Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидроксильные группы, методы анализа

    Большинство химических методов анализа основано на определении содержания гидроксильных групп (функциональный анализ) и позтому находят применение для анализа узких (фенольная, крезольная, ксиленольная и т. п.) фракций. Обычно для этой цели используют реакции ацилирования (ангидридами кислот), реакции с металлоорганическими соединениями, а также кислот-но-основное титрование в неводных средах. [c.45]


    Получаемые при анализе масел диеновые числа занижены, так как в присутствии кислорода образуются перекисные соединения. Заниженные значения дают также вещества, содержащие гидроксильные группы для анализа веществ, содержащих кислотные группы, этот метод вообще непригоден. [c.105]

    Вещества, мешающие определению гидроксильных групп методом Фишера (см. гл. IX), мешают также определению нитрилов методом гидролиза. Поскольку спиртовый гидроксил колич ственно этерифицируется, его можно определить независимым методом и внести точные поправки в результаты анализа нитри лов. (При отсутствии аминного азота может быть использован ацидиметрический метод по Смиту и Брайанту [11] с применением хлористого ацетила.) [c.357]

    Существуют определенные методы синтеза органических соединений, в которых отдельные атомы являются изотопно-обогащенными (т. е. обладают более высокиМ содержанием редкого изотопа, чем при природном обогащении) (разд. 1.1). При исследовании превращений таких меченых веществ и анализе продуктов превращений часто удается определить точную судьбу отдельного атома или группы во время реакции. Этерификация изучалась с использованием тяжелого нерадиоактивного изотопа 0. Установлено, что при этерификации карбоновой кислоты спиртом, в котором гидроксильная группа обогащена 1 0 ( меченая ), все тяжелые изотопы находятся в эфирном атоме кислорода (но не в карбонильном кислородном атоме) и ни одного — в образовавшейся воде  [c.157]

    При анализе синтезированного препарата на содержание в нем гидроксильных групп по методу ацетилирования уксусным ангидридом в присутствии пиридина была получена величина, равная 40 /,,, в то время как вычисленная величина равна 42,5 /о следовательно, степень чистоты препарата составляет 94 /о. [c.199]

    Метод реакционной хромато-масс-спектрометрии успешно используется для анализа смесей спиртов. Масс-спектры ЭУ спиртов (особенно алифатических и алициклических) недостаточно информативны для определения молекулярной массы, положения гидроксильной группы и строения углеродного скелета молекулы. [c.189]

    Реакция гидроксильных групп с фенилизоцианатом лежит в основе дифференциального кинетического метода анализа двор- [c.23]


    Существуют газохроматографические методы определения гидроксильных групп с помощью анализа на активные атомы водорода. По этому вопросу см. гл. 8, разд. И. [c.55]

    Лучше всего, чтобы меченый стероид или стерин, добавляемый в качестве индикатора в жидкость или высушенный экстракт, имел настолько высокую удельную радиоактивность, что добавляемое его количество было пренебрежимо мало в сравнении с количеством определяемого немеченого соединения в данной пробе. Если же удельная радиоактивность индикаторного соединения меньше этого уровня, то необходимо учитывать как количество добавляемого индикатора, так и его радиоактивность, с тем чтобы впоследствии вычесть эти величины для корректирования полученных результатов анализа. Важным преимуществом метода с использованием меченых индикаторов, особенно ввиду различной реакционной способности гидроксильных групп, отличающихся по положению в молекуле, является то, что образование производного не обязательно должно быть количественным. Степень превращения можно, однако, определить в отдельном опыте путем добавления известного количества меченого соединения известной радиоактивности к высушенному экстракту перед ацетилированием, если при этом не будут допущены потери веществ после добавления индикатора. [c.72]

    В работе [119] описан метод, в котором уксусный ангидрид, меченный изотопом " С, применялся для ацетилирования гидроксильных групп окисленного полиэтилена. Ацетилированные полимеры использовались затем в качестве стандартов в ИК-спектрофото-метрическом анализе. Реакцию вели в смеси (200 15 по объему) [c.76]

    В работе [139] описано определение метанола и этанола в водных растворах с использованием модифицированного метода с радиореагентом и изотопным разбавлением, в котором радиореагентом является само определяемое соединение и не требуется количественного превращения в производное. В этом методе к анализируемой пробе добавляют определенные количества спиртов, меченных изотопом с известной удельной радиоактивностью и затем обрабатывают ее 3,5-динитробензоилхлоридом. Образующиеся эфиры выделяют с помощью жидкостной хроматографии в колонке. Вес каждого спирта в пробе находят по формуле (6), в которой вес выражен в грамм-молях, а удельные радиоактивности — в единицах радиоактивности на моль. При этом нет необходимости в избытке реагента, если достаточное количество производного образуется при добавлении менее 1 экв реагента. Если имеется метод разделения, который позволит получить каждое из производных в чистом виде в количестве, достаточном для определения удельной радиоактивности, то в принципе все компоненты с гидроксильными группами можно определить в анализе одной пробы. Описанный метод обладает потенциально высокой чувствительностью, поскольку веса разделенных 3,5-динитробензоатов можно определить с помощью абсорбционной спектрофотометрии. Однако применение этого метода ограничено лишь соединениями, для которых можно получить меченые аналоги с достаточно высокой удельной радиоактивностью. [c.82]

    Для того чтобы обеспечить получение хороших количественных данных при анализе оксикислот методом ГХ, эти кислоты обычно превращают в производные по полярным ОН- и СООН-группам. В обзоре Радина [26], посвященном выделению, определению структуры и количественному анализу жирных оксикислот, ГХ рассматривается как метод разделения смесей этих кислот с целью их количественного анализа. Жирные кислоты, не содержащие гидроксильных групп, первоначально разделяли экстракцией растворителями, осаждением или хроматографическим методом. Некоторые типичные методы химических превращений жирных оксикислот в хроматографическом анализе показаны в табл. 3.5. В основном эги методы совпадают с методами, используемыми для превращения в производные по каждой из этих групп в отдельности (разд. II, А — II, Г гл. 1 для ОН-группы и разд. II, А настоящей главы для СООН-группы). По различным причинам (стремление избежать помех, ускорить или облегчить анализ, добиться более полного прохождения реакции и т. п.) применение одних производных предпочитают другим. [c.135]

    Радиохимические методы особенно ценны в определении активного водорода, поскольку они обеспечивают высокую чувствительность анализа. Эти методы позволяют анализировать микроколичества органических соединений и определять концевые функциональные группы в некоторых полимерах. В соответствующих анализах применяют либо реакцию изотопного обмена активного водорода, содержащегося в анализируемом соединении, с тритием, содержащимся в гидроксильных группах спиртов или в тритиевой воде, либо реакцию активного водорода с алюмогидридом лития, меченным тритием. [c.246]

    Гидроксильные группы (-ОН). Они в лигнине не одинаковы -присутствуют фенольные и алифатические (спиртовые) гидроксильные группы в свободном состоянии и в связанном. Общее содержание свободных гидроксильных групп составляет примерно 1,1... 1,2 группы на ФПЕ (110... 120 групп на 100 ФПЕ), что соответствует их массовой доле примерно 10... 11%, (с интервалом от 10,4 до 14,6%), причем эти значения зависят не только от древесной породы, но и от методов выделения препаратов лигнина и анализа. [c.377]


    Наиболее общим методом определения гидроксильной группы является метод, основанный па этерификации. Этот метод пригоден для анализа гидроксильных соединений всех типов. Единственным исключением оказываются третичные спирты R3 OH, которые этерифицируются с трудом, так же как и тризамен енные фенолы и другие соединения с пространственно экранированной гидроксильной группой. Для анализа таких соединений рекомендуется метод инфракрасной спектроскопии. Можно пользоваться также методами определения активного водорода (см. с. 371). [c.16]

    Гидроксильные группы, которые часто входят в конденсационные полимеры, определяются не так легко и поэтому должны быть превращены в другие группы. Чаще всего это осуществляют ацетилированием (используя хлористый ацетил или уксусный ангидрид) или метилированием (с помощьк> диазометана или метилсульфата). Затем содержание гидроксильных групп определяют анализом на ацетат (гидролиз NaOH с последующим обратным титрованием) или метоксигруппы (Н1-метод Цейзеля). Штаудингер и Лути [66] использовали эти методы для исследования полноксиметилена Н0(СН20) Н. [c.370]

    Определение виниловых эфиров и ацеталей, а также присутствующих в них спиртов, уксусного альдегида и воды представляет довольно сложную аналитическую задачу. В качестве одной из попыток разрешения этой задачи предложена схема полного анализа [54], в которую входят гидролиз, гидрирование, определение гидроксильных групп методом ацетилирования, определение воды по Фишеру и альдегидов реакцией с сульфитом натрия с последующим титрованием серной кислотой. [c.42]

    Газо-жндкостная хроматография. В литературе имеются сведения о применении метода газо-жидкостной хроматографии для прямого анализа дифенилолпропана . Разделеление проводили на колонке, заполненной цеолитом 545 с нанесенными на него апиезо-ном Ь и поликарбонатом. Однако прямой анализ другим исследователям не удался из-за разложения дифенилолпропана . Поэтому ими было предложено сначала ацетилировать все реакционноспособные гидроксильные группы в дифенилолпропане, а затем проводить хроматографирование. [c.189]

    Несмотря на разнообразие нефтей, сэдержание углерода и водорода в асфальтенах колеблется в сравнительно узких пределах С 80—86% (масс.), Н 7,3—9,4% (масс.), отношение С Н также сравнительно постоянно и равно 9—П. Различие в содержании гетероатомов значительно больше. По данным Сергиенко содержание кислорода в асфальтенах в зависимости от природы нефти может колебаться от 1 до 9, серы, от О до 9, азота от О до 1,5— 3,0% (масс.). Химические и спектральные методы анализа показали, что кислород в асфальтенах входит в состав гидроксильных, карбонильных, карбоксильных и сложноэфирных групп. В нативных асфальтенах преобладают гидроксильные и карбонильные группы до 80% (масс.). В асфальтена.ч из окисленных битумов преобладают сложноэфирные группы [ 60% (масс.) кислорода] Некоторые исследователи считают, что 1 ера входит в состав суль фидных мостиков между фрагментами молекулы асфальтенов Другие, в том числе Сергиенко, придерхиваются мнения, что ато мы серы включены в циклические структурные элементы, содер жащие кольцо тиофена или тетрагидрэтиофена. Спектральными методами были также обнаружены циклические соединения, содержащие сульфоксидную группу. [c.211]

    ФУНКЦИОНАЛЬНАЯ ГРУППА, структурный фрагмент молекулы, характерный для данного класса орг. соед. и определяющий его хим. св-ва. Напр., св-ва спиртов определяются гл. обр. наличием гидроксильной группы, аминов — аминогруппы, карбоновых к-т — карбоксильной группы. В состав т. н. полифункциональных соед. входят несколько разл. Ф. г. Для качеств, и количеств, определения Ф. г. (функционального анализа) примен. обычно ИК и УФ сшектроскопию, ЯМР, а также методы, основанные на характерных хим. р-циях. См., напр., Азидная группа. Азогруппа, Нитрогруппа, Нитрильная группа. Карбонильная группа. [c.640]

    Функциональный анализ — совокупность физических и химических методов анализа, применяя которые можно качественно и количественно определять в органических соединениях реакцнонноснособные группы атомов (или отдельные атомы), так называемые функциональные группы. Известно около 100 функциональных групп. Напр. 1) Ф. г,, содержащие кислород гидроксильная (гидроксо) —ОН, [c.147]

    Для анализа экдистероидов методом газо-жидкостной хроматографии, а также для проведения их направленных трансформаций возникает необходимость защиты гидроксильных групп. В синтезе триметилсилиловых эфиров экдистероидов наиболее часто используются М,0-бис(триметилсилил)ацетамид и М-(триметил- [c.473]

    Крамм, Ламонт и Мейер [14] использовали ИК-спектрофотомет-рию для определения содержания гидроксильных групп в окисленном полиэтилене. При этом они проводили спектральный анализ полимера, подвергнутого количественному ацетилированию уксусным ангидридом. Для определения содержания ацетильной группы измеряли поглощение при 8,03 мкм. Соответствующая полоса поглощения обусловлена валентными колебаниями связи С—О и типична для эфиров уксусной кислоты. Результат определения ацетильной группы принимали за содержание гидроксильной группы. Калибровочные данные для этого метода получали путем спектрофотометрического анализа полимеров в ИК-области содержание гидроксильной группы в полимерах предварительно устанавливали путем их ацетплпропания уксусным ангидридом, меченным изотопом С, и последующего радиохимического анализа. [c.27]

    Пожалуй, наиболее успешным и практически удобным методом газохроматографического анализа соединений с гидроксильными группами является метод, основанный на образовании силильных эфиров, таких, как триметилсилильные [(СНз)з51—] и трифторме-тилсилильные [( F3)3Si—]. В литературе описано большое число методов силилирования этим методам целиком посвящена по меньшей мере одна книга [50]. Общую картину применяемы с [c.47]

    Обсуждение результатов. Описанный выше метод, позволяющий легко и быстро вьшолнить анализ, оказался применимым для определения большого числа разнообразных соединений с несколькими гидроксильными группами (были изучены около 100 углеводов и родственных им веществ). Количество пиридина не имеет большого значения, и в количественном анализе добавлением этого растворителя можно обеспечить нужный объем реакционной смеси. Сообщалось, что в закрытых сосудах производные сахаров сохраняют свои свойства в течение по меньшей мере нескольких дней. [c.49]

    Реагенты с относительно высокой удельной радиоактивностью нJиpoкo используют в определениях стероидов и стеринов, содержащихся в экстрактах биологических жидкостей, путем ацетилирования гидроксильных групп этих соединений. Концентрации УТИХ соединений в таких экстрактах очень низки, так что в пробе может содержаться менее 1 мкг анализируемого соединения. В анализируемых объектах присутствуют первичные, вторичные и третичные гидроксильные группы, а некоторые стероиды (например, гидрокортизон) могут содержать гидроксильные группы исех трех типов. Кроме ожидаемых трудностей из-за различий в реакционной способности, обусловленных этими тремя типами гидроксильных групп, анализ таких соединений затрудняют и значительные различия в скорости ацетилирования вторичных гидроксильных групп, которая зависит от положения такой группы в молекуле [89]. Поскольку в анализируемых образцах содержатся лишь микро- или полумикроколичества соединений с гидроксильными группами, для их определения лучше всего подходят методы с использованием двух радиоактивных изотопов. Один —сравнительный изотоп — служит для определения количества производного, выделенного с помощью хроматографии, а второй — индикаторный изотоп — позволяет установить выход определяемого сослинения, степень превращения и чистоту продукта. Сравиитель-Н1.п" изотоп всегда находится в ангидриде, которым обрабатывают [c.71]

    Еще один метод определения гидроксильных групп в стероидах ( и в дру1их соелинениях), в котором используется лишь уксусный ангидрил, меченньп1 изотопом получил название анализ по отношению производных [106]. В этом методе к пробе добавляют [c.74]

    Устойчивые производные карбонильных соединений, пригодные для ГХ-анализа, образует метоксиамин (0-метилгидроксиламин) 55, 56]. Это соединение использовали также для блокирования кетогрупп, когда они мешали образованию производных по гидроксильной группе [57]. Глиоксаль, метилглиоксаль и диацетил превращали в соответствующие хиноксалины, которые затем разделяли методом ГХ [58]. [c.100]

    Харп и Эйферт [1] описали общий метод определения активных атомов водорода с использованием ИК-спектрофотометрии и реакции обмена активных атомов водорода с дейтерием, содержащимся в D2O. В большом избытке D2O равновесие этой реакции смещается в сторону образования дейтерированных продуктов. Количество активного водорода в пробе вычисляют по интенсивности линии поглощения образующейся в D2O гидроксильной группы (при 2,97 мкм). При анализе химически активных атомов водорода, например таких, которые связаны с атомами кислорода, азота, серы или фосфора, быстро устанавливается статистическое распределение активного водорода и дейтерия между анализируемым соединением и D2O. [c.240]

    Обсуждение. Нортон и сотрудники использовали описагшый метод для определения содержания гидроксильных групп в эпоксидных смолах, однако здесь этот метод обобнден на случай определения активного водорода. Методика анализа с некоторыми изменениями заимствована из работ [3, 4], в которых утверждается, что получаемые результаты имеют точность 0,037о- [c.246]

    Дальнейшее изучение метода показало, что он не является абсолютным и не позволяет анализировать любое неизвестное соединение с использованием одного и того же калибровочного графика, построенного по результатам анализа подходящего известного соединения [20]. В этом исследовании вещества с различными формами активного водорода анализировали с использованием одной и той же порции меченого реагента. При этом для бензойной кислоты и я-бутанола были получены согласующиеся результаты, а результаты для анилина значительно отличались от соответствующих результатов, полученных с использованием меченого спирта. Растворимые образцы полиэтиленадипината, содержащие в основном концевые гидроксильные группы, хотя и давали прямолинейный калибровочный график, выделяли меньше трития, чем эквивалентное количество я-бутанола. Для того чтобы в анализе анилина количество выделяющегося трития было достаточно близким к количеству трития, выделяемого данным количеством лмина, требовался свежий реагент. Этот анализ проводили с применением модифицированного оборудования, описанного ниже. Такой эффект, связанный с наличием в реагенте остаточных продуктов от предыдущих реакций, не наблюдался в анализе я-бутанола в этом анализе можно было использовать раствор реагента, )/ке использовавшийся в анализах анилина и бензойной кислоты. [c.253]

    Нами разработан метод избирательного ацетилирования Ы-фурфуриламиноэтанолов и М-пирролидилалканолов, содержащих вторичную аминогруппу 3]. Реакцию проводят в водном растворе при пропускании кетена до определеиного привеса и получают с хорошим выходом М-ацетильные производные, строение которых подтверждено данными элементного анализа и ИК-спектрами. Валентному колебанию связи С = 0 в третичной амидной группе соответствует частота 1640 см наличие гидроксильной группы подтверждается широкой полосой при 3400 см полоса поглощения при 1750 см характерная для сложноэфирной группы, отсутствует. [c.46]

    Для изучения водородных связей в полимерах используют метод инфракрасной спектроскопии (см. 5.4, 9.1 и 9.3). При образовании Н-связей между гидроксильными группами полоса валентных колебаний в ИК-спектре смещается в сторону меньших частот, причем тем больше, чем выше энергия Н-связи. Кроме того, полоса уширяется, а интенсивность ее увеличивается. Более четко проявляется Н-связь в ПМР-спектрах (см. 5.4) происходит смещение сигнала протона связи О-Н в сторону более слабого поля. Метод ПМР более чувствителен по сравнению с ИК-спсктроскопией и позволяет обнаруживать очень слабые связи. Для кристаллических полимеров ценную информацию дает метод рентгеноструктурного анализа (см. 5.4 и 9.4.6). [c.129]


Смотреть страницы где упоминается термин Гидроксильные группы, методы анализа: [c.185]    [c.194]    [c.118]    [c.85]    [c.604]    [c.98]    [c.54]    [c.55]    [c.70]    [c.74]    [c.546]    [c.75]    [c.273]   
Instrumental Methods of Organic Functional Group Analysis (1972) -- [ c.0 ]

Инструментальные методы анализа функциональных групп органических соединений (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроксильная группа

групп методы анализа



© 2025 chem21.info Реклама на сайте