Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение кислорода в азоте

    Эффективность автоматизированных систем обработки эколого-ана-литической информации заметно повьппается при использовании автоматических станций контроля загрязнений воды и воздуха. Локальные автоматизированные системы контроля загрязнений воздуха созданы в Москве, Санкт-Петербурге, Челябинске, Нижнем Новгороде, Стерлита-макс, Уфе и других городах. Проводятся опытные испытания станций автоматизированного контроля качества воды в местах сброса сточных вод и водозаборах. Созданы приборы для непрерьшного определения оксидов азота, серы и углерода, озона, аммиака, хлора и летучих углеводородов. На автоматизированных станциях контроля загрязнений воды измеряют температуру, pH, электропроводность, содержание кислорода, ионов хлора, фтора, меди, нитратов и т.п. [c.27]


    Наиболее простым и доступным методом определения коррозионной стойкости металлов в электролитах является испытание в открытом сосуде (рис. 327), которое позволяет использовать большинство показателей коррозии. Образцы (обычно три в каждом опыте) подвешивают на стеклянном крючке или капроновой нити и испытывают при полном (рис. 327, а), частичном (рис, 327, б) или переменном (рис, 327, в) погружении в неподвижный (рис. 327, а—в) или перемешиваемый (рис, 327, г) коррозионный раствор, через который можно пропускать воздух, кислород, азот или другой газ (рис. 327, д). Более совершенно проведение испытания в оборудованном термостате (рис, 327, е). [c.443]

    К ароматическим системам принято относить имеющие плоское строение молекулы карбо- и гетероциклических соединений, а также ионы, в которых имеется определенное число кратных углерод-углеродных связей, находящихся в сопряжении друг с другом или с -.электронами входящего в цикл гетероатома (кислород, азот или сера). [c.308]

    Подобная же система из трех колонок и двух детекторов использована для автоматического анализа газов в атмосфере почвы, т. е. для одновременного определения кислорода, азота, аргона, углекислого газа, закиси азота и углеводородов l—С4 [43]. Основное внимание уделено определению этилена в атмосфере почвы. Пределы детектирования СО2, NjO — 20 ррм, О2, N2, Аг — 75 ррм, углеводороды i—С4— 0,02 ррм. [c.111]

    Определение кислорода, азота и углерода [c.197]

    Бут и Паркер [811, 812] улучшили метод путем введения в ванну небольшого количества олова, понижающего температуру испарения бериллия. Извлечение газообразных продуктов занимает немного времени, позволяет анализировать образцы бериллия в виде порошка, стружки, слитков, не требует больших навесок анализируемых проб. Преимуществом метода является также возможность одновременного определения кислорода, азота и водорода [813, 814]. [c.199]

    С), где С — количество вещества в единице объема стандартного раствора или газа. После разделения вещество определяют любыми хим., физико-хим. или физ. методами. Различают X. а. газов и жидкостей. Кроме того, в зависимости от механизма разделения X. а. бывает молекулярный (адсорбционный и распределительный), ионообменный, осадочный, адсорбционно-комплексообразовательный, окислительно-восстановительный по форме проведения анализа — колоночный, капиллярный, на бумаге, тонкослойный и в гелях. Г азо-адсорбцион-н ы й X. а. основан на различной адсорбции компонентов газовой смеси твердым сорбентом (активированным углем, силикагелем, цеолитами и др.). Для продвижения пробы через колонку служит инертный газ-носитель (напр., азот, гелий, аргон). Анализ применяется для количественного определения кислорода, азота, водорода, окиси и двуокиси углерода, сернистого газа и др. В газожидкостном X. а. применяют установки (рис.), где используют различие в распределении анализируемых газообразных соединений между неподвижной жидкой фазой (нанр., силиконовым или вазелиновым маслом, дибутилфталатом), нанесенной на твердый сорбент, и газом-носителем, не взаимодействующим химически с жидкой фазой и с компонентами анализируемой смеси. При капиллярном газожидкостном [c.696]


    Определение, кислорода, азота и водорода в цирконии методом вакуумной экстракции. Метод предусматривает расплавление анализируемого образца в условиях высокого вакуума (1-10" —ЫО мм рт. ст.) в присутствии избытка углерода, сбор выделяющихся при этом газов и их анализ. [c.209]

    Аргон сырой. Аргонная фракция. Хроматографический метод определения кислорода, азота и аргона Кислород. Хроматографический метод определения примесей аргона и азота [c.393]

    Для определения кислорода, азота и водорода применяют особые источники света. В металлах приходится определять малые примеси газов, порядка 10 —10 %. Газы относятся к числу трудновозбудимых элементов. Их наиболее чувствительные линии расположены в очень коротковолновой ультрафиолетовой области спектра, недоступной для наблюдения с обычной аппаратурой поэтому приходится отказываться от использования наиболее интенсивных линий и пользоваться линиями менее интенсивными. [c.235]

    Одна из часто возникающих проблем — это определение примеси постоянных газов в чистых газах. В качестве примера можно указать на применение газохроматографического метода для определения примесей неорганических газов в электролитическом хлоре [80], для определения азота в аргоне [81], применяемом в качестве инертной среды в производстве полупроводников, для определения кислорода, азота, окиси углерода и метана в чистом этилене [82], для определения неорганических газов в двуокиси углерода [83], используемой как хладоагент в ядерных реакторах, для определения чистоты гелия [84]. Очень важной задачей для техники безопасности является определение примесей метана в воздухе помещений и, в частности, в воздухе шахт [85], определение водорода в рудничных газах [86[. [c.151]

    Определение кислорода, азота и двуокиси углерода в пробах воздуха. (Детектор катарометр. Предварительное обогащение для СОг, охлаждение жидким Na.) [c.244]

    Выберите для системного описания, т. е. описания, включающего все доступные вам знания, расположенные в определенной последовательности, одну из следующих тем водород, кислород, азот, углерод, кремний, вода, аммиак, диоксид углерода, хлорид натрия, карбонат кальция. [c.163]

    Анализ для определения отдельных элементов, составляющих соединения органической массы угля, т. е. количество углерода, водорода, кислорода, азота, серы и т. д., осуществляют методами, подобными методам, применяемым в органической химии. Некоторые из перечисленных элементов представляют больший или меньший интерес в отношении того, что касается процесса коксования и конечного качества получаемого кокса. Знание содержания серы представляется важным ввиду ее влияния на качество произведенного кокса, используемого в доменной печи. Содержание фосфора должно быть ограниченным при производстве определенных сортов электрометаллургических коксов. Напротив, азот, присутствующий в угле, не оказывает особого влияния, так же как и хлор, на производство кокса. Тем не менее опишем вкратце порядок нормального анализа для каждого из этих элементов для того, чтобы составить более полное представление об исследовании углей с помощью методов их элементного анализа. [c.48]

    Еще несколько лет тому назад определение кислорода осуществляли лишь по разности, т. е. по содержанию влаги, углерода, водорода, серы, хлора, азота, а также по зольности. В настоящее время наиболее распространенный метод заключается в термической обработке угля в токе азота и в пропускании выделяющихся продуктов через платинированный углерод при 910 10° С, что превращает весь кислород угля в окись углерода. Образующаяся сероокись углерода ( OS) разрушается при прохождении через нагретую медь при 910° С [42]. Образующаяся же окись углерода затем окисляется в углекислый газ, и его определяют различными методами. [c.51]

    Существуют также газоанализаторы, определяющие предельное содержание О2 в водороде. Действие их основано на том, что кислород обладает ярко выраженными парамагнитными свойствами, тогда как почти все другие газы имеют слабые диамагнитные свойства [88]. Для определения содержания азота в продукте может использоваться принцип измерения теплопроводности азота [89]. [c.99]

    Однако указанный способ не всегда, дает совпадающие результаты, а получаемое содержание серы почти всегда выше, чем по стандарту. Это явление может быть до известной степени объяснено наличием в продажном кислороде азота, образующего в процессе определения взаимодействующие с содой окислы. [c.407]

    Обратимся теперь к веществам, из которых построены живые организмы. По-ви-димому, почти нет такого элемента, который в той или иной концентрации не играл бы определенную роль в тех или иных живых организмах. Однако по распространенности в живых организмах важнейшими являются такие элементы, как углерод, водород, кислород, азот, фосфор и сера. Многие другие элементы, в том числе разнообразные металлы, содержатся н живых организмах в меньших количествах (см. рис. 23.5.) [c.443]


    Водородная связь —особый тип взаимодействия между молекулами — проявляется, когда полярная молекула, содержащая атом водорода, взаимодействует с атомами кислорода, азота или фтора. Энергия водородной связи 4— 40 кДж/моль. Причина образования водородной связи состоит в том, что единственный электрон атома водорода участвует в связи с другим атомом и тем самым экранирование ядра атома водорода ослабляется, что дает возможность к взаимодействию протона с другими атомами. На основании сказанного выделите существенные признаки водородной связи и дайте определение понятия водородной связи. [c.50]

    Протоны, образующие связи с кислородом, азотом с серой, находятся в спиртах, фенолах, карбоновых кислотах, енолах, аминах, амидах, меркаптанах и других соединениях. В большинстве случаев такие протоны относятся к так называемым активным атомам водорода. Характер таких активных протонов зависит от силы межмолекулярных взаимодействий и скорости химического обмена. На положение сигналов таких протонов сильно влияет концентрация раствора, его температура и характер растворителя. Поэтому для определения истинных химических сдвигов активных протонов используют растворитель, не образующий водородных связей (например, четыреххлористый углерод), и производят измерения при нескольких концентрациях раствора, после чего экстраполяцией к бесконечному разбавлению раствора определяют величину химического сдвига. Полученное при этом значение 6 соответствует отдельным молекулам, не связанным межмолекулярными водородными связями. [c.133]

    Ядерно-физические методы основаны на облучении образца элементарными частицами или у-квантами. В результате ядерной реакции образуется радиоактивный изотоп. Число образовавшихся радиоактивных атомов примеси пропорционально ее содержанию в анализируемом образце. Существуют методы определения кислорода, азота и углерода с использованием ядерных реакций на заряженных частицах (протонах, дейтронах, тритонах, гелии-3 и а-частацах), 14 МэВ-нейтронов и тормозного у-излучения. Для повышения чувствительности ядерно-физических методов применяется радиохимическое выделение с использованием восстановительного плавления, дистилляции и т.п. [c.931]

    Дальнейшие пути развития радиоактивационного анализа заключаются в повышении чувствительности, экспрессности и точности определения. Повышение чувствительности возможно путем использования более интенсивных потоков в ядерных реакторах большой мощности до 10 яе /пр/сж -сек,, использования работы реакторов в импульсном режиме с потоками до 10 — 10 нейт.р см сек в импульсе для определения по короткоживущим изотопам, создания ускорителей заряженных частиц с большой силой тока (порядка нескольких миллиампер) для целей активационного анализа, электронных ускорителей сэнергией до30Мэвя мощностью 10 рентг/м-мин для определения кислорода, азота и углерода. Повышения чувствительности и быстроты анализа можно достичь также путем разработки экспрессных химических методов разделения с почти количественным химическим выходом носителей. Чувствительность, быстрота и точность анализа зависят также от совершенства измерительной аппаратуры, в частности от создания полупроводниковых детекторов излучения с высокой разрешающей способностью и многоканальных спектрометров с вычитанием комптонов-ского фона. Большую роль в повышении точности определения должно сыграть применение методов статистической обработки результатов определений, а также разработка быстродействующих анализаторов с элементами электронно-вычислительной техники, позволяющих полностью автоматизировать обработку спектров и результатов измерений [36]. [c.14]

    Спектральные методы определения кислорода, азота, водорода в цирконии и гафнии. Эмиссионное спектральное определение названных элементов в цирконии и гафнии встречается со значительными трудностями, обусловленными высокими значениями потенциалов возбуждения спектральных линий, а также большой прочностью соединений циркония и гафни с газообразными элементами. [c.212]

    Дальнейшее повышение чувствительности радиоактивационного анализа может быть достигнуто использованием при облучении более интенсивных потоков нейтронов 10 нейтр1см сек и тормозного излучения с энергией 30—35 Мэе и мощностью дозы до 10 —10 рентг1м-мин. Последнее позволит повысить чувствительность определения кислорода, азота и углерода до 10" —10" %. Применение низкофоновых счетчиков с 4я-геометриек и создание многоканальных у-спектрометров с вычитанием комптоновского рассеяния также позволит повысить чувствительность определения примерно на порядок. [c.12]

    Первые работы по определению кислорода, азота и метана при помощи ионизационного детектора были проведены Виллисом [4]. Он между колонкой и детектором вводил постоянный поток (1 — 100 частей на миллион) этилена или ацетилена. Тем самым повышался основной ионизационный ток и еще в большей степени чувствительность на неорганические газы. Трудная проблема дозировки газа удачно была разрешена Лессером [5], который между колонкой и детектором помещал органический препарат (1,2,4,5-тетрахлорбензол). Поскольку упругость паров при заданной температуре постоянна, молекулы этого препарата непрерывно поступают в поток газа-носителя и повышают силу основного ионизационного тока. Чувствительность определения органических газов составила 10 мл. [c.69]

    Анализ работ по применению искровой масс-спектрометрии для определения газов и углерода в твердых веществах позволяет сделать заключение о принципиальной возможности использования этого метода для решения таких задач. Однако имеющиеся данные свидетельствуют и о том, что предельная чувствительность определения кислорода, азота и углерода методом вакуумной искры не превышает возможности других методов анализа газов. В то же время сложность анализа этих прнмесей на масс-спектрометре с искровым источником ограничивает его широкое распространение в будущем. Эти трудности усугубляются низкой производительностью метода, так как перед проведением анализа необходим многочасовой прогрев ионного источника, что не всегда гарантирует правильность получаемых данных для этих примесей. Возможность метода также ограничивается природой исследуемых веществ и особенностями их спектров масс, так как во многих случаях аналитические линии газов бывают перекрыты линиями много-зарядных ионов. [c.133]

    Долгина А. И., Зотикова М. Р., Методика определения кислорода, азота, окиси азота, окиси углерода, этана, закиси азота, этилена, пропана и двуокиси углерода на основе газо-адсорб-ционной хроматографии, Отч. № 9-62, 7 с., библ. нет. [c.335]

    Ван Климпут [47] описал определение кислорода, азота, диок сида углерода и оксидов азота в газе, содержащемся в почве. Для разделения этой смеси использовали систему из трех колонок в [c.121]

    Помимо этого, соотношения, в которых присутствзгют инородные элементы (сера, кислород, азот и др.), отражаются на процентном соотношении неуглеводородных компонентов в тяжелых фракциях и приводят к дополнительному усложнению. Допуская для простоты, что нефтяные компоненты содержат не более одного инородного атома, следует считать, что с увеличением среднего молекулярного веса фракций действительное процентное содержание неуглеводородных компонентов. Соответствующее определенному содержанию инородных элементов, растет. В такой большой молекуле присутствие инородного атома не оказывает существенного влияния на химические и (или) физические свойства, определяемые преимущественно углеродным характером молекулы, поэтому изучение состава высших фракций очень усложняется вследствие присутствия неуглеводородных соединений. [c.364]

    Определение атомных масс. Валентность. Закон Авогадро позволяет определить число атомов, входящих в состав молекул простых газов. Путем изучения объемных отношений при реакциях, в которых участвуют водород, кислород, азот и хлор, было устаиозлсио, что молекулы этих газов двухатомны. Следовательно, определив относительную молекулярную массу любого ч -, этих газов и разделив ее пополам, мо кно было сразу найти отиосителГ)-иую атомную массу соотвстстпующого элемента. Например, установили, что молекулярная масса хлора равна 70,90 отсюда атомная масса хлопа равняется 70,90 2 или 35,45. [c.33]

    Существуют разные определения понятия "криогенная жидкость". Так, например, в книге [Perry,1973] криогенные жидкости определяются как жидкости с т. кип. ниже -129 °С. В дальнейшем под криогенными жидкостями мы будем понимать также жидкие этилен, этан, кислород, азот и метан, которые используются в промышленности в сжиженном виде. Все эти вещества, за исключением этана, кипят при температурах, которые в природе не существуют и могут быть достигнуты только искусственно этан кипит при температуре немного выше абсолютного минимума, зарегистрированного в районе полюса холода в Антарктиде. [c.440]

    Стабильные и нестабильные (радиоактивные) изотопы часто применяются в органической химии. Этими изотопами элемеитоа, в особенности изотопами водорода, углерода, кислорода, азота, фосфора и т. д., пользуются при исследовательских работах в органической и биологической химии для того, чтобы охарактеризовать или, как говорят, отметить (по-английски — label) определенные атомы органических молекул и таким путем с точностью проследить судьбу этих атомов ири химических и биологических превращениях соответствующих веществ. [c.1142]

    Лекция У. Олефиновые углеводороды. Их образование, свойства и содержание в нефтепродуктах. Влияние олефинов на свойства фракций и нефтепродуктов. Методы качественного и каличественного определения и выделение и применение олефиновых углеводородов. Лекция УИ. Кислород, азот и металлосодержашие углеводороды в ГИ. Их разновидности и свойства. Влияние на качество нефтяных фракций.  [c.224]

    Вероятный механизм стабилизации свободных радикалов следующий. При термодеструкцни в результате отрыва боковых цепей у соединений с конденсированными ядрами образуются активные структурные звенья, способные к далг--нейшему росту за счет образования новых связей углерод — углерод. Образовавшиеся вторичные свободные радикалы также будут расти до тех пор, пока при некотором оптимальном размере они не подвергнутся стабилизации и >1е превратятся в неактивные радикалы, неспаренный электрон которых экранирован алкильными или какими-либо другими группами. Рекомбинация таких сложных радикалов между собой затруднена, но при определенных условиях они могут вступать п реакцию с диффундирующими в кристаллиты углерода молекулами газов и паров серы, кислорода, азота, галогенов и др. [c.150]

    Величины содержания углерода и водорода не имеют большого значения в химии нефти, так как даже присутствие высокомолекулярных соединений вызывает не слишком большую разницу в анализах нефтей различного типа. Однако полный элементарный анализ позволяет судить о содержании в нефти серы, кислорода и азота (в сумме), т. е. определяет содержание гетерогенных соединений. На одну весовую единицу кислорода, азота и серы в среднем приходится около 15—20 вес. единиц углеводородных радикалов, с которыми связаны эти гетерогеппые элементы. Так как ошибки элементарного анализа вследствие неполного сгорания приводят к преувеличенному содержанию гетерогенных элементов, всегда следует предпочитать прямое определение этих элементов, и старые анализы некоторых нефтей не всегда заслуживают доверия. [c.21]

    Наиболее сильными канцерогенами в нефтяных маслах являются арены (ПДК 0,01 — 100 мг/м ), олефины (1 — 10 мг/м ), соедииения серы (0,8—50 мг/м ), азота (0,01—2 мг/м ) и кислорода (О, I —50 мг/м ). Особую опасность представляют биологически активные полициклические арены (ПА) — группа соединений с конденсированными бензольными кольцами (рис. 2.1). ПА различаются по числу и расположению таких колец и алкильных заместителей и могут содержать в своем составе гетероатомы (кислород, азот, серу). Определенной биологической активностью обладают уже би- и трициклические соединения к наиболее канцерогенным относят высшие ангулярные ПА с числом колец от 4 до 7. О канцерогенности высших линейно конденсированных аренов (аценов) сведений не имеется. Веше-ства с числом колец более 7 неизвестны (по-видимому, неустойчивы). Гибридные циклоалканоарены (см. рис. 2.1) также канцерогенны. Заместителями в циклах обычно являются одна-две метильные группы, один длинный, слаборазветвлеиный алкил. [c.28]

    Г. Лендель, Д. Гофман, Г. Брайт. Анализ черных металлов, Госхимтехнздат, 1934, (612 стр,). Авторы описывают арбитражные и экспрессные методы определения элементов, входящих в состав чугунов и сталей, методы определения кислорода, водорода и азота и включений окислов, методы анализа ферросплавов, а также руд, известгяков, шлаков, угля и других материалов, мета, 1лургнческого производства. [c.491]

    Во введении к данной главе отмечалось, что определенные группы или группировки атомов придают органическим молекулам специфические свойства. Эти группы называются функциональными. Мы уже знакомы с двумя такими группами-двойной и тройной углерод-углеродными связями, каждая из которых придает молекулам углеводородов повышенную реакционную способность. Функциональные группы могут содержать не только атомы углерода и водорода, но также атомы других элементов, чаще всего кислорода, азота или галогенов. Соединения, содержащие эти элементы, принято рассматривать как производные углеводородов их можно считать продуктами замещения одного или нескольких атомов водорода в углеводородах на функциональные группы. Каждое такое соединение считается состоящим из двух частей углеводородного фрагмента, например алкильной группы (которую всегда обозначают латинской буквой К), и одной или нескольких функциональных групп [c.427]

    ХТ-8. Разработан ВНИКАНефтегазом, выпускается заводом Моснефтекип . Предназначен для определения водорода, кислорода, азота, окиси и двуокиси углерода, метана в отходящих дымовых газах. Температурный режим изотермический (при комнатной температуре). Детектор — катарометр. Вторичный регистрирующий прибор — милливольтметр М-136. [c.256]

    Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединить один атом данного элемента. Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду так, в соединениях N2O, СО, SiOa, SO3 валентность по кислороду азота равна единице, углерода — двум, кремния — четырем, серы [c.118]

    Азот N2 не поддерживает ни горения, ни дыхания. Химически мало активен.- При комнатной температуре непосредственно соединяется лишь с литием, образуя нитрид состава 1лзМ. При высокой же температуре азот соединяется со многими металлами с образованием нитридов, например MgзN2 — нитрид магния, СазМа — нитрид кальция и др. При температуре электрической дуги азот соединяется с кислородом, давая окислы азота. При высоких температуре и давлении в присутствии катализаторов азот соединяется с водородом, образуя аммиак МНз. В определенных условиях азот может давать соединения и с другими элементами (серой, хлором и т. д.). [c.468]


Библиография для Определение кислорода в азоте: [c.269]   
Смотреть страницы где упоминается термин Определение кислорода в азоте: [c.132]    [c.254]    [c.10]    [c.5]   
Смотреть главы в:

Аналитический контроль производства в азотной промышленности Вып 17 -> Определение кислорода в азоте




ПОИСК





Смотрите так же термины и статьи:

Азот кислород

Азот, определение

Азот, определение азота

Аппарат типа СВ для определения содержания кислорода в чистом азоте и аргоне колориметрическим методом

Кислород определение

Кислород определение примеси азота

Новожилова, И.П.Оглоблина. Газохронатографическое определение примесей кислорода, азота и двуокиси углерода в жидком хлоре

Определение азота и кислорода Спектральное определение других трудновозбудимых элементов

Определение водорода, кислорода и азота

Определение кислорода в азоте и азота в кислороде

Определение кислорода в азоте и азото-водородной смеси

Определение содержания кислорода в азоте

Определение содержания кислорода и азота в воздухе

Определение содержания окиси азота и кислорода в выхлопных газах

Определение содержания окиси азота и кислорода в отходящих газах

Определение углеводородов i - Сб (i - С8), азота, кислорода и диоксида углерода с использованием четырех насадочных колонок

Определение углеводородов до С8 (и выше), водорода, кислорода, азота и диоксида углерода с использованием трех капиллярных колонок

Приборы для автоматического определения кислорода и азота

Распределение компонентов смеси кислород— аргон—азот и определение основных размеров воздухоразделительных колонн



© 2025 chem21.info Реклама на сайте