Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвижная массопередача

    Подобно теплопередаче массопередача представляет собой сложный процесс, включающий перенос вещества (массы) в пределах одной фазы, перенос через поверхность раздела фаз и его перенос в пределах другой фазы. Как известно, при теплопередаче обменивающиеся теплом среды в большинстве случаев разделены твердой стенкой, в то время как массопередача происходит обычно через границу раздела соприкасающихся фаз. Зта граница может быть либо подвижной (массопередача в системах газ—жидкость или пар—жидкость, жидкость—жидкость), либо неподвижной (массопередача с твердой фазой). [c.383]


    К — средний коэффициент массопередачи на поверхности между подвижной и застойной жидкостями  [c.193]

    Если предположить, что для подвижной фазы можно пользоваться моделью с продольным перемешиванием, то для этой фазы справедливы соотношения (II.8). Нужно только учесть, что в этих соотношениях w — скорость образования компонента при физико-химическом процессе, а при адсорбции компонент расходуется. Учитывая вид уравнения скорости массопередачи, дополним (II.8) выражением для w  [c.88]

    Брауэром [54] в общей форме изложены теоретические основы процессов массообмена и разделения одно-и многофазных систем. При этом рассмотрен массо-перенос в неподвижных и движущихся средах. Для изучающих ректификацию особенный интерес представляют разделы Массопередача в неподвижных и подвижных слоях насадки , Массоперенос через границу раздела в простых двухфазных системах и Массоперенос в двухфазных потоках промышленных аппаратов . Холланд [55] подробно обсуждает вопросы многокомпонентной ректификации. В своей монографии [43а] Биллет освещает вопросы применения ректификации в промышленности. [c.17]

    Совокупность параметров, обеспечивающих создание подвижной пены, называется пенным режимом. В пенных аппаратах получается наибольшая (из всех четырех типов аппаратов) поверхность соприкосновения газа с жидкостью. Вследствие сильного перемешивания фаз и непрерывного обновления поверхности жидкости устраняются диффузионные сопротивления и возрастает коэффициент массопередачи (и теплопередачи). [c.12]

    Данные рис. 2 показывают, что чем выше линейная скорость газа, тем интенсивней работа пенного аппарата и меньше затрата энергии на единицу интенсивности. Интенсивность процесса тепло-и массопередачи в области скоростей газа, соответствующих образованию подвижной пены, много больше, чем в области скоростей газа, характерных для барботажа, при почти одинаковом гидравлическом сопротивлении (при одинаковом /iq). [c.16]

    Из-за сложности проблемы определения поверхности контакта фаз и соответственно истинных значений коэффициентов массопередачи в подвижном газожидкостном слое немногие имеющиеся по этому вопросу данные весьма противоречивы. Это вызвано различным подходом к оценке поверхности контакта фаз. Одной из ранних интересных попыток определить ПКФ при барботаже была работа Стаб-никова [295], который получил критериальное уравнение для определения Н. [c.70]


    Влияние скорости газа и жидкости. Скорость газа в пенном аппарате — один из основных параметров, определяющих пределы существования взвешенного слоя подвижной пены, высоту слоя (при данном ка) и его турбулентность, а, следовательно, общую поверхность контакта фаз и скорость ее обновления. Соответственно скорость газа оказывает весьма существенное влияние на коэффициент массопередачи. Характер влияния Шг на К зависит, во-первых, от растворимости газового компонента в данной жидкости и, во-вторых, от вида принятого коэффициента массопередачи К, К в, К . [c.130]

    Увеличение поверхностного натяжения на границе газ — жидкость должно закономерно вызывать повышение затраты энергии на образование подвижной пены, а, следовательно, уменьшение е высоты и соответственно пропорциональное снижение коэффициента массопередачи, отнесенного к единице поверхности решетки Kg- [c.137]

    Сложность гидродинамической обстановки в газожидкостных реакторах не позволяет пока достаточно строгим анализом получить уравнения для расчета коэффициентов массопереноса как в газовой, так и жидкой фазах, и затруднения, прежде всего, обусловлены подвижностью границы раздела фаз, что осложняет математическое описание проникновения турбулентных пульсаций в пограничный диффузионный слой. Поэтому в настоящее время при расчетах массопередачи в промышленных аппаратах приходится пользоваться эмпирическими уравнениями, ориентируясь на надежность результатов только в условиях, близких к экспериментальным. [c.42]

    Предложены также модели массопередачи, в которых учитывается, что вследствие подвижности поверхности раздела фаз скорость переноса в данной фазе должна зависеть не только от гидродинамических условий в этой фазе, но и в фазе, с ней взаимодействующей. При этом допускается возможность переноса турбулентности из фазы в фазу. Эти модели носят пока в основном только качественный характер. [c.398]

    Высота аппаратов со ступенчатым контактом. Высоту аппаратов этого типа, в частности тарельчатых колонн, иногда выражают через объемный коэффициент массопередачи, согласно уравнению (Х,77) или (Х,77а). В барботажных аппаратах величина Ку должна рассчитываться на единицу объема слоя пены или эмульсии, в котором происходит в основном массообмен. Однако ввиду трудности определения объема подвижной пены коэффициенты массопередачи относят к единице рабочей площади тарелки. Эти коэффициенты массопередачи, обозначаемые через Кз, связаны с коэффициентами массопередачи Ку и Ку (например, прн расчете по фазе Ф ) соотношением [c.424]

    Эффективность. Рассмотренные свойства системы адсорбат — адсорбент определяют селективность хроматографической колонки. Одпако для полноты разделения смеси кроме селективности необходима еще и высокая эффективность. Она зависит от процессов диффузии и массопередачи как в подвижной, так и неподвижной фазах и определяется величиной ВЭТТ (Я). В гл. I было выведено уравнение ВЭТТ (1.24), связывающее Я со свойствами системы и [c.70]

    В жидкостно-адсорбционной хроматографии вследствие медленности процессов доставки вещества из объема подвижной фазы (малое значение коэффициента диффузии в жидкости) к поверхности неподвижной фазы (адсорбента) вклад в размывание, обусловленный малой скоростью массопередачи, может быть значительным. Особенно ои возрастает вследствие медленности диффузии в адсорбенте, т. е. определяется внутренней массопередачей. [c.72]

    Уравнения (П.5) и (И,6) показывают, что высота тарелки возрастает линейно с ростом линейной скорости движения подвижной фазы. Это означает, что размывание зоны, обусловленное вкладом медленности процесса внешней и внутренней массопередачи, возрастает, а эффективность колонки падает с ростом линейной скорости подвижной фазы а. Кроме того, нз уравнений (П.5) и (П.6) следует, что между эффективностью колонки и величиной Rr существует довольно сложная зависимость. Если вещества слабо адсорбируются, Н довольно мало, и, следовательно, эффективность высока. Для веществ со средней величиной удерживания Н возрастает, достигает максимума, а для веществ, способных сильно адсорбироваться, снижается. Однако в этом случае становятся весьма заметными нежелательные последствия высоких значений времени пребывания молекулы в неподвижной фазе ts. [c.73]

    Динамика ионного обмена описывается системой уравнений статики, кинетики и материального баланса. Однако кинетические модели ионного обмена различны. Процесс может контролироваться внешней или внутренней диффузией, или химической реакцией между ионитом и компонентом раствора. Иногда он зависит от других факторов, например от изменения объема ионита, от диффузионного электрического потенциала, который может возникать, если ионы имеют разные заряды и разные подвижности, и проч. В связи с этим предложено множество кинетических уравнений для разных вариантов механизма процесса. Априорный выбор той или иной кинетической модели, а следовательно, и кинетического уравнения для конкретного ионообменного процесса обычно затруднителен — требуется предварительное экспериментальное исследование. Чаще всего закономерности кинетики ионного обмена в основном тождественны таковым для диффузионных адсорбционных процессов, где массопередача в значительной мере зависит от гидродинамических условий. Вопросы кинетики ионного обмена рассмотрены в монографиях [52, 83а, 107, 145, 180, 181]. [c.309]


    Уменьшение скорости потока приводит к более полному достижению равновесия, а значит, и к уменьшению неравновесной массопередачи. Приближение к истинному равновесию происходит также с уменьшением размера каналов, через которые проникает подвижная фаза, что обеспечивает быструю диффузию молекул к стационарной фазе. По той же причине слои закрепленной на стационарной фазе жидкости должны быть как можно тоньше. [c.591]

    Аппарат Аношина [191, спроектированный на основании изложенных выше принципов, показан на фиг. 205. Этот аппарат, подобно аппарату Николаева, состоит из нескольких пар конусов. В каждой паре один конус подвижный, а другой неподвижный, укрепленный на корпусе 4. Подвижные сидящие на валу / конусы 2 несут разбрызгивающие кольца 3. Неподвижный конус 5 несет на своей нижней поверхности лопатки 6, ориентированные в радиальном направлении. Как и в аппарате Николаева, на каждой паре конусов обеспечивается число ударов, кратное числу разбрызгивающих колец. Однако автор считает эти удары касательными, а следовательно, более эффективными для массопередачи. [c.305]

    Вещества вводятся в колонку в виде узкой зоны, которая по мере ее движения с подвижной фазой по колонке становится все шире, т. е. размывается в результате диффузионных процессов. Мерой этого размывания в колонке является высота, эквивалентная теоретической тарелке (ВЭТТ). Установлено, что размывание полосы в хроматографической колонке обусловлено тремя причинами наличием вихревой диффузии, молекулярной диффузии и сопротивления массопередаче. Общая ВЭТТ (Н) колонки получается путем суммирования вкладов всех этих факторов, вызывающих размывание хроматографической зоны  [c.11]

    В силикагелях—материалах, доступных как образцу, так и противоиону, быстро устанавливается массопередача, что приводит к высокой эффективности колонки. Силикагели с привитыми группами делятся на микро- и макропористые в зависимости от диаметра внутренних пор. Микропористые материалы, имеющие небольшие по диаметру поры, позволяют молекулам растворителя, например воды, а также небольших ионов проникать в полимерную матрицу и задерживают большие молекулы. Большинство полимерных ионообменных силикагелей имеют микроструктуру. Полимерные смолы макропористого типа зачастую используют в жидкостной хроматографии низкого давления. Макропористые силикагели с привитыми ионообменными группами стали применять при разделении больших молекул, например белков. Однако устойчивость сорбента невелика из-за растворения его в водной подвижной фазе. Информация об ионообменниках привитых к силикагелю содержится в приложении 1.3. [c.111]

    На все стадии процесса обмена, протекающие в зерне, могут влиять только факторы, от которых зависит проницаемость зерна для диффузии ионов, т. е. частота н жесткость сетки молекулярного скелета смолы (матрицы), подвижность и размер гидратированных попов, температура и т. п. С увеличением степени насыщения ионита коэффициент массопередачи, определяемый скоростью диффузии ионов внутри смолы, падает на 15—30% от первоначального значения. Коэффициент. массопередачи при смешанном характере диффузионной кинетики ионного обмена возрастает с увеличением скорости потока. [c.140]

    Кинетика массопередачи в подвижной фазе. Этот процесс также определяется диффузией молекул в подвижной фазе, т. е. между частицами сорбента. Длина диффузионного пробега пропорциональна диаметру частиц сорбента, и весь процесс можно рассматривать как протекающий параллельно с размыванием из-за неоднородности потока. Соответствующий вклад в ВЭТТ [c.24]

    А, В и С - безразмерные коэффициенты, характеризующие качество структуры слоя (А ), диффузию в подвижной фазе (В ) и сопротивление массопередаче (С). [c.103]

    Т h о m р S о п D. W., Ind. Eng. hem., Fund., 9, 243 (197b). Влияние подвижности межфазной поверхности на массопередачу в системах жидкость—газ (при воздействии градиентов поверхностного натяжения и плотности и в присутствии поверх-ностно-активных веществ в условиях абсорбции и десорбции различных газов). [c.290]

    Количественное исследование влияния этих параметров требует детального знания механизма собственно массопередачи, без химической реакции. При движении жидкости вдоль твердых поверхностей в дисперсной системе рассматривают главным образом стационарную диффузию через образовавшийся пограничный слой. Модель нестационарной диффузии, соответству-юш ая случаю потока по подвижной (мобильной) поверхности, удовлетворяет уравнениям пенетрационной теории. В ограниченных застойных зонах массопередача также происходит путем нестационарной диффузии. Окончательный коэффициент массопередачи р выражается безразмерным числом Шервуда ЗЬ, а порядок его величин для некоторых слзгчаев приводился выше (стр. 154). [c.162]

    Тепло- и массопередача в реакторах с неподвижным и подвижным слоями катализатора, Хвахак ка хвахак коноп, 10, № 3, 156 (1966). [c.559]

    Для средне- и плохорастворимых газов, т. е. при Ма <0,5, повышение Ks с ростом менее значительно, чем для хорошорастворимых газов, хотя в большинстве случаев зависимость Kg от описывается линейными уравнениями (III.11). Влияние скорости газа на коэффициенты массопередачи газов разной растворимости исследовано [265] в лабораторной модели [А , = 40 мм = = 2,7 м /(м -ч)] при скоростях газа = 0,5 1,6 м/с, т. е. при условиях барботажного режима и перехода к пенному режиму. Авторы [265] наблюдали при повышении появление ячеистой пены, затем ее разрушение (с одновременным уменьшением Н и ПКФ) и возникновение взвешенного слоя подвижной нены. Тем не менее коэффициенты массопередачи Ks хорошо- и среднерастворимых газов непрерывно и линейно возрастали с повышением скорости газа (рис. III.2). Лишь в хемосорбционном процессе поглощения кислорода раствором сульфита натрия в присутствии ионов меди в качестве катализатора значение K s уменьшалось с ростом w . Следует отметить, что в опытах, результаты которых приведены на рис. III.2, в отличие от опытов, отраженных на рис. III.1, высота газожидкостного сдоя изменялась с ростом скорости газа. [c.132]

    При эмульсионном режиме, характеризующемся большим значением ударживающей способности, возникает подвижная система из вихрей газа и жидкости, в условиях которой контакт фаз становится весьма совершенным, способствующим интенсификации массопередачи. [c.174]

    Примером встречной диффузии разноименных катионов служит реакция получения магниевой шпинели. При образовании MgAio04 из AI2O3 и MgO массопередача осуществляется катионами магния в одном направлении и катионами алюминия — в другом. Большие анионы кислорода практически остаются на месте. Скопость перемещения катионов магния и алюминия регулируется возникающим электрическим потенциалом. При этом скорость перемещения более подвижного катиона уменьшается, а менее подвижного — увеличивается. [c.212]

    Разделение двухкомпонентной смеси обусловлено в основном двумя факторами а) различием коэффициентов распределения б) фактором размывания- хроматографических полос разделяемых веществ, обусловленным влиянием вихревой и мЬ 1екулярной диффузии, а также конечностью скорости массопередачи между подвижной и неподвижной фазами. [c.62]

    В процессе хроматографирования в ГАХ анализируемое вещество распределяется между подвижной газообразной фазой (газ-носитель) и неподвижной твердой фазой (адсорбентом). Между количествами анализируемого вещества, находящимися в газе-иоси-теле и адсорбенте, устанавливается равновесие. Значение этого равновесия определяется изотермой адсорбции. Изотерма адсорбции часто бывает нелинейна, что приводит к асимметричному размыванию зоны компонента на адсорбенте и образованию несимметричных пиков на хроматограмме. Размывание хроматографических полос в газо-адсорбционной хроматографии происходит также и за счет замедленной внешнедиффузионной массопередачи. [c.163]

    Ниже мы приводим несколько уравнений Гинстлинга [34], характеризующих кинетику превращений в смесях твердых веществ и, по нап1ему мнению, позволяющих получать результаты, в достаточной мере приближающиеся к реальным. Эти уравнения выведены для следующих упрощенных условий 1) анизотропия компонентов реакционной смеси не влияет на кинетику процесса 2) зерна реагентов практически равновелики, а форма их близка к правильной (шаровой или кубической) 3) скорость процесса не лимитируется теплообменом между реагирующими веществами и окружающей средой и не зависит от скорости плавления или кристаллизации 4) массопередача осуществляется в результате движения частиц лишь одного компонента (вследствие большого различия в подвижности частиц реагентов) 5) слой твердого продукта реакции отделен от реагирующего компонента резкой границей 6) процесс квазистационарный, саморегулирующийся — скорость всех его стадий зависит от скорости самой медленной из них. [c.348]

    Барботажная зона почти полностью исчезает. Пена становится подвижной и сильно турбулизиро-ванной. Работа тарелки равномерна. Массопередача в основном за счет турбулентной диффузии [c.44]

    Для работы с загрязненными газами и жидкостями применяют аппараты с подвижной насадкой, сравнительно легкие элементы к-рой поддерживаются потоком газа во взвешенном (псевдоожиженном) состоянии. Положение слоя взвешенных элементов фиксируется ниж. (опорной) и верх, (ограничительной) решетками. В аппаратах с неск. слоями насадки верх, решетка нижерасположенного слоя служит опорой для вышеразмещенного. Высота слоя насадки в неподвижном состоянии (без газового потока) 0,2-0,3 м, расстояние между решетками 1-1,5 м. Для улучшения контакта между газом и жидкостью в аппаратах большого диаметра пространство между решетками разделяют вертик. перегородками на прямоугольные или секторные отсеки. С целью улучшения распределения жидкости и З еньшения брызгоуноса предложены конич. аппараты, в к-рых сечение возрастает по ходу газа. Аппараты с подвижной насадкой могут функционировать при больших скоростях газа без захлебывания и обеспечивают более высокий коэф. массопередачи, однако характеризуются большим гидравлич. сопротивлением, значит, брызгоуносом и износом насадочных тел. [c.173]

    Влияние пенообразования на массопередачу при ректификации противоречиво. С одной стороны, до определенного предела ценообразование способствует увеличению мехфазной поверхности и тем самым приводит к росту объемно го коэффициента массопередачи. С другой стороны, возрастание уноса хидкости паровым потоком и ненве подвижный характер пены ухудшают массосбменные показате- [c.61]

    Сорбенты, используемые в ВЭЖХ, характеризуются высокой скоростью массопередачи, что позволяет работать при больших линейных скоростях потока подвижной фазы без снижения эффективности разделения. Это, однако, достигается главным образом за счет уменьшения размера частиц сорбента. Поэтому потенциально высокая скорость процесса разделения может быть реализована лишь в том случае, если подвижная фаза подается в колонку под достаточно высоким давлением. [c.181]

    Фазовое состояние адсорбируемого вещества влияет на длительность процессов массопередачи, или массопереноса. В жидкой фа. зе подвижность адсорбируемых молекул очень мала. Скорость диффу. зии, а следовательно, и кинетика адсорбции в жидкости значительно ниже, чем в га. зовой среде. Скорость прохождения поглощаемого вещества чере з адсорбент в жидком состоянии должна быть значительно ниже, чем в га зовом, что требует большой высоты слоя адсорбента. Поэтому чаще всего адсорбция прои зводится в га зовой (паровой) фа зе. При этом для снижения температуры адсорбции на практике применяют адсорбцию в среде газа-носителя, который ускоряет диффузию молекул адсорбируемого вещества, снижает его парциальное давление в потоке. [c.208]


Смотреть страницы где упоминается термин Подвижная массопередача: [c.184]    [c.121]    [c.70]    [c.198]    [c.304]    [c.240]    [c.11]    [c.450]    [c.21]    [c.145]    [c.102]   
Высокоэффективная жидкостная хроматография (1988) -- [ c.24 ]

Высокоэффективная жидкостная хроматография (1988) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача массопередачи



© 2025 chem21.info Реклама на сайте