Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность компонентов растворов электролитов

    Полученные результаты дают основание полагать, что основной причиной возникновения химической поляризации палладия в хлоридном электролите является взаимодействие поверхности катода с компонентами раствора, по-видимому, ионами хлора. В результате этого взаимодействия, скорость которого обусловлена концентрационными соотношениями в диффузионном слое, на поверхности катода образуется соединение типа Pd - ly, которое пассивирует активные центры электрода и приводит к повышению поляризации. Образованию такого соединения может способствовать адсорбция ионов С1" на поверхности катода, так как потенциал нулевого заряда палладия составляет —0,13 в [307]. [c.155]


    В теории и практике экстракционных равновесий учет неидеальности органической фазы имеет не менее важное значение, чем учет неидеальности водной фазы. Если теория водных растворов главным образом электролитов, ак это было показано в предыдущих главах, разработана более илл менее удовлетворительно и на ее основе в простейших случаях (не более чем трехкомпонентные системы неассоциированных или слабо ассоциированных 1,1- и 2,1-электролитов) возможно предсказать направление изменения неидеальности и даже в первом приближении количественно оценить характер неидеальности систем вода — электролит 1—электролит 2, то теория растворов неэлектролитов значительно менее совершенна, чем теория водных растворов электролитов предсказание концентрационных и других зависимостей коэффициентов активности компонентов органической фазы, особенно в случае реальных экстракционных систем, для теории растворов неэлектролитов является непосильной задачей. [c.42]

    Под гиббсовской адсорбцией понимается количество поверхностно-активного вещества, которое необходимо добавить в раствор, чтобы при образовании единицы новой поверхности раздела электрод—электролит не произошло изменения химических потенциалов компонентов раствора и электродного потенциала. [c.29]

    Здесь ai — активность компонента в растворе (в стандартном растворе активность а = 1) Е — равновесная разность потенциалов электрода из чистого компонента I и электрода — раствора, компонентом которого является I (с активностью I, равной йг) в некотором растворе-электролите Р — число Фарадея 2 — валентность иона / в растворе-электролите. [c.13]

    Раствор электролита, как и электроды, имеет первостепенное значение при работе ХИТ электролит наряду с активными веществами образует электрохимическую систему и во многом определяет всю совокупность характеристик источника тока. Токообразующие реакции протекают на электродах при прямом участии компонентов раствора электролита. Природа, состав и концентрация электролита существенно влияют иа кинетические закономерности при разряде ХИТ. [c.30]

    Компонентами, участвующими в реакции, могут быть ионы (окислителя, восстановителя, водорода и др.), молекулы растворителя (например, И2О), твердая фаза (металл, оксид металла или малорастворимый электролит) и газообразные вещества (например, Н2, О2, С1 2 и пр.). При этом в уравнении (1.4) не фигурируют те компоненты, активность которых постоянна или равна единице. К таким компонентам относятся твердая фаза, газообразное вещество, если им насыщен раствор при давлении, равном 1 атм, а также растворитель из-за его большой концентрации, мало меняющейся в процессе реакции. [c.23]


    Обычно действие сил электростатического отталкивания распространяется на расстояние 10 нм от отрицательно заряженной поверхности волокна. Силы же взаимного притяжения анионов красителей и соответствующих активных участков или функциональных групп волокна проявляют свое специфическое влияние только при сближении реагирующих компонентов на расстояние до 0,2—0,5 нм. Поэтому для нормального протекания адсорбции красителя и формирования поверхностного граничного слоя необходимо экранировать влияние сил электростатического отталкивания. Для этого в красильную ванну добавляют нейтральный электролит или изменяют соответствующим образом pH раствора. Количество электролита и кислотность среды необходимо регулировать очень строго, так как при избытке электролита лишенные отрицательного заряда частицы красителя легко ассоциируют в крупные агрегаты, неспособные непосредственно участвовать в образовании поверхностного слоя и, тем более, в процессе перераспределения красителя из этого слоя внутрь волокна. [c.47]

    Если выполняется серия измерений, в которых варьируют концентрации реагентов-электролитов или содержание компонентов буферов, то в раствор следует добавить инертный электролит для того, чтобы ионную силу на протяжении всех измерений поддерживать постоянной. Тогда электростатический вклад в СА также остается примерно постоянным. Измерения обычно проводят с растворами определенной постоянной ионной силы /, причем в любом стандартном состоянии коэффициенты активности уА, уА или /А принимаются равными 1 при этом lg уА равен нулю и выполняется соотношение (1.2). Обычно, когда опускают коэффициент активности в (1.6) (т.е. полагают у, у или / равными 1), это означает, что условия данного опыта приняты за стандартные. [c.24]

    Трудности в применении этого метода возникают при попытках изучения систем, содержащих компоненты, электродные потенциалы которых в данном электролите близки. При этом, помимо основной токообразующей реакции, возможна реакция между солью компонента А в электролите и компонентом В в сплаве, приводящая к изменению концентрации в поверхностном слое электрода и к его концентрационной поляризации. В этом случае определение термодинамической активности по уравнению (1) будет тем более ошибочным, чем меньше разница в электродных потенциалах компонентов и исходная концентрация компонента А в сплаве. Аналогичные трудности в равной степени возникают и при исследовании термодинамических свойств водных растворов смесей электролитов. Кроме того, при исследовании термодинамических свойств растворов солей щелочных металлов в воде с помощью цепей без переноса возникают осложнения, связанные с взаимодействием амальгамы щелочного металла с водой. Применение сложной техники проточного амальгамного электрода не устраняет до конца этих осложнений, в связи с чем измерения, проведенные при концентрациях растворов<0,1 н., становятся ненадежными [8]. [c.84]

    Кроме соли кадмия, электролит содержит следующие компоненты свободный цианид, щелочь и специальные добавки поверхностно активных веществ. Концентрацию свободного цианида в электролите можно изменять в предела с от 0,5 до 1,5-н. при концентрации кадмия в растворе 0,7—0,8-н. [c.155]

    В методе стационарных поляризационных измерений поляризационные кривые снимают в зависимости от активности всех компонентов, присутствующих в растворе, и участников электродной реакции. Это необходимо для определения порядков электрохимических реакций. Следует отметить, что поляризационные кривые необходимо снимать и для случая, когда концентрация одной из форм (окисленной или восстановленной) равна нулю. Например, при снятии поляризационных кривых иа амальгаме металла необходимо снять поляризационную кривую и в растворе фона. Здесь анодным процессом будет являться растворение амальгамы, а катодным — восстановление фона. Снятие катодной кривой в растворе фона позволяет, во-первых, определить область потенциалов, в которой не происходит восстановления фона или разложения растворителя и, во-вторых, установить наличие загрязнений в фоновом электролите. [c.406]

    Растворенная кислота НС1 переносится здесь из раствора раствор" не непосредственно, а в результате протекания двух противоположно направленных электрохимических реакций. Благодаря отсутствию диффузионных потенциалов такие цепи дают возможность точно определить коэффициент активности определенного компонента (в данном случае НС1 в электролите, состав которого можно усложнять). [c.547]

    Таким образом, сближение катодного и анодного выходов по току может быть обеспечено не только изменением состава электролита, но и рациональным выбором соотношения площадей катода и анода. В связи с тем, что многие металлы склонны к пассивации при более низких плотностях тока, чем те, при которых возможно получение качественных катодных осадков, поверхность анодов обычно превыщает поверхность катодов. Однако, например, в электролитах сернокислого цинкования и кадмирования цинковые и кадмиевые аноды могут растворяться с заметной скоростью без пропускания тока в результате протекания обычного процесса коррозии. Этот процесс идет и при анодной поляризации металлов. Анодный выход по току превыщает 100 % и электролит обогащается по ионам металла. Казалось бы, если уменьшить поверхность анода, т. е. повысить на нем плотность тока, то можно перевести металл в пассивное состояние и таким образом понизить анодный выход по току. Но для цинка и кадмия характерна солевая пассивация на металлах образуются солевые пленки, плохо проводящие ток, что приводит к заметному росту напряжения на ванне. С другой стороны, растворение солевых пленок в электролите не приводит к снижению выхода по току, а лишь уменьшает скорость растворения анода. Поэтому радикальных изменений в проведении процесса добиться не удается при уменьшении или увеличении площади анода. Площадь анода можно уменьшить, что снизит количество металла, переходящее в раствор при саморастворении анода, но не настолько сильно, чтобы наступала солевая пассивация. Еще одним способом изменения выхода по току как на аноде, так и на катоде является введение в электролит органических добавок, а в материал анода — легирующих компонентов. Ряд органических добавок действуют как ингибиторы коррозии и снижают анодный выход по току. Их применение, конечно, возможно, если они не оказывают отрицательного воздействия на качество осадков. Некоторые легирующие компоненты, вводимые в анод, как правило, способствуют работе анода в активном состоянии и уменьшают шламообразование. [c.28]


    Поглощение сильных электролитов. В равновесной ионообменной системе, а также в системе КА — раствор АХ (где ионный обмен отсутствует) электролит распределяется между фазами набухшего ионита (геля) и внешнего растЕора. В системах с разбавленным раствором электролита его концентрация в геле оказывается более низкой, чем во внешнем растворе происходит исключение (эксклю-зия) электролита из раствора, поглощенного смолой. Это явление (так называемое доннановское равновесие) объясняется положением термодинамики, согласно которому активности компонентов системы в равновесных фазах равны между собой. В данном случае должны быть равны произведения активностей ионов электролита в фазах геля и раствора. [c.23]

    Компоненты реальных растворов взаимодействуют между собой. Растворенный электролит характеризуется не.только активностью а, коэффициентом активности у и концентрацией с, но и средней, ионной активностью.средним ионным коэффициентом активности у средней ионной концентрацией. 7 зависит от заряда ионов, ионной силы раствора I, однако не зависит от вида нонрв. Для растворов электролитов умеренных концентраций действенно соотнощение [c.13]

    В работе [189] рассматривалось влияние природы органического растворителя и аниона на электроосаждение кадмия из водно-органических растворов хлорной кислоты. В 707о-ном водном растворе H IO4 растворялись фториды, бромиды, хлориды, иодиды, ацетаты и перхлораты кадмия и вводилась органическая компонента — ацетонитрил, диметилформамид, диметилсульфоксид, пиридин и различные ке-тоны. Авторы считают, что существует связь между параметрами осаждения кадмия (потенциал электрода, плотность тока, поляризуемость), адсорбционной активностью молекул растворителя на границе электрод—электролит и донорным числом растворителя. Формирование качественных слоев определяется конкурирующей адсорбцией воды, анионов и молекул органического растворителя. [c.57]

    Образцовые излучатели Со приготовляются в электролите следующего состава 10 й хлористого калия, 7,5 г борной кислоты, 10 мл формалина, 1,00 з водной соли хлористого кобальта ( o Jg- oHgO активного-f-неактивного) на 250 мл раствора. Компоненты в ванне одинаковы для всех пяти типов излучателей. Меняется только доля активного кобальта в общей навеске хлористого кобальта в зависимости от типа излучателя и от удельной активносги основного раствора. Общая активность электролитической анны для каждого типа излучателя указана ниже  [c.294]

    Для создания условий, при которых измеряемая сила тока определяется только диффузией, в анализируемый раствор добавляют фоновый электролит, а для устранения максимумов на кривой — небольшое количество поверхностно-активного вещества. Если нужно изменить потенциал полуволны какого-либо компонента, в. раствор вводят комплек-.сообразующий реагент. Роль двух последних добавок объясняется ниже. [c.439]

    Для непрерывного восстановления нитробензола применяют редуктор той же конструкции, что и при периодическом методе производства (рис. 51). Для ускорения реакции восстановления в редуктор 9 вводят самый активный электролит — хлористый аммоний, чугунную стружку (измельченную и очищенную от крупных и мелких частиц и примесей, обладающую повышенной активностью) и анилиновую воду как вместе с чугунной стружкой, так и с другими компонентами. Нитробензол, анилиновая вода и раствор НН4С1 смешиваются в смесителе 7 и нагнетаются под слой чугунной стружки через сопла под давлением , создаваемым насосом 8. Для интенсификации отгонки анилина в редуктор подают также небольшое количе ство пара. [c.183]

    Из кислых электролитов оловянирования наиболее распространен сернокислый электролит, основными компонентами которого являются сульфат олова, серная кислота и органические поверхностно-активные вещества. В отсутствие органических добавок нельзя получить доброкачественные осадки олова (в этом случае на катоде образуются игольчатые, дендритообразные рыхлые осадки). Это объясняется тем, что олово из кислых растворов выделяется на катоде из простых гидратированных ионов Sn + почти без поляризации (рис. 31, кривая 1). Поверхностно-активные вещества, адсорбируясь на катоде, образуют сплошную пленку, которая затрудняет проникновение через нее и разряд ионов олова. В результате происходит резкое торможение процесса и катодные потенциалы значительно (на 0,4—0,5 В) смещаются в сторону электроотрицательных значений (кривая 2), при этом осадки получаются мелкозернистыми, плотными и гладкими. [c.154]

    Вдовенко и Рязанов [169] получили уравнения, описывающие зависимость коэффициентов активности отдельных ионов от состава многокомпонентного раствора на основе гипотезы тройной раствор, в котором имеет место химическое взаимодействие между растворенными компонентами и который,, следовательно, не является простым раствором, можно формально рассматривать как псевдочетверной простой раствор, причем четвертым компонентом (наряду с водой, катионом и анионом) будет соединение, образующееся при взаимодействии компонентов тройного раствора. Используя еще ряд гипотез, авторы [169] приходят к заключению, что произведение суммарной концентрации всех форм, в виде которых данный-электролит присутствует в растворе (формы, отличающиеся различной степенью сольватации, в данном случае рассматриваются как одна форма), на коэффициент активности какой-либо формы является для каждой данной формы универсальной функцией активности растворителя, не зависящей от природы электролита. Авторами [169] также рассмотрены некоторые следствия полученного уравнения, имеющие значения для обоснования применимости функции кислотности Гаммета Яо в качестве меры активности ионов водорода в растворах кислот, а также в методике изучения комплексоо бразования в растворах. [c.34]

    Введением поверхностно активных веществ, затрудняющих осаждение боле е благородного компонента, можно также сбли- зить потенциалы разряда металлов и осадить сплавы, например, меди и олова в присутствии фенола [147], меди и свинца при введении в электролит тиомочевины [148J. Потенциалы разряда ионов металлов могут сближаться при повышении плотности тока также в растворах простых солей, если поляризация положительного металла выше, чем отрицательного, что наблюдается при со-осаждении металлов группы железа с марганцем и цинком, свинца с таллием и др. [c.41]

    Если тройная система образуется компонентами, один из которых поверхностно-активен, а другой — поверхностно-инактивен в бинарной системе с третьим компонентом, то прибавление одного из компонентов может и не вызывать изменения поверхностного натяжения в некотором интервале составов тройной системы. Такое явление, известное под названием концентрационной буфер-ности поверхностного натяжения, многократно наблюдалось в системах типа поверхностно-активное по отношению к воде вещество— поверхиостно-инактивный по отношению к воде электролит— вода при прибавлении электролита [71—91]. Наиболее подробно изучена система СН3ОН—NaBr—Н2О [90] для этой системы обнаружено существование двух водно-спиртовых растворов, прибавление к которым бромида натрия не приводит к изменению поверхностного натяжения на границе с паром в области концентраций между этими растворами прибавление бромида натрия вызывает понижение, а вне этой области — повышение поверхностного натяжения. [c.131]

    Из кислых электролитов оловянирования наиболее распространен сернокислый электролит, основными компонентами которого являются сульфат олова, серная кислота и органические поверхностно-активные вещества. В отсутствие органических добавок нельзя получить доброкачественные осадки олова (в этом случае на катоде образуются игольчатые дендритообразные рыхлые осадки). Это объясняется тем, что олово из кислых растворов выделяется на катоде из простых гидратированных [c.291]

    Натриевая соль динафтилметандисульфокислоты — коллоидный электролит с ароматической дифильной молекулой, в которой обе полярные сульфогруппы отделены одна от другой гидрофобным остатком динафтиламина. Технический ДНФ — это смесь продукта, Ч50-стоящего из двух молекул 2-нафталинсульфокислоты с более высокомолекулярными соединениями — от 2 до 8 нафталиновых ядер [14]. В водных растворах он образует мицеллы [15], которые содержат 20—40 дифильных молекул мицеллярный вес 31800—35550 форма мицелл близка к сферической [16]. Судя по молекулярным моделям, полимерный продукт с количеством нафталиновых ядер п = Ъ имеет сферическую форму. По данным Хаттори и Танино, которым удалось выделить все компоненты с га = 2 9, отсутствие точек перегиба на кривых зависимости натяжения от концентрации различных продуктов конденсации (рис. 3.1) свидетельствует об отсутствии мицеллообразовапия, т. е. о том, что ДНФ не является истинным поверхностно-активным веществом, как лаурилсульфат или олеат натрия. Исследование электропроводности ДНФ разного молекулярного веса различных концентраций показывает, что соединения с ге = 1 -I- 4 ведут себя как низкомолекулярные электролиты, а содержащие 5 нафталиновых ядер обладают свойствами, характерными для высокомолекулярных электролитов. [c.47]


Смотреть страницы где упоминается термин Активность компонентов растворов электролитов: [c.48]    [c.171]    [c.345]    [c.55]    [c.281]    [c.158]    [c.120]    [c.81]    [c.4]    [c.290]    [c.290]   
Смотреть главы в:

Справочник по электрохимии -> Активность компонентов растворов электролитов




ПОИСК





Смотрите так же термины и статьи:

Активность компонента раствора

Активность раствора

Активность электролитов

Активные в растворах

Активный компонент

Влияние температуры на активности компонентов в бинарных растворах электролитов

Понятие об активности и коэффициентах активности компонентов раствора. Активность электролита

Растворов компоненты

Растворы электролитов

Растворы электролитов. pH растворов



© 2025 chem21.info Реклама на сайте