии с переходным металлом [83]. Исходя из этого, увеличение электронодонорной силы заместителей в л-аллильных лигандах, особенно у среднего углеродного атома, должно способствовать упрочнению связи л-аллильный лиганд — металл. Относительная реакционная способность 2-алкил-1,3-бута-диенов при взаимодействии с (С407Ы11)2, а также активность аддуктов 1 1 в последующих реакциях присоединения к соответствующему 1,3-диену подтверждают этот вывод. Из кинетических кривых образования аддуктов 1 1 (С4В7Н11)2 с диеновыми углеводородами (рис. 9) видно, что активность диенов увеличивается в ряду  [c.125]

    Этанол получается путем присоединения молекулы воды по двойной связи молекулы этилена. Процесс ускоряется в кислой среде. В результате присоединения молекулы воды двойная связь исчезает и каждый углеродный атом соединяется с чегыр1.мя атомами, а не с тремя, как было ранее. Такая реакция называется реакцией присоединения и может быть представлена следующей схемой  [c.219]

    При атом, если бы в процессе сближения атома Н и молекулы С2Н4 последняя не изменяла своей геометрической конфигурации или оставалась в основной квантовом состоянии, то сблилсающиеся частицг отталкивались бы одна от другой, и реакция присоединения не имела бы мс ста (рис. 32, кривая /). [c.130]

    С алкенами серная кислота вступает в реакции присоединения. Легче всего взаимодействует кислота с алкенами, содержащими третичный углеродный атом, наиример изобутилен растворяется в 63% Н2304 при комнатной температуре. Вторичные алкены вступают в реакцию с серной кислотой более высокой концентрации. Так, пропилен взаимодействует с 65—70%) кислотой при повышенных температуре и давлении, а для поглощения бутиленов и амиленов нормального строения исшзльзуют 80—90% кислоту. Этилен вступает в реакцию только с 94—98% кислотой. [c.315]

    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]

    В промышленности гидрохлорирование этилена осуществляют следующим образом. В реактор, содержащий суспензию хлористого алюминия в хлористом этиле или и смеси хлористого этила и дихлорэтана, вводят приблизительно экнимолярные количества совершенно сухих этилена и хлористого водорода. Экзотермическую реакцию присоединения хлористого водорода к этилену проводят при 35—40 и 8 ат. После окончания процесса присоединения хлористый этил отгоняют и очищают фракционированной разгонкой. Остаток состоит из полимерных продуктов. Катализатор непрерывно выводят из реактора, заменяя свежим [187 . [c.425]

    Этилтиильный радикал С2Н58, в котором неспаренный электрон делок 1Лизован на (1-орбиталях более объемного атома серы, малоактивен и не способен отрывать атом водорода, но вступает в реакцию присоединения и рекомбинации с образованием соответствующих спин- алдуктов и дисульфида  [c.20]

    Заслуживает внимания введение в механизм окисления реакции присоединения радикала к олефипу. Эта реакция, несомненно, может происходить при исследованных температурах и ею, по-видпмому, объясняется как самоипгибирующее действие олефина на процесс его окислепия, так и то, что обычно при сведении баланса наблюдается иногда довольно значительный недостаток по углероду, увеличивающийся с ростом отношения олефпп/кислород. Последнее, по-видимому, объясняется увеличением в атом случае доли полимеризации. [c.409]

    Реакцию присоединения Н2О к двойной связи можно проводить в присутствии какого-либо кислотного катализатора, например Н2804. Продуктами таких реакций являются спирты-соединения, содержащие группу ОН, присоединенную к атому углерода. Правило Марковникова применимо и в этом случае, если рассматривать молекулу воды как поляризованную на ионы Н — ОН". Тогда группа ОН должна присоединяться к атому углерода, связанному с меньщим числом атомов водорода, как это иллюстрируется следующим примером  [c.423]

    Для веществ, полученных в ходе реакций присоединения, применяют термин аддукты (от лат. addere — добавлять, прибавлять) их полные формулы записывают в виде формул исходных веществ, соединенных точкой, например BI3-PI3 или uSO -SHjO. Термин аддукт употребляют также в более ограниченном смысле для наименования продуктов внешнесферной координации нейтральных молекул незаряженными комплексными соединениями. Такие аддукты известны как в виде индивидуальных соединений, так и в растворах. Пример первого типа — это соединение дигидрата пикрата Li с краун-эфиром бенз-15-корона-5 (см. 3.4) атом лития окружен расположенными в вершинах тетраэдра двумя атомами кислорода пикрат-иона и двумя — от молекул Н2О краун-эфир внешнесферно привязан к комплексу четырьмя водородными связями.  [c.25]

    Понятие индекс свободной валентности неприменимо для атомов, участвующих в образовании только ст-связей, как, например, в этане. Напротив, для атома углерода в этилене, где К = 4, имеем Рг =4,732— —4 = 0,732. Здесь атом С участвует в трех ст-связях, порядок которых всегда равен единице, и в одной п-связи, имеющей в этилене также поря- док />12 = 1- Индекс свободной валентнос-га 0,732 указывает на способность молекулы этилена к присоединению атомов по месту двойной связи. Чем выше Рг, тем более высока активность в реакциях присоединения нейтральных атомов. Индексы / >1 обычно характерны для свободных радикалов. [c.217]

    Направление атаки в нуклеофильном присоединении исследовано очень мало, кроме случая реакций присоединения по Михаэлю к соединениям типа С = С—Z. Здесь отрицательно заряженная часть реагента всегда региоселективно атакует атом углерода двойной связи, более удаленной от Z (см. разд. 15.2). [c.153]

    Присоединение к циклопропанам может идти по любому из четырех обсуждавшихся в настояш,ей главе механизмов, но наиболее важен механизм с электрофильной атакой [106]. Реакции присоединения к замеш,енным циклопропанам обычно подчиняются правилу Марковникова, хотя известны и исключения часто эти реакции вообще характеризуются низкой региоселективностью. Применение правила Марковникова к таким субстратам можно продемонстрировать на примере взаимодействия 1,1,2-триметилциклопропапа с НХ [107]. Согласно правилу Марковникова, электрофил (в данном случае Н+) должен атаковать атом углерода, соединенный с большим числом атомов водорода, а нуклеофил должен присоединяться к атому углерода, который лучше стабилизирует положительный заряд (в данном случае скорее к третичному атому углерода, чем [c.158]

    С субстратами, более подверженными атаке нуклеофилов, например полигалогеноолефинами и олефинами типа С = С—Z, лучше проводить реакцию в щелочном растворе, где атакующей частицей является R0- [147]. Реакции с субстратами типа С = С—Z относятся к реакциям присоединения по Михаэлю, и группа 0R всегда присоединяется к атому углерода, более удаленному от группы Z. Поскольку тройные связи более чувствительны к нуклеофильной атаке, чем двойные, то можно ожидать, что основания будут катализировать реакции присоединения к тройным связям особенно эффективно. Так оно и есть на самом деле, и эта реакция применяется для синтеза простых эфиров енолов и ацеталей [148]  [c.167]

    В настоящей главе рассматриваются реакции присоединения к ДВОЙНЫМ связям углерод — кислород, углерод — азот, углерод— сера и к тройной связи углерод—азот. Исследование механизма этих реакций намного проще, чем процессов присоединения к кратным связям углерод — углерод, описанных в гл. 15 [1]. Большинство вопросов, обсуждавшихся при рассмотрении последних реакций, либо не возникают здесь вообще, либо на них очень легко дать ответ. Поскольку связи С = 0, С = Ы и С = М сильнополярны и положительный заряд локализован на атоме углерода (кроме изонитрилов, см. разд. 16.3), то нет сомнений относительно ориентации несимметричного присоединения к ним нуклеофильные атакующие частицы всегда присоединяются к атому углерода, а электрофильные — к атому кислорода или азота. Реакции присоединения к связям С = 5 встречаются значительно реже [2], и в этих случаях может наблюдаться противоположная ориентация. Например, из тиобен-зофенона РЬ2С = 5 при обработке фениллитием с последующим гидролизом получается бензгидрилфенилсульфид РЬгСНЗРЬ [3]. Стереохимию взаимодействия, как правило, рассматривать не приходится, так как невозможно установить, происходит ли син- или анти-присоединение. При присоединении УН к кетону, например  [c.321]


Смотреть страницы где упоминается термин Реакции присоединения атомов Н к СгН: [c.227]    [c.368]    [c.190]    [c.328]    [c.349]    [c.480]    [c.212]    [c.69]    [c.103]    [c.172]    [c.150]    [c.173]   
Смотреть главы в:

Физическая химия быстрых реакций -> Реакции присоединения атомов Н к СгН




ПОИСК





Смотрите так же термины и статьи:

Реакции присоединения



© 2025 chem21.info Реклама на сайте