Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностное натяжение. Вязкость. Диффузия

    Аддитивными методами можно рассчитывать как термодинамические величины (например, критические постоянные, мольную теплоемкость, энтальпию, энтропию, свободную энергию образования Гиббса, теплоту испарения, поверхностное натяжение, мольный объем, плотность и т. д.), так и молекулярные коэффициенты (коэффициенты вязкости, теплопроводности, диффузии). [c.84]


    Поверхностное натяжение. Вязкость. Диффузия [c.72]

    Книга представляет собой критический обзор различных расчетных методов для ограниченного перечня свойств газов и жидкостей — критических и других характеристических свойств чистых компонентов, Р—V—Т и термодинамических свойств чистых компонентов и смесей, давлений паров и теплот фазовых переходов, стандартных энтальпий образования, стандартных энергий образования Гиббса, теплоемкостей, поверхностного натяжения, вязкости, теплопроводности, коэффициентов диффузии и параметров фазового равновесия. Для демонстрации степени надежности того или иного метода приводятся таблицы сравнения расчетных данных с экспериментальными. Большинство методов проиллюстрировано примерами, В меньшей степени сравнения и примеры характерны для методов, которые, с точки зрения авторов, менее пригодны и ценны для практического использования. По мере возможности в тексте приведены рекомендации относительно наилучших методов определения каждого свойства и наиболее надежных мето-дий экстраполяции и интерполяции имеющихся данных. [c.10]

    Повышение вязкости .I и плотности р жидкой фазы, а также поверхностного натяжения а на границе раздела фаз приводит к снижению скорости обновления поверхности фаз и соответственно к уменьшению К. Коэффициент диффузии в жидкой фазе обратно пропорционален (л, [109, 116]. [c.10]

    Подобным образом были проведены расчеты поверхностного натяжения жидкостей. Применение современных ЭВМ позволяет по данным о е(г) проводить абсолютные расчеты свойств жидкостей. При этом в основном используют два метода. По первому методу молекулярной динамики решаются уравнения Ньютона для коллектива частиц, связанных энергией взаимодействия и обладающих некоторой заданной энергией. Такие расчеты удается делать для больших коллективов частиц (порядка тысяч). По второму методу — методу Монте — Карло — рассчитывают общие суммы состояния системы при заданной энергии взаимодействия и выборе возможных конфигураций расположения молекул друг относительно друга. С помощью ЭВМ были рассчитаны Я(г) термодинамические функции, вязкость, диффузионные характеристики и др. Кроме того, удалось определить характеристики траекторий определенных частиц. Оказалось, что частицы осуществляют весьма малые как бы дрожательные движения, в которых участвуют соседи. Поэтому понятия блужданий в жидкостях приобретают другой смысл, так как в них сразу участвует большое число частиц. Атом смещается тогда, когда его соседи в результате подобного коллективного движения освободят ему место. Теория диффузии в жидкостях, основан- [c.214]


    Определение физических параметров процесса. По справочным данным [21, 51, 44, 52] выписывают физические свойства поглощаемого компонента газовой смеси, инертного газа (носителя) и поглощающей жидкости. Наиболее важные физические параметры молекулярная масса, плотность, коэффициент поверхностного натяжения, вязкость, теплоемкость, теплота растворения, теплота испарения, коэффициент диффузии, коэффициент Генри, давление паров чистых компонентов, молярные объемы чистых компонентов. [c.124]

    Для установок, состоящих из аппаратов с мешалкой и отстойников, средний к. п. д. колеблется в пределах О.,7—0,95, иногда при больших емкостях экстракторов т практически доходит до 1,0. Он зависит от конструкции аппаратов, условий перемешивания и отстаивания (размеров капель, скорости протекания фаз), нагрузки аппаратуры (времени контакта), а затем от физико-химических свойств жидкости (коэффициентов диффузии, вязкости, поверхностного натяжения). [c.260]

    Свойства топлива должны обеспечивать создание однородной топливовоздушной смеси необходимого состава при любых температурных условиях эксплуатации автомобиля, о требование регламентирует такие качества топлива, как испаряемость (фракционный состав и давление насыш,енных паров), элементарный состав, поверхностное натяжение, плотность, вязкость, скорость диффузии паров в воздух, теплота испарения (парообразования), теплоемкость, содержание смол и др. [c.6]

    К физическим свойствам, определяющим скорость и полноту испарения бензина, относят фракционный состав, давление насыщенных паров, теплоту испарения, коэффициент диффузии паров, вязкость, поверхностное натяжение, теплоемкость и плотность. [c.18]

    Гильденблат И. А.. Родионов А. И.. Демченко Б. И.. ДАН СССР, 198, 1149 (1971). О влиянии молекулярной диффузии на интенсивность массообмена во взаимодействующих с газами жидкостях с различными поверхностными натяжениями и вязкостями. [c.269]

    С позиции молекулярной физики свойства газов, жидкостей и твердых тел можно подразделить на две группы равновесные свойства (например, описываемые уравнением состояния, или описываемые коэффициентами поверхностного натяжения и Джоуля - Томсона) и неравновесные (такие, как вязкость, диффузия и теплопроводность). Выражение для всех макросвойств через молекулярные величины и межмолекулярные силы может быть получено из статистической механики, позволяющей также предсказать значения многих физических величин, для которых отсутствуют экспериментальные данные. [c.28]

    Таким образом, для эффективной работы двигателя применяемое топливо должно обеспечивать создание однородной топливовоздушной смеси необходимого состава при любых температурах окружающего воздуха. Это требование регламентируют такие свойства и показатели топлива, как испаряемость (фракционный состав и давление насыщенных паров), поверхностное натяжение, плотность, вязкость, скорость диффузии паров в воздух, теплота испарения, теплоемкость, содержание смол и др. Топливо с оптимальными значениями этих показателей обеспечивает экономичность двигателя, хорошие пусковые характе- [c.16]

    На скорость массопередачи в процессе экстракции влияют также вязкость и поверхностное натяжение растворителя. С понижением этих показателей возрастает коэффициент диффузии (массопроводности). [c.108]

    Многочисленные исследования показывают, что качество смесеобразования в двигателе зависит от таких физических свойств топлива, как давление насыщенных паров, фракционный состав, скрытая теплота испарения, коэффициент диффузии паров, вязкость, поверхностное натяжение, теплоемкость, плотность. [c.93]

    Такая теория должна объяснить равновесные термодинамические свойства жидкости, ее энтальпию, энтропию, уравнение состояния, температуру замерзания, поверхностное натяжение и т. п. Далее теория должна описать явления переноса — вязкость, диффузию, теплопроводность. Наконец, такая теория должна охватить явления рассеяния жидкостями различных излучений и прежде всего рентгеновского. В последние годы теория жидкостей достигла ряда серьезных успехов. Можно указать на три основных направления развития теории жидкости. К первому принадлежат концепции, развиваемые на основе какой-либо упрощенной модели жидкости. Такие модели не являются асимптотическими, т. е. строгими в какой-либо области параметров. Этим определяются сравнительно малые успехи модельных теорий, несмотря на то что попытки их построения делались на протяжении многих десятков лет. [c.284]

    Влияние температуры на скорость химической реакции во много раз значительнее, чем на ряд других процессов, таких, как, например, скорость диффузии, изменение вязкости среды, поверхностное натяжение, осмотическое давление и т. д. [c.135]


    Идеальной жидкости не существует. Поэтому и отсутствует асимптотическая (предельная) теория жидкости. Свойства реальной жидкости не могут описываться как отклонения от некоторой идеализированной картины. Это затрудняет построение теории жидкости, которая должна охватывать равновесные свойства (термодинамические функцни, уравнение состояния, сжимаемость, коэффициент теплового расширения, температуру замерзания, поверхностное натяжение), а также кинетические свойства (вязкость, диффузия, теплопроводность, кинетика химических превращений). Кроме того, теория должна охватить рассеяние различных излучений жидкостями, в частности, рентгеновских, которые дают ии- [c.205]

    Такая теория должна объяснить равновесные термодинамические свойства жидкости, ее энтальпию, энтропию, уравнение состояния, температуру замерзания, поверхностное натяжение и т. п. Далее теория должна описать явления переноса — вязкость, диффузию, теплопроводность. Наконец, такая теория должна охватить явления рассеяния жидкостями различных излучений и прежде всего рентгеновского. В последние годы теория жидкостей достигла ряда серьезных успехов. [c.366]

    С повышением температуры увеличиваются также константы диффузии и уменьшается поверхностное натяжение, возрастают размеры пузырьков газа вследствие уменьшения вязкости жидкой фазы, преобладают побочные реакции, не способствующие росту температуры размягчения окисленных битумов (происходят преимущественно процессы дегидрирования с образованием высокомолекулярных асфальтенов и более жестких структур). В результате многие битумы, окисленные при высокой температуре, характеризуются низкой пенетрацией. По мере повышения температуры процесса ее влияние на скорость реакции постепенно понижается, что видно из рис. 29, на котором приведена зависимость общей константы скорости [c.124]

    Стандартная молярная энтропия Изменение молярной энтропии Константа равновесия химической реакции Степень диссоциации Коэффициент активности Осмотический коэффициент Активность воды Функция кислотности Поверхностное натяжение Динамическая вязкость (внутренее трение) Коэффициент диффузии [c.11]

    На скорость испарения нефтепродуктов оказывают влияние давление насыщенных паров, фракционный состав и средняя температура кипения, коэффициент диффузии, теплоемкость, теплопроводность, теплота испарения, поверхностное натяжение. Косвенное влияние оказывают вязкость, плотность и другие свойства нефтепродуктов. [c.27]

    Температура оказывает определенное влияние на скорость массопередачи через коэффициенты диффузии, вязкость и поверхностное натяжение. Это приводит к изменению глубины реакционной зоны от температуры. Возможно, что путем комбинирования этих эффектов можно получить температурный коэффициент, равный 2—3, даже для процесса, контролируемого массопередачей. [c.374]

    В вакуумном деаэраторе большая часть газов выделяется из воды в виде пузырьков, которые выходят на поверхность воды. Меньшая, остаточная часть газов выделяется путем диффузии. Диффузия есть перенос в жидкости растворенного iвeщe твa по направлению от большей концентрации к меньшей. Диффузия газа идет 01 внутренних слоев воды, где кокцсптрацйя рзстворекяых газов больше, к наружным, где концентрация меньше. Затем газы через поверхностную пленку переходят в пар. Скорость диффузии зависит от физических параметров воды вязкости и поверхностного натяжения, и от степени дробления воды. С уменьшением вязкости и поверхностного натяжения, и особенно с увеличением степени дробления воды скорость диффузии увеличивается. Вязкость и поверхностное натяжение, замедляющие диффузию, с повышением температуры уменьшаются. Поэтому при высокой температуре диффузионный процесс протекает быстрее. [c.20]

    Предлагаемая книга представляет собой критический обзор способов определения некоторых свойств газов и жидкостей (кри- ические параметры, Р— V—Т характеристики и термодинамические свойства, давления паров, теплоты изменения агрегатного состояния, теплоты и свободные энергии образования, теплоем- кость, поверхностное натяжение, вязкость, теплопроводность а ко-1%р<Ьфициенты диффузии). Сравнение экспериментальных и вычис- нных значений дается в форме таблиц для иллюстрации степени адежности рассматриваемого метода расчета. Численные приме-даны только для тех случаев, которые, по мнению авторов, яв- яюгся наиболее важными и практически интересными. Приво- гся рекомендации по применению лучших методов определения свойств и экстраполяции имеющихся данных. [c.17]

    Турбулизация межфазной границы может быть обусловлена- также возникающими при тепло- или массопередаче локальными изменениями поверхностного натяжения. Учет влияния концентрационных и температурных изменений поверхностного натяжения на гидродинамику вблизи межфазной границы представляет собой весьма сложную и в настоян1ее время еще не решенную задачу (необходимо исследовать устойчивость решения уравнения Навье — Стокса по отношению к малым возмущениям — локальным изменениям скорости). Пока сделаны лишь первые попытки решения этой задачи [72, 73]. В частности, показано [72], что возможность возникновения неустойчивости существенно зависит от знака гиббсовой адсорбции растворенного вещества в состоянии термодинамического равновесия, а также от соотношения между кинематическими вязкостями соприкасающихся фаз и коэффициентами диффузии веществ, которыми обмениваются эти фазы. Объяснено явление стационарной ячеистой картины конвективного движения, вызванного локальными градиентами поверхностного натяжения [73].. Дальнейшие исследования в этой области наталкиваются на серьезные математические трудности. [c.183]

    Важнейшими показателями, характеризующими испаряемость топлив, являются давление насыщенных паров и фракционный состав. В связи с тем что процессы испарения, как правило, сопровождаются тепломассообменом, испаряемость зависит и от таких теплофизических и физических характеристик, как энтальпия, теплоемкость, теплопроводность, теплота парообразования, коэффициент диффузии, вязкость, поверхностное натяжение, фуггитивность. [c.99]

    К физико-химическим показателям, от которых зависит испаряемость бензинов, относят давление насыщенных паров, фракционный состав, скрытую теплоту испарения, коэффициент диффузии паров, вязкость, поверхностное натяжение, теплоемкость, плотность. Из перечисленных показателей важнейшими, определяющими испаряемость бензинов, являются давление насыщенных паров и фракционный состав. По вязкости, поверхностному натяжению, с1фытой теплоте испарения, коэффициенту диффузии паров, теплоемкости бензины разного состава сравнительно мало различаются между собой, и эти различия нивелируются конструктивными особенностями двигате ей. Давление насыщенных паров и фракционный состав являются функциями состава бензина, и эти показатели могут существенно различаться для разных бензинов. Эти два параметра определяют пусковые свойства бензинов, их склонность к образованию паровых пробок, физическую стабильность. Давление насьпценньк паров зависит [c.14]

    Рассмотрим конкретный практический пример ламинарного смешения. Жидкий компонент вводят в смеситель, содержащий расплав полимера в форме капель микроскопических размеров. Мы утверждаем, что то, что произойдет с каплями в потоке жидкости в начальной стадии смешения, не зависит от смешиваемости компонентов. Это объясняется тем, что при быстром растворении образуется тонкий (в лучшем случае) пограничный слой. Постепенно капли де формируются, подвергаясь воздействию локальных напряжений.. Поле напряжений неоднородно, поскольку компоненты смеси имеют различные реологические свойства (как вязкость, так и эластичность). Влияние поверхностного натяжения несущественно (соответственно несущественно и наличие или отсутствие четких границ раздела), Вязкие силы превышают поверхностное натяжение По мере деформации капель и увеличения площади поверхности раздела степень смешиваемости двух компонентов начинает играть все возрастающую роль. Для смешиваемых систем внутренняя диффузия способствует достижению смешения на молекулярном уровне, а в случае несме-шиваемых систем — вводимый компонент дробится на мелкие домены. Эти домены вследствие вязкого течения и под воздействием сил поверхностного натяжения достигают состояния, характеризуемого постоянной величиной деформации. Таким образом, для несме-шиваемых систем смешение начинается по механизму экстенсивного смешения и постепенно переходит в гомогенизацию. Морфология доменов, образующихся как в смесях, так и в сополимерах, является предметом интенсивных исследований [19]. [c.388]

    В целом лучшая нефтеотмывающая способность воды с добавками ацеталей I и И по сравнению с дистиллированной водой и 0,1%-ным водным раствором ОП-10, по-видимому, объясняется их комплексным механизмом действия. Наряду с выс(кой нефтеотмывающей способностью, которая увеличивается с ростом концентрации ацеталей в воде, заметным понижением поверхностного натяжения на границе раздела фаз при концентрациях 1-5%, улучшением смачивания породы водой с добавками веществ I и П, имеет место и переход этих веществ в нефть, способствующий снижению вязкости нефти, что в конечном счете приводит к более полному вытеснению нефти из керна, тогда как действие водных растворов ОП-10 в основном определяется снижением поверхностного натяжения и улучшением смачивания породы водой. По-видимому, снижение вязкости за счет диффузии молекул ПАВ в нефть за непродолжительное время опыта (2-3 сут) не происходит или происходит в очень малых количествах. [c.161]

    Однако сам коэффициент диффузии является сложной функцией плотности (р), вязкости (ri) и поверхностного натяжения (S). Наиболее существенный вклад в эту величину вносят р и г . Для большинства органических веществ г] 0,5—2 мПа-с. Однако эти величины очень велики для концентрированных водных растворов щелочей, причем здесь проявляется огромная разница между NaOH и КОН вязкость концентрированных растворов NaOH существенно выше, чем у КОН (это связано с различной мольной концентрацией их 50%-ных растворов, см, табл. 4). При прочих равных условиях добиться хорошего перемешивания в случае 50%-ного водного КОН существенно легче, чем для 50°/о-ного водного NaOH. Таким образом, теоретический вывод [44] о независимости скорости реакции в двухфазной системе от интенсивности перемешивания реализуется в случае концентрированных водных фаз только после достижения определенного предела интенсивности перемешивания. [c.26]

    Например, критической точке диоксида углерода соответствует давление 74 бар и температура 31 °С. Ниже этой температуры СОг уже при умеренно высоком давлении (например, при давлении 65 бар и температуре 25 °С) представляет собой обычную жидкость. При температуре выше 31 °С перевести СОг в жидкое состояние невозможно даже при сколь угодно большом давлении. В таких условиях СОг существует в виде НКЖ, которая ведет себя как газ, но при достаточно высоком давлении по плотности может превосходить жидкий СОг. По своим свойствам надкритический СОг резко отличается от жидкого диоксида углерода он обладает большей сжимаемостью, более высоким коэффициентом диффузии, более низкой вязкостью и меньшим поверхностным натяжением. С помощью некоторых эмпирических параметров пол5 рности растворителей (см. гл. 7) было показано, что надкритический СОг во многих отношениях подобен углеводородному растворителю с очень низкой поляризуемостью [759]. [c.399]

    Наряду с тепловой, к естественной конвекции относят концентрационную, термокапиллярную и капиллярно-концентрационную конвекции [26]. Последние две связаны с движением под действием сил поверхностного натяжения, в отличие от конвекций гравитационного типа. Интенсивность термокапиллярной и капиллярно-концентрационной конвекций определяется числами Марангони.. Интенсивность тепловой и концентрационной конвекции определяется числами Рэлея Ра= Ог Рг, Яао= Ого - 5с, где Ог и Ого — соответственно тепловое и диффузионное числа Грасгофа, характеризующие соотношение архимедовых сил, сил инерции и внутреннего трения в потоке, Рг — число Прандтля (v/a), 5с — число Шмидта /0) [26], где V — кинематический коэффициент вязкости, а — коэффициент температуропроводности, О — коэффициент диффузии. Число Грасгофа определяется по формуле Ог = дО М1 , где а — ускорение свободного падения L — характерный размер потока р — коэффициент объемного расширения ДТ —градиент температуры. [c.209]

    Свойства растворов электролитов представляется естественным разделить на две группы 1) свойства, определяемые путем изучения равновесных систем, 2) свойства, определяемые путем изучения систем, находящихся в неравновесных состояниях. К первой группе принадлежат те свойства, которые могут быть найдены в результате определений понижения. давления пара, повышения температуры кипения, понижения температуры замерзания, растворимости, теплоемкости, теплосодержания, потенциалов гальванических элементов и поверхностного натяжения. Ко второй группе относятся те свойства, которые могут быть найдены путем определений диффузии, электропроводности и вязкости. Так как термодинамика представляет собой формальный метод изучения равновесных систем, то необходимо кратко рассмотреть те общие термодинамические выводы, которые будут использованы при дальнейшем изложении. В нашу задачу не входит подг робное и строгое изложение термодинамических вопросов, мы ограничимся введением и определением основных переменных величин, а также установлением обозначений и терминологии. [c.19]

    Скорость истечения обычно задается в пределах 30—80 м/мин. Для предотвращения растекания вискозы по поверхности фильеры при этих скоростях необходимо снижать поверхностное натяжение вискозы или повышать вязкость и уве личивать радиус отверстий фильеры. Снижения о можно достичь, добавляя ПАВ. Следует отметить, что увеличение радиуса ограничено условиями диффузии и осаждения. Вязкость может повыщаться также до определенного предела, определяемого обычно образованием струй с нарущенной равномерностью поверхности (тип д). [c.171]


Смотреть страницы где упоминается термин Поверхностное натяжение. Вязкость. Диффузия: [c.171]    [c.50]    [c.316]    [c.158]    [c.131]    [c.703]    [c.703]    [c.261]    [c.30]    [c.1004]    [c.65]    [c.158]    [c.92]   
Смотреть главы в:

Поваренная соль и ее растворы -> Поверхностное натяжение. Вязкость. Диффузия

Поваренная соль и ее растворы -> Поверхностное натяжение. Вязкость. Диффузия




ПОИСК





Смотрите так же термины и статьи:

Воронецкая, А. М. Розен. Плотность, вязкость, поверхностное натяжение растворов и коэффициенты диффузии веществ в системе вода — уранилнитрат — азотная кислота — ТБФ

Вязкость и диффузия

Вязкость поверхностная

Диффузия поверхностная

РАСЧЕТ ВЯЗКОСТИ, ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ И КОЭФФИЦИЕНТОВ ДИФФУЗИИ



© 2025 chem21.info Реклама на сайте