Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление спиртов и альдегидов в карбоновые кислоты

    Способы получения. Окисление спиртов, альдегидов и кетонов. При окислении первичных спир-тов образуются карбоновые кислоты с тем же числом углеродных атомов. Вторичные и третичные спирты образуют несколько кислот с меньшим числом углеродных атомов в каждой из них  [c.146]

    Газофазное окисление углеводородов. Эти процессы, распространенные в технологии органического синтеза, служат для получения спиртов, альдегидов, карбоновых кислот. Как правило, конвертируются невзрывчатые богатые смеси углеводородов с кислородом переход за предел взрываемости здесь особенно опасен, поскольку окисление проводится при температурах 300—500 °С, соизмеримых с Ti для взрывчатых смесей. Регулирование состава газовой среды здесь пе связано с какими-либо осложнениями, однако для интенсификации процесса желательно максимальное увеличение концентрации кислорода. Для фракций Сз—С4 при нормальных условиях предельная концентрация кислорода равна 46—52%, для обеспечения запаса надежности допустимое содержание кислорода приходится ограничивать до 35%. [c.75]


    Этот метод получения альдегидов, наряду с синтезом их путем окисления первичных спиртов, является доказательством строения альдегидов. Обе реакции свидетельствуют о том, что альдегид по степени окисления находится между спиртом и карбоновой кислотой таким образом, его структурная формула становится совершенно однозначной  [c.199]

    Способы получения. Окисление спиртов, альдегидов и кетонов. При окислении первичных спиртов образуются карбоновые кислоты с тем же числом [c.148]

    Большая ценность соединений, получаемых окислением (спиртов, альдегидов, кетонов, карбоновых кислот и нх ангидридов, а-оксидов, нитрилов н др.) и являющихся промежуточными продуктами органического синтеза, растворителями, мономерами н исходными веществами для производства полимерных материалов, пластификаторов и т. д. [c.351]

    На платиновом аноде в кислых и щелочных средах окисление алифатических спиртов протекает с образованием альдегидов, карбоновых кислот и диоксида углерода как продукта полной деструкции спирта. В растворах кислот окисление спиртов на электроде из диоксида свинца протекает более селективно и приводит к образованию соответствующих карбоновых кислот [реакция (33.1)] и их эфиров. Последний является продуктом химической реакции этерификации (33.2)  [c.207]

    Окисление эфиров первичных спиртов приводит к альдегидам, карбоновым кислотам, спиртам и в некоторых случаях сложным эфирам [c.258]

    Микробиологическое окисление алканов возможно, оно осуществляется бактериями многих видов и может протекать по двум основным путям. Первый путь метаболизма первоначально включает окисление концевого атома углерода с образованием первичного спирта. Промежуточные стадии до образования продуктов гидроксилирования еще не окончательно изучены, но предположительно образуются олефины и гидроперекиси. Дальнейшее окисление проходит до карбоновой кислоты через альдегид с последующим (3-окислением — метаболическим процессом, характерным для большинства микроорганизмов. Процесс состоит из пяти отдельных реакций, включая дегидрирование и гидратацию. В результате 3-окисления из первоначального субстрата теряется двууглеродный фрагмент (уксусная кислота). [c.167]

    В промышленном масштабе для окисления полиметилбензолов используют многочисленные жидкофазные процессы окисления. Например, предложен [126] метод разделения и окисления нефтяной ксилольной фракции. Отмечается, что окисление ксилолов можно использовать для получения большого числа продуктов кислот, ангидридов, альдегидов, спиртов, перекисей, сложных эфиров и кетонов. Однако единственным типом соединений, который удается получать с высокими выходами прямым окислением ксилолов, являются карбоновые кислоты. Для этого в промышленных масштабах применяют только два окислителя воздух и азотную кислоту. Ни один процесс не дает вполне удовлетворительных результатов при окислении любого из изомерных ксилолов до соответствующих фта-левых кислот. Тем не менее еще в 1955 г. был осуществлен промышленный процесс окисления индивидуальных изомеров в соответствующие двухосновные кислоты. [c.346]


    Карбоновые кислоты можно рассматривать как продукты окисления альдегидов. Альдегиды можно рассматривать как продукт окисления спиртов сами же спирты можно рассматривать как частично окисленные углеводороды. Эта связь между углеводородами, спиртами, альдегидами и кислотами представлена следующим примером  [c.112]

    Окисление кетонов до карбоновых кислот требует разрыва связи С—С и поэтому протекает несколько труднее, чем окисление первичных спиртов или альдегидов. Тем не менее для проведения этой реакции существует ряд эффективных методов. [c.13]

    При окислении углеводородов образуется целый ряд молекулярных продуктов гидропероксиды, спирты, кетоны, альдегиды, карбоновые кислоты, сложные эфиры и некоторые более сложные полифункциональные соединения. Промежуточными актив-лыми частицами являются радикалы со свободной валентностью на атоме углерода (R ) или на кислородных атомах (ROO-, [c.344]

    Помимо окисления спиртов, альдегиды можно получать путем дегидрогенизации спирта (т. е. отнятия водорода) в присутствии катализаторов, а также восстановлением карбоновых кислот. [c.303]

    Получение карбоновых кислот окислением спиртов или альдегидов. Карбоновые кислоты можно получать путем окисления первичных спиртов или альдегидов [c.334]

    Окисление первичных спиртов в карбоновые кислоты может также осуществляться, хотя и менее эффективно, всеми реагентами, которые окисляют первичные спирты до альдегидов (см. ниже). [c.201]

    К реакциям неполного окисления относятся в первую очередь многочисленные реакции превращения углеводородов в спирты, альдегиды, кетоны и карбоновые кислоты, окисления ароматических и других циклических углеводородов, а также различные реакции окисления органических соединений. [c.194]

    Если вслед за присоединением озона идет расщепление образовавшегося озонида, то говорят об озонолизе. Его можно проводить в разных направлениях. Окислением озонидов получают карбоновые кислоты и кетоны (реакция 1), а восстановление в зависимости от условий дает либо альдегиды и кетоны (реакция 2), либо спирты (реакция 3)  [c.173]

    В результате окисления углеводородов образуются спирты, альдегиды, кетоны, карбоновые кислоты, оксикислоты и различные продукты их превращений. Приведенные схемы образования гидропер( Кисей и их распада объясняют возможность образования всех перечисленных иродуктов. [c.502]

    При такой трактовке переход от алканов к спиртам и далее к альдегидам и карбоновым кислотам может четко классифицироваться как процесс окисления с потерей двух, четырех или шести электронов соответственно. [c.104]

    Окисление альдегидов, низших парафиновых углеводородов (гл. 4, стр. 70) и твердого парафина (гл. 4, стр. 74), а также процессы, в которых используют реакции между спиртами и окисью углерода или олефинами, окисью углерода и водой, являются важнейшими методами производства насыщенных карбоновых кислот. [c.333]

    Флавопротепды принимают участие в окислении спиртов в карбоновые кислоты, альдегидов и кетонов также в кислоты и двуокись углерода, насыщенных углерод — углеродных связей в двойные, аминосоединений в иминосоединения, N-замещенных дигидропиридинов в четвертичные пи-ридиниевые производные и др. [c.558]

    Данный метод пригоден для синтеза очень широкого круга аминов, начиная с этиламина (из ацетальдегида) и кончая высшими аминами. Его промышленное значение ограничивается синтезом тех аминов, которые могут быть получены из альдегидов или кетонов, более дешевых и доступных, чем соответствующие хлорпроизводные, спирты или карбоновые кислоты. Это прежде всего относится к получению аминов из альдегидов оксосинтеза и карбонильных соединений, вырабатываемых прямым окислением углеводородов. Так, н-пропи 1-, н-бутил- и изобутиламины выгоднее всего производить из соответствующих альдегидов оксосивтеза  [c.707]

    В разложении алифатических углеводородов с длинной цепью участвуют псевдомонады, бактерии, микобактерии, актиномицеты. По мере удлинения цепи растет число видов, использующих эти соединения, а также активность ферментов [12]. Окисление парафинов в основном протекает по цепи углеводород—спирт—альдегид—карбоновая кислота й далее по отмеченному выше пути с участием коэнзима А до более простых продуктов. В первичном воздействии на углеводородную цепочку участвует молекулярный кислород окисление катализируется алканоксигеназой. [c.58]

    Представляет интерес вовлечь в нефтехимическое производство те углеводороды, которые уже имеются в нефти, т.е. в первую очередь парафины. Решение этой задачи препятствует химическая инертность этого класса органических соединений. Парафины устойчивы почти ко всем видам промышленных реагентов. Тем не менее путь получения функциональных органических соединений из парафинов давно ясен - это парциальное окисление. Действительно, окисляя парафины в мягких условиях можно получить спирты, альдегиды, карбоновые кислоты, кетоны и т.п. Почему же этот путь практически не реализован в промышленности Дело здесь в том, что селективность реакций парциального окисления парафинов крайне мала. Близость энергий всех связей С-С и всех связей С-Н в молекулах парафинов приводит к тому, что в условиях ради-кально-цепного окисления из молекулы предельного углеводорода образуется широкая гамма продуктов, среди которых наряду с полезными и ценными есть и ненужные. Весьма существенно отметить, что термодинамически разрешены любые варианты парциального окисления парафиновых углеводородов в мягких условиях. Любой из таких процессов может быть реализован при комнатной температуре со 100% селективностью. Например, прямым окислением н-бутана кислорода воздуха можно получить метилэтилкетон  [c.435]


    Эта реакция происходит при высоком давлении для первичных Спиртов, не имеющих разветвления в а-положении, поскольку промежуточным соединением, получающимся из соответствующего альдоля, является, по-видимому, а,р-ненасыщенный альдегид. В тех случаях, однако, когда в одном из спиртов отсутствует разветвление у а-углеродного атома, может происходить смешанная конденсация Гербе. В результате успешно проведенной реакции из первичного спирта с неразветвленной цепью получают также карбоновую кислоту с тем же числом атомов углерода и исходный спирт. Из-за указанных причин этот метод синтеза находит лишь ограниченное применение. Добавление небольших количеств медной бронзы подавляет окисление спирта в соответствующую кислоту в присутствии алкоголята натрия. В литературе имеются сведения, что добавление примерно 0,5% соли трехвалентного железа более чем вдвое ускоряет реакцию Гербе [261. Однако наиболее эффективны для ускорения реакции катализаторы дегидрирования, такие, как никель Ренея или палладий [27]. Выходы редко превышают 70%, если считать, что 3 моля более низкомолекулярного спирта дают 1 моль более высокомолекулярного спирта [28]. [c.276]

    Среди множества других соединений переходных металлов лшш> немногие нашли применение в синтетической практике для окисления спиртов. Перманганат калия иногда используется для окислеиия в кислой среде первичных спиртов до карбоновых кислот, а вторичных спиртов - до кетоиов. Мягким окислителем первичных спиртов в альдегиды оказался карбонат серебра на цеолите. Этот дорогостояшцй реагент употребляется при стереоселекттшном мягком окислепии лабильных никло пропил- и циклобутилкарбниолов  [c.893]

    Бихромат в растворе серной кислоты часто используют при повышенных температурах для окисления органических соединений [55] углеводородов, спиртов, эфиров, карбоновых кислот и альдегидов. Конечными продуктами окисления обычно являются вода и диоксид углерода. Продукт окисления этилового спирта — уксусная кислота. Реакцию между бихроматом калия и этиловым спиртом широко используют для грубого количественного определения спирта в крови и альвеолярном воздухе. Прибор (называемый алколизером) для контрольной пробы [56] состоит из стеклянной трубки, содержащей соответствующий раствор бихромата в концентрированной серной кислоте, диспергированный на инертном носителе. Выдыхаемый воздух проходит через трубку и заполняет пластмассовый измерительный мешочек. Реакция между бихроматом и спиртом приводит к образованию зеленого пятна хрома (III), длина которого служит мерой концентрации спирта в крови. [c.366]

    Органическая часть молекулы в ходе оксидативно-гидролитического процесса [262, 269] способна превращаться не только в конечные продукты минерализации углерода и водорода — СО2 и Н2О, но также и в полупродукты окисления — спирты, эфиры, альдегиды, карбоновые кислоты и пр. Как правило, образуются низкомолекулярные продукты, [c.147]

    Наконец, помимо окисления жидких углеводородов нефти в карбоновые кислоты и оксикислоты, большое промышленное значение обещает получить также и окисление газообразных углеводород й нефти. Путем окисления могут быть получены спирты метиловый , этиловый, нропиловый и бутиловый, формальдегид, уксусный, про-пионовый и масляный альдегиды, муравьиная, уксусная, пропионо-тая и масляная кислоты, смолы и т. д. [c.99]

    В зависимости от количества нитрогрупп, введенных в молекулу углеводорода, получаются moho-, ди- или полинитросоединения. В процессе нитрования, помимо указанной выше основной реакции, протекают также реакции разложения парафиновых углеводородов на углеводороды или радикалы меньшего молекулярного веса. Последние также способны к реакциям нитрования, в связи с чем в продуктах реакции могут содержаться нитросоедп-нения меньшего молекулярного веса, чем исходный углеводород. Кроме того, реакции нитрования почти всегда сопровождаются реакциями окисления, ведущими к образованию некоторого количества спиртов, альдегидов, кетонов, карбоновых кислот, а также продуктов полного окисления углеводородов — СО2, СО и воды. Поэтому для получения хороших выходов нитросоедп-нений необходимо строго выдерживать оптимальные условия ведения процесса. [c.126]

    Как видно из этих данных, тепловой эффект возрастает с повышением глубины окисления, особенно при образовании карбоновых кпслот из углеводородов (реакция 4), при деструктивном окислении парафинов (реакция 6) н ароматических систем (реакция 7). Л1енее экзотермичны процессы образования карбонильных соединений из углеводородов (реакции 2, 3 и 8) и карбоновых кислот пз альдегидов (реакция 5). Тепловой эффект еще заметнее снижается при получении спиртов из углеводородов (реакция 1) и а-оксидов из олефинов (реакция 9), но остается довольно высоким. [c.356]

    Парафиновые углеводороды близки по окисляемости к нафтеновым. При окислении их молекулярным кислородом образуются карбоновые кислоты, спирты, альдегиды, кетоны и эфиры. Лишь при глубоком окислении (высокие температуры или большая продолжительность процесса), а также при ра.чвствленности структуры парафиновой цепи образуются оксикарбоновые кислоты и продукты их конденсации, а также и незначительное количество смолистых веществ. [c.268]

    Методом некаталитического окисления спиртов с помощью хромовой смеси, азотной кислоты, хромового ангидрида, персульфатов и т. д. получали альдегиды, кетоны и карбоновые кислоты. Уже в 1819 г. было установлено, что при неполном сгорании спирта в спиртовых лампочках образуется ламповая кислота , содержащая уксусную кислоту и некое от эфира отличное вещество , которое известно теперь как ацетальдегид. Ацетальдегид был получен каталитическим. Ван-Марумом при пропускании паров этилового спирта над накаленными металлами ( обуглероженный водород ). [c.202]


Смотреть страницы где упоминается термин Окисление спиртов и альдегидов в карбоновые кислоты: [c.122]    [c.146]    [c.146]    [c.236]    [c.110]    [c.315]    [c.496]    [c.332]   
Смотреть главы в:

Методы эксперимента в органической химии Часть 2 -> Окисление спиртов и альдегидов в карбоновые кислоты




ПОИСК





Смотрите так же термины и статьи:

Альдегиды окисление в кислоты

Окисление альдегидов

Окисление спиртов

Окисление спиртов и альдегидов

Окисление спиртов и альдегидов в кислот

Спирто-кислоты

Спирты окисление в кислоты



© 2024 chem21.info Реклама на сайте