Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение ионов при помощи ионообменников

    Избирательное поглощение ионов ионообменниками может быть использовано для разделения смесей электролитов хроматографическими методами. Из других задач, решаемых с помощью ионообменников, можно отметить следующие. [c.213]

    Аналогично цинку с роданидом метилового фиолетового можно соосаждать и другие элементы, образующие комплексные анионы, например, висмут, медь, кадмий. На этом же принципе основан способ отделения микроколичеств цинка, кадмия, ртути, висмута и кобальта от макроколичеств никеля, магния и хрома [147]. Разделение ионов при помощи ионообменников. Применение органических и минеральных ионообменников для разделения ионов основано на различии прочности соединений ионов с ионообмен-ником. При этом методе разделения ионов используют различие в таких свойствах, как заряды или объемы ионов, степень их гидратации или гидролиза, различие в способности к образованию комплексных соединений с растворителем (элюентом) и изменение этих свойств в зависимости от pH среды и природы ионообменника. [c.81]


    Наиболее широко ионный обмен применяется в аналитической химии для разделения ионов. Приведем несколько примеров. С помощью катионитов можно отделить катионы от сопутствующих анионов. Для этой цели раствор солей пропускают через колонку с катионитом в Н+-форме. В результате все катионы раствора поглощаются катионитом, а ионы водорода ионообменника переходят в раствор, где остались анионы солей. После этого через ту же колонку пропускают раствор кислоты. При этом происходит обратный процесс — извлечение ранее поглощенных катионов в раствор и переход смолы снова в Н+-форму. Если, например, применить для извлечения катионов соляную кислоту, то все катионы окажутся в растворе в виде хлоридов. [c.74]

    Разделение ионов при помощи ионообменников. Применение органических и минеральных ионообменников для разделения ионов основано на различии прочности соединений ионов с ионообменником. При этом методе разделения ионов используют различие в таких свойствах, как заряды или объемы ионов, степень их гидратации или гидролиза, различие в способности к образованию комплексных соединений с растворителем (элюентом) и изменение этих свойств в зависимости от pH среды и природы ионообменника. [c.60]

    Этот способ ионного обмена заключается в контактировании ионита с исходным раствором в статических условиях. С целью более быстрого установления ионообменного равновесия содержимое сосуда, в котором протекает процесс, перемешивается. Так как при этом возможен лишь однократный процесс обмена ионами, то указанный способ дает относительно хороший эффект разделения, если коэффициент разделения ионов между ионитом (ионообменником) и раствором достаточно велик. В противном случае процесс можно проводить в виде ступенчатого варианта. С этой целью после установления равновесия в первом сосуде (первая ступень) находящийся в пем раствор переливается во второй сосуд (вторая ступень), содержащий свежий ионит. Затем после равновесного обмена во втором сосуде раствор переливается в третий сосуд (третья ступень) и т. д. С помощью такого многоступенчатого варианта можно добиться существенного отделения примеси от основного вещества в растворе. Однако для глубокой очистки веществ статический способ почти не иопользуется он находит применение как способ выделения (концентрирования) редких элементов из растворов. [c.136]

    К молекулярным ситам относятся не только цеолиты, но и некоторые другие вещества, например ряд ионообменников, при помощи которых удается разделять молекулы по их величине. Внутрь зерен таких ионообменников (в набухшем состоянии) могут проникать ионы небольшого диаметра и удерживаться в большом внутреннем объеме. Ионы большей величины могут, наоборот, удерживаться на относительно небольшой внешней поверхности зерен ионообменника. Разделение веществ по величине их молекул можно производить также при помощи так называемых ультрафильтров, пропускающих или не пропускающих компоненты смеси в зависимости от величины их молекул. При фильтровании гелей через столб такого молекулярного сита скорость продвижения вещества зависит от размера его молекул. К этому типу молекулярных сит относится, например, сефадекс (см. стр. 204). [c.331]


    Ионообменная хроматография используется как вспомогательный метод, предшествующий количественному определению веществ. При помощи хроматографического метода разделяют компоненты анализируемого раствора катионы от анионов, катионы от катионов, анионы от анионов. Ионообменная хроматография основана на обратимом стехио-метрическом обмене ионов, содержащихся в растворе, на подвижные ионы ионообменника. Одновременно с разделением элементов осуществляется их концентрирование, что имеет большое значение для повышения точности результатов анализа при определении примесей. Количественное определение веществ после их хроматографического разделения проводят химическими, физико-химическими или физическими методами. Различают три вида ионообменной хроматографии фронтальный анализ, вытеснительная хроматография и элюентная хроматография. Из них в количественном анализе применяют только вытеснительную и элюентную хроматографию. По этим методам разделяемую смесь вначале адсорбируют в верхней части колонки, а затем элюируют соответствующим растворителем (элюентная хроматография) или раствором (вытеснительная хроматография). [c.19]

    Ряд явлений, положенных в основу хроматографических методов, известен уже давно. Например, еще во времена Аристотеля морскую воду очищали с помощью некоторых видов почв. Также давно известно, что минеральные удобрения остаются в почве в течение длительного времени и лишь с трудом вымываются дождевой водой. Английские химики-почвенники Уэй [35] и Томпсон [30] изучали процессы удерживания в почве катионов из фильтрующихся сквозь нее растворов. В ходе исследований они открыли в 1850 г. основные законы ионного обмена, хотя и не представляли себе, насколько важны сделанные ими наблюдения. Ионный обмен на природных продуктах (главным образом, на минералах и почвах) был позднее подробно изучен, но серьезный интерес к этому процессу возник только после синтеза первого органического ионообменника (1935 г.). Адамс и Холмс [1], конденсируя фенолсульфоновые кислоты с формальдегидом, получили искусственные смолы, с участием которых в отличие от неорганических ионообменников возможен обмен в водных растворах не только катионов металлов, но и ионов водорода. После того как путем конденсации полиаминов с формальдегидом были получены анионообменники, определены условия, позволяющие удалять электролиты из водных растворов новым методом — деионизацией, а не перегонкой. По мере того как налаживалось получение анионо- и катионообмен-ников, их все шире стали применять не только для ионного обмена, но и для хроматографического разделения, т. е. возникла ионообменная хроматография. Во время второй мировой войны и после нее ионообменники постоянно применялись в ядерных исследованиях, поскольку, как выяснилось, они позволяют добиться высокоэффективного разделения радиоактивных изотопов. Ионообменная хроматография входит также в число методов, обеспечивавших в последние два десятилетия столь быстрое развитие биохимии. [c.13]

    Избыток детергента может мешать фракционированию. Например, высаливание сульфатом аммония приводит к появлению на поверхности раствора слоя тритона Х-100, в котором часто содержатся нужные белки. Однако эффективного разделения при этом не происходит. Можно провести колоночную хроматографию или отделить белки с помощью гель-фильтрации (разд. 5.1), но не исключено, что мицеллы детергента будут двигаться в той же зоне, что и белок, и, следовательно, окажутся в одной фракции. Ионообменная хроматография успешно осуществляется в присутствии неионных детергентов (разд. 4.2 и 4.3). Действительно, тритон Х-100 в концентрации до 1% оказывает незначительное влияние на ионообменные свойства нормальных водорастворимых белков. Но солюбилизированные белки мембран могут находиться только в составе детергентных мицелл, что существенно влияет на процесс ионного обмена. Если исследуемый белок удается адсорбировать на ионообменнике, то избыток детергента свободно проходит через колонку. Это позволяет элюировать свободный (относительно) от детергента белок. С другой стороны, если полное удаление детергента приводит к денатурации белка, то, чтобы предотвратить это, в буфер вносят небольшое количество детергента (<0,1 7о). Собранная фракция будет, конечно, тоже содержать некоторое количество детергента. Тем не менее, так как обычно из смеси белков выделяют какой-то определенный фермент, присутствие в конечном препарате незначительной концентрации чистого детергента, не загрязненного жирами, не принесет большого вреда. Методы удаления избытка детергентов были недавно суммированы в обзоре [23]. [c.55]

    Метод элюентной хроматографии основан на поглощении анализируемой смеси ионов в верхней части колонки в виде тонкого слоя и разделения с помощью соответствующего элюирующего раствора при продвижении его по колонке сверху вниз. В процессе перемещения раствора состав поглощенной пробы непрерывно изменяется ионы, имеющие более низкое сродство к ионообменнику, двигаются вниз быстрее, а ионы с более высокой степенью сродства к ионообменнику — медленнее. После пропускания достаточного количества элюента индивидуальные компоненты анализируемой смеси распределяются вдоль ионообменной колонки в виде отдельных зон. В идеальном случае растворы, содержащие индивидуальные компоненты, вытекают раздельно и между индивидуальными зонами всегда есть некоторый объем элюирующего раствора. [c.42]


    Как уже упоминалось выше (стр. 246), значение фактора разделения а показывает, можно ли данное разделение с помощью ионита осуществить методом селективной сорбции (элюир Ования) или же способом ионообменной хроматографии. Точно так же, как и в экстракцион ных методах, оптимальное разделение еще нельзя считать гараятированным, если достигнуто определенное значение а. Если разделяются два иона металлов, например А и В, то -металл А должен сорбироваться яа ионообменнике более прочно, чем металл В, но только в такой степени, которая позволяла бы его легкое элюирование. В связи с этим для варианта селективной [c.251]

    При выборе соответствующей формы комплексных соединений с помощью ионообменников возможно провести также групповое отделение нескольких элементов. Кроме уже упомянутых хлорид-ных комплексов, устойчивость которых хорошо коррелирует с концентрацией хлористоводородной кислоты и которые подходят для селективного разделения, процессы ионного обмена могут контролироваться с помощью различных органических комплексообразующих реагентов (лимонная и винная кислоты, ЭДТА и т. д.). Сильноосновные анионообменные колонки, насыщенные комплексными анионами этого типа, пригодны для одновременного выделения различных групп катионов. Колонки с анионами, образующими осадок (хлориды, сульфиды, карбонаты и т. д.), также использовались для разделения некоторых групп катионов. Как следует из приведенных примеров, селективное элюирование пригодно для разделения отдельных ионов. В общем случае на определение примесей спектральными методами не оказывает влияние неполнота отделения мешающего элемента, которая возможна из-за недостаточно благоприятных условий взаимодействия раствора со смолой. Для большинства спектральных методик нет необходимости использовать ионный обмен для полного отделения ионов одного типа, т. е. селективную хроматографию при ионном обмене. Вполне достаточно воспроизводимо концентрировать определенную группу следов примесей или удалять основную часть мешающего элемента. [c.70]

    Методы ионообменной хроматографии развивались американскими химиками в годы второй мировой войны при разделении продуктов ядерных реакций. Сами же ионообменники (в том числе и сю1тетические ионообменные смолы) были известны еще раньше, так же, как и ряд работ по ионообменным процессам. В 1947 г. отечественные ученые Т. Б. Гапон, Е. Н. Гапон и Ф. М. Шемякин применили ионный обмен для разделения смеси ионов в растворе с помощью сорбентов. [c.49]

    Когда иониты типа сульфированных фенолформаль-дегидных смол применяют в растворах, содержащих сильные окислители, например броматы или иодаты, появляются различные осложнения. Смола подвергается действию окислителя, и аналитический ионный обмен становится невозможным. В других аналитических разделениях анионы могут восстанавливаться катионитом в водородной форме катионит в солевой форме не обладает восстанавливающим свойством. Это обстоятельство было использовано для отделения щелочных металлов от хромат-иона и молибдат-иона с помощью катионита в аммониршой форме. Перманганат-ион, однако, действует на ионообменник даже в том случае, если последний находится в солевой форме. [c.83]

    После полного гидролиза белка производится количественное онределе-ние каждой из аминокислот, присутствующих в гидролизате. Для разделения аминокислот чаще всего применяется метод ионообменной хроматографии. В качестве ионообменника обычно используют сульфополистирольный катионит. Смесь аминокислот вносится в верхнюю часть колонки при pH 3 в этих условиях индивидуальные аминокислоты полонштельно заряжены. Аминокислоты в форме катионов сорбируются на сульфополистирольной смоле (содержащей группы — SOg Na ), замещая часть ионов натрия, и удернги-ваются на материале колонки электростатическими силами. Очевидно, что прочность сорбции аминокислоты возрастает с увеличением ее основности. После внесения смеси начинается элюция аминокислот при постепенном увеличении pH и 1тонной силы буферных растворов, пропускаемых через колонку. В этих условиях положительный заряд на аминокислотах постепенно нейтрализуется и ионные взаимодействия ослабляются. Первыми с колонки снимаются кислые аминокислоты (глутаминовая и аспарагиновая кислота), затем нейтральные и, наконец, основные. С помощью этого метода можно разделять все аминокислоты, обычно встречающиеся в белках, поскольку прочность сорбции аминокислоты смолой зависит как от ионных, так и от неионных взаимодействий. Сульфополистирольный катион адсорбирует аминокислоты достаточно избирательно, так что все нейтральные аминокислоты, которые нельзя разделить с помощью ионного обмена, тем не менее элюируются с колонки в разных фракциях. Индивидуальные аминокислоты, элюируемые с колонки, собираются автоматическим коллектором фракций. Затем их количественно определяют путем измерения интенсивности окраски, возникающей при действии нингидрина. В настоящее время промышленность выпускает несколько типов автоматических амино- [c.57]

    Во-первых, разделение происходит значительно быстрее, и даже при перегруженных колонках соединения элюируются четкими зонами, и образования хвостов не наблюдается. Во-вторых, за ходом хроматографирования легко можно было следить с помощью дифференциального рефрактометра. В-третьих, правильно приготовленная колонка обладает отличной стабильностью. Разделение на ионообменниках такого типа происходит, по-видимому, принципиально по другому механизму ионы серебра образуют л-комплексы с олефинами, и картина усложняется, например, адсорбцией, обусловленной наличием у хроматографируемого соединения других полярных групп. На рис. 4.10 и 4.11 показаны хроматограммы, полученные этим методом, в табл. 4.11 приведены результаты разделения ряда эфиров уксусной кислоты и алифатических спиртов, а ниже мы рассмотрим методику разделения. [c.207]

    Свойства синтетических ионитов целиком заеисят от числа и типа фиксированных ионов, а также от строения матрицы, точнее от количества поперечных связей в ней. Важнейшим условием успешного разделения веществ при помощи ионообменной хроматографии является правильный выбор ионообменника, его подготовка, а также определение условий проведения анализа, особенно размеров колонки. [c.351]

    Разделение смеси электролитов при ионообменной хроматографии достигается с помощью особых адсорбентов, способных обменивать свои ионы на ионы, находящиеся в анализируемом растворе. К таким адсорбентам относятся т. н. иониты (ионообменники). Важнейшими ионитами являются синтетические смолы, обладающие ионообменными свойствами. Для аналитической практики большой интерес представляет катионный обмен, осуществляемый с помощью адсорбентов, способных обменивать свой катион на катионы, содержацщеся в исследуемом растворе. В катионитах — смолах, изготовляемых на основе фенола или стирола и их производных — активными группами обычно являются сульфогруппы (—ЗОдН), связанные с бензольным ядром или с атомом углерода боковой цепи. Реже в качестве активных групп выступают карбоксилы (—СООН) и гидроксилы (— ОН). Вследствие того, что сульфогруппы связаны со скелетом смолы, они не переходят в раствор. Подвижными являются только водородные ионы этих групп или другие замещающие их ионы. Если обмениваемыми катионами адсорбента являются Н -ионы, то адсорбент называется Н-катионитом. [c.392]

    Однако постепенно стало ясно, что целый ряд задач ионообменной химии нельзя или очень трудно решить с помощью органических смол. Так,органические ионообменники часто оказываются неприменимыми в условиях сильного радиоактивного излучения, высоких температур, при разделении частиц, близких по химическим свойствам, но различающихся по размерам, а иногда и в тех случаях, когда требуется высокая селективность поглощения некото1 1х ионов, не достигаемая с помощью органических ионообменников. Вое это вызвало возобновление интереса к неорганическим ионообменвш материалам. За последние годы в этом отношении достигнуты существенные успехи, хотя их можно рассматривать лишь как успехи первоначальные, которые показывают большие персшктивы синтеза в применения неорганических ионообменных материалов. В задачу настоящего сборника входит подведение некоторых итогов в этой области и обсуждение наиболее важных направлений дальнейшего развития химии неорганических ионообменных материалов. [c.7]

    В главе рассматриваются примеры разделения полифосфатов и ароматических сульфонатов, С помощью либо анионо-, либо катионообменной хроматографии удается разделить комплексы металлов с хлор-ионом. Благодаря тщательному выбору условий сорбции и элюирования, а также условий детектирования удалось создать практически специфические методики анализа железа и свинца. Добавляя в элюент органический растворитель, можно изменять селективность ионообменников по отношению к комплексам хлоридов металлов. [c.185]

    С помощью ионного обмена можно разделить также ионогенные комплексы нейтральных молекул, например борнокислотный комплекс сахара или бисульфитные продукты присоединения карбонильных соединений. Для разделения используют также реакции обмена лигандов на обменниках, заряженных ионами тяжелых металлов. Поскольку в такой системе должны образовываться комплексы ионов металлов, связанных с ионообменником (например, комплексы аминокислот и ионов меди, связанных ионообменником), то здесь, как при разделении на ионообменниках полярных органических молекул, например сахаров, с помощью водно-спиртовых элюентов, нельзя говорить о чистой ионообменной хроматографии. В последнем случае образуется распределительная система из водной фазы в зерне обменника и протекающей водно-спиртовой фазы [7]. [c.188]

    Принципиальной основой ионообменной хроматографии является то, что сродство вещества к ионообменнику зависит от электрических свойств его самого и относительного сродства других заряженных веществ, находящихся в растворителе. Следовательно, связанное вещество можно элюировать с помощью изменения pH до значения, изменяющего заряд вещества, или добавлением конкурирующего вещества, одним из примеров которого могут служить соли. Поскольку различные вещества обладают разными электрическими свойствами, условия элюирования будут меняться для каждого вида связанных молекул. В общем, для получения хорошего разделения следует выбрать либо непрерывное элюирование в градиенте ионной силы, либо ступенчатое элюирование, (Градиент только pH не используют по причине трудности создания его без одновременного увеличения ионной силы.) При хроматографии на анионитах постоянно повышают либо pH и ионную силу, либо только ионную силу элюента. Хроматографию же на катионитах проводят как в градиенте pH, так и в градиенте ионной силы элюирующего буфера. На практике выбор условий элюирования проводится методом проб и ошибок с учетом условий стабильности анализируемого вещества. Напри- [c.211]


Смотреть страницы где упоминается термин Разделение ионов при помощи ионообменников: [c.75]    [c.51]    [c.30]    [c.53]    [c.393]    [c.47]    [c.108]    [c.108]    [c.320]    [c.366]    [c.501]    [c.85]    [c.13]   
Смотреть главы в:

Практическое руководство по колориметрическим и спектрофотометрическим методам анализа -> Разделение ионов при помощи ионообменников




ПОИСК





Смотрите так же термины и статьи:

Иониты разделение ионов

Ионообменники

Разделение ионитами

Разделение ионов металлов с помощью хелатных ионообменников



© 2025 chem21.info Реклама на сайте