Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластификация полимеро и механические свойств

    Пластификация полиформальдегида малыми количествами пластификатора может сопровождаться улучшением распределения сферолитов по размеру и повышением физико-механических характеристик полимера [228]. Введение больших количеств пластификатора в полиформальдегид приводит к ухудшению распределения сферолитов по размерам, разупорядочению аморфных участков и ухудшению механических свойств полимера [228, 229]. [c.167]


    Механические свойства полимеров зависят не только от их химической природы, степени сшивки пространственной сетки, но и от ориентации макромолекул и надмолекулярных структур, пластификации, степени наполнения и др. Ориентирование цепей макромолекул и надмолекулярных структур приводит к анизотропии свойств полимера. Обнаруживается резкое увеличение его прочности Б направлении ориентации. Этот факт широко используется в процессах прядения волокон и получения пластических масс. Ориентирование макромолекул способствует кристаллизации и увеличению хрупкой прочности полимера. [c.391]

    При пластикации в присутствии растворителя наблюдается значительное изменение физико-механических свойств полимеров понижаются температуры стеклования и текучести, снижается хрупкость, повышается морозостойкость и т. п. Такое изменение свойств полимеров называется пластификацией, а используемый при этом высококипящий растворитель называется пластификатором. Для каучуков в качестве пластификаторов чаще всего используют бутилолеат, дибутилфталат, диоктилфталат, три-бутилфосфат, трикрезилфосфат и другие сложные эфиры. Применение пластификаторов позволяет вести пластикацию при более низкой температуре, что снижает расход энергии, затрачиваемой на проведение этого процесса. [c.299]

    Таким образом, влияние наполнителя на свойства кристаллических полимеров связано с его влиянием на морфологию и поведение макромолекул в аморфных областях. С этой же точки зрения может быть описано влияние пластификации на механические свойства наполненных кристаллических полимеров. [c.179]

    В. А. Каргиным с сотр. [151—154] были исследованы закономерности пластификации аморфных и кристаллических полимеров и влияние пластификации на механические свойства полимеров в зависимости от их структуры. В результате пластификации понижается также температура стеклования, причем величина этого понижения определяется главным образом свойствами пластификатора. [c.109]

    Пластификация существенно изменяет все механические свойства полимеров- Так, эластичность полимерного материала, т е. способность к большим обратимым деформациям при введения пластификатора возрастает. То же самое происходит и с вынужденной эластичностью. Следовательно для повышения эластичности введение пластификаторов всегда выгодно. [c.439]


    Исследования по влиянию количества и типа пластификатора на механические свойства пластифицированных полимеров проведены в основном для молекулярного механизма пластификации, т. е. для случая, когда можно ввести в состав полимера большие количества пластификаторов. [c.172]

    Долгое время дискуссионным оставался вопрос о влиянии химической природы и строения пластификаторов на эффект пластификации. Так, Соколов и Фельдман [286] отмечали, что механические свойства пластиката зависят в первую очередь от числа введенных в полимер молекул пластификатора независимо от их молекулярной массы, состава и строения. Последующими работами эта точка зрения была опровергнута [287—291]. Эффект [c.172]

    К внешней пластификации относится и случай так называемой структурной пластификации, когда эффект пластификации достигается введением в полимер очень небольших количеств (до 1%) пластификатора. Ясно, что при таком количестве пластификатор не может равномерно распределяться в объеме полимера. В этом случае его молекулы располагаются на границах раздела между элементами надмолекулярных структур полимера, что вызывает изменение физических и физико-механических свойств полимера аналогично тому, как это происходит при обычной пластификации. [c.39]

    К их числу в первую очередь следует отнести открытый В. А. Каргиным и П. В. Козловым с сотрудниками метод структурной пластификации полимеров, основанный на введении в аморфные полимеры весьма малых добавок низкомолекулярных веществ, позволяющих существенно изменять физико-механические свойства полимерных стекол и температуры их релаксационных переходов. Впоследствии В. А. Каргиным и Г. П. Андриановой было показано, что малые добавки, введенные в расплавы полимеров, могут более чем в десять раз снижать вязкость расплава. [c.13]

    В этой связи важное значение приобретают задачи регулирования структуры полимерных материалов в процессе переработки и формовании изделий па их основе с целью получения материалов с оптимальными механическими свойствами. Действенными методами, влияющими на кристаллизацию полимеров и характер самих структур, являются хорошо известные приемы термической обработки кристаллизующихся полимеров, химическая модификация (прививка) [1—3], введение гетерогенных зародышей [4—6] и, в меньшей степени, пластификация [7]. [c.391]

    Было высказано предположение [1], что механизм этого третьего вида пластификации обусловлен повышением рыхлости упаковки цепных молекул полимера в результате введения низкомолекулярных веществ, причем улучшение механических свойств материала нри такой пластификации обусловлено проявлением гуковской упругости макромолекул. Однако и эти, близкие к истине представления о механизме действия пластификаторов, ограниченно или вообще не смешивающихся с полимером, также базировались на характере поведения цепных молекул полимера и молекул пластификатора. В то же время во всех изложенных представлениях игнорировались вопросы структуры полимерного материала, играющие, по-видимому, немаловажную роль в проявлении эффекта пластификации. [c.319]

    Аналогичные явления были обнаружены и при введении в кристаллические полимеры не растворяющих их пластификаторов Температура плавления полимера изменялась сравнительно мало.. Это отвечало неизменности строения пространственной решетки,, что также доказывалось прямыми рентгеноструктурными исследованиями. Однако механические свойства кристаллических полимеров, при пластификации изменялись в широких пределах. [c.233]

    Широкое внедрение полимерных материалов в различных областях народного хозяйства поставило перед исследователями принципиально новую задачу — изучить состояние, структуру и диффузионные свойства воды в полимерной матрице. Действительно, изделия на основе полимеров при эксплуатации и хранении часто находятся в контакте с газообразными и жидкими водными средами, в результате чего изменяются их физико-химические, электрические и механические свойства. Вода, диффундирующая в полимер, изменяет его физическое состояние (пластификация), а при наличии связей, подвергающихся гидролизу, вызывает деструкцию полимерной цепи, что ухудшает свойства материала, определяемые его высокой молекулярной массой. Вода может вступать в реакцию с полимером и без разрыва полимерной цепи, однако свойства нового полимера, полученного при полимераналогичных превращениях, отличаются от свойств исходного. Для всех биополимеров (белки, нуклеиновые кислоты, полисахариды) вода является непременным компонентом и часто абсолютно необходима для проявления их биологических свойств. [c.5]

    Ряд исследователей предполагают, что первые порции сорбированной воды влияют на механические свойства полимера (пластификация) и облегчают сорбцию последующих молекул растворителя. Два первых полимера (см. табл. 26.1) находятся в стеклообразном состоянии, а третий полимер — каучукоподобен тем не менее, несмотря на ожидаемые различия в релаксационном и кинетическом поведении этих сорбционных систем, равновесное сорбционное поведение для всех полимеров практически одинаково. Другими словами, вода, безусловно, является пластифицирующим агентом, но и органический растворитель в нормальных условиях также способен оказывать пластифицирующее действие на полимер. Поэтому весьма проблематично считать воду каким-то необычным пластификатором. [c.426]


    Изменение прочности и других механических свойств полимера под влиянием добавленного пластификатора зависит от механизма пластификации. [c.459]

    Гибкость цепей полимеров зависит от химического строения, температурных условий и состава среды (пластификация), однако возможность проявления гибкости цепей в значительной мере обусловлена также условиями деформации. Изменение конфигурации цепей происходит не мгновенно, а требует известного времени при слишком быстрой деформации изменения конфигурации не успевают следовать за полем, и цепь в этих условиях перестает быть гибкой то же самое относится к процессам перемещения цепей (течению). При быстром повторном действии деформирующих усилий на величину деформации накладываются остаточные влияния предыдущих деформаций и результирующее напряжение в образце оказывается зависящим от его предыстории. Эти вопросы имеют важное значение для характеристики физико-механических свойств полимеров (растяжения, сжатия, изгиба и др.), на которых главным образом основано их техническое применение. [c.217]

    Гибкость молекулярных цепей и взаимодействие макромолекул зависят от их состава. Значения Гг и неодинаковы у различных полимеров. На взаимодействие молекул и гибкость цепей оказывают влияние растворитель и добавки к полимерам (низкомолекулярные фракции, поверхностно-активные вещества, электролиты). На этом основаны методы изменения механических свойств полимеров, в частности, их пластификация, имеющая важное практическое значение. [c.255]

    В свете высказанного предположения о наложении эффектов пластификации и доотверждения полимеров становится понятным изменение предельных механических свойств под воздействием воды (рис. 8.2). При малых временах 4 действие сорбируемой влаги направлено главным образом на ослабление ММВ в образце, вследствие чего снижается его прочность и растет деформативность. (Некоторый рост параметра при значениях < 1,5 ч можно объяснить уменьшением внутренних напряжений в материале.) При значительных временах [c.162]

    Пластификация полимеров является одним из способов их модификации, позволяющим широко изменять механические свойства. Такое изменение механических свойств сопряжено с уменьшением межмолекулярного взаимодействия между полимерными цепями или с повышением подвижности отдельных участков макромолекул, макромолекул в целом, а иногда и более крупных структурных элементов полимера. [c.5]

    Несовместимые с полимером вещества уже давно использовались для модификации свойств эфиров целлюлозы. Предполагалось [456], что пластификация полимеров несовместимыми или ограниченно совместимыми пластификаторами может происходить в результате повышения рыхлости упаковки макромолекул, причем механические свойства обусловлены проявлением гуковской упругости отдельных полимерных цепей. Таким образом, и здесь еще была сделана попытка объяснить механизм пластификации на молекулярном уровне, т. е. не прибегая к представлениям о надмолекулярных структурах. [c.230]

    Такой подход позволял объяснить различные аспекты пластификации и казался бесспорным. При этом упускалось из виду то, что приведенные выше рассуждения справедливы для области высокоэластического состояния и могут оказаться отнюдь не бесспорными ниже Т . Таким образом, при рассмотрении влияния концентрации пластификатора на вязкоупругие и другие физико-механические свойства не учитывалось физическое состояние, в котором находилась система полимер — пластификатор. [c.127]

    В период с 1937 г. и до конца жизни в НИФХИ под руководством В. А. Каргина проводились фундаментальные исследования в области физико-химии растворов полимеров, механических свойств высокомолекулярных соединений, механизма образования полЕмерных студней, процессов структурообразования в кристаллизующихся полимерах и морфологии кристаллических структур, исследование влияния надмолекулярной структуры на механические и другие физические свойства полимеров, изучение характеристик вязкотекучего состояния и процессов структурообразования в расплавах полимеров, разработка методов модификации физико-механических свойств кристаллических полимеров, а также исследования в области молекулярной пластификации полимеров, приведшие к установлению правил объемных долей. [c.8]

    ТЕПЛОСТОЙКОСТЬ ПОЛИМЕРОВ — способность полимеров сохранять при повышенных темп-рах твердость, необходимую для эксплуатации изготовленных из них изделий. У стеклообразных полимеров теплостойкость определяется темп-рой стекловання (см. Стеклование полимеров, Механические свойства поли.меров) и зависит от величины и скорости приложения механич. воздействий. Увеличенпе длительности воздействия и величины напряжения вызывает снижение теплостойкости. При переменных напряжениях теплостойкость повышается с увеличением частоты воздействий. У кристаллич. полимеров теплостойкость определяется темн-рой, нри к-рой еще сохраняется его кристаллич. состояние (см. Структуры над.чолекулярные полимеров. Кристаллическое состояние полимеров), и зависит от глубины и условий кристаллизации. Теплостойкость любых твердых полимеров снижается нри пластификации и несколько увеличивается при введении наполнителей. [c.38]

    Существенное влияние на механические свойства дластифици-рованных полимеров оказывает механизм пластификации — характер распределения молекул пластификатора между макромолекулами полимера. [c.172]

    При переработке акриловых смол добавляют пластификаторы, которые улучшают текучесть полимеров,в пластическом состоянии, однако существенно снижают физико-механические свойства. Поэтому при получении высококачественных полиакрилатов пластификаторы обычно не вводят. Пластификация с успехом заменяется сополимеризацией с различными мономерами. Эфиры акриловой и метакриловой кислот сополимеризуют с винилхлоридом, винилацетатом, бутадиеном, стиролом, акриловой и метакриловой кислотами. [c.116]

    Представляет интерес проследить в общем виде изменения механических свойств пластифицированного полимера при изменении состава и температуры. Для этого удобнее всего воспользоваться измерением величин суммарной деформации при относи- I-тельно кратковременных I нагрузках, наиболее час-то встречающихся в рабо- тс пластифицированных материалов. Здесь можно ограничиться рассмотрением только жесткоцеп-ных полимеров, поскольку наибольший практический интерес представляет пластификация именно [c.357]

    Представления о структуре аморфных полимеров в конденсированном состоянии как о системе перепутанных цепных молекул привели к разработке молекулярных механизмов пластицирующего действия добавок низкомолекулярных веществ, вводимых в такие полимеры, выражаемого правилами мольных [1] или объемных [2] долей. Влияние низкомолекулярных веществ на механические свойства полимеров рассматривалось в этих случаях на молекулярном уровне характеристики явления пластификации. Однако в последнее время эти представления претерпели существенные изменения. Оказалось, что полимеры представляют собой систему высокоупорядоченных вторичных структурных образований [3], имеющих в отдельных случаях строгую геометрическую огранку, сходную с кристаллическими формами [4—7]. Новые данные, полученные по характеристике структуры аморфных полимеров, оказались весьма плодотворными для понимания явления пластификации полимеров низкомолекулярными веществами, которые ограниченно совмещаются с полимерами. Было показано, что влияние именно таких низкомолекулярпых веществ на механические свойства полимеров, определяющие их пластифицирующий эффект, связано со степенью распада надмолекулярных структур в полимерах. Можно представить, что процессы распада надмолекулярных структур в полимерах имеют такой же ступенчатый характер, как и процессы самого структурообразования. Полное разрушение всех вторичных структурных образований характеризуется возникновением термодинамически устойчивого раствора [8]. Уменьшение хрупких свойств материала в этом случае приводит к так называемой внутри-пачечной пластификации полимера [9]. Введение в полимер низкомолекулярных веществ, ограниченно совмешающихся с ним и вызывающих разрушение вторичных надмолекулярных образований, приводит к полученииз системы из молекул таких веществ, равномерно распределенных между первичными надмолекулярными образованиями — пачками цепей. Если при этом уменьшаются хрупкие свойства полимерного материала, имеет место так называемая межпачечная пластификация полимера [9]. Наконец, можно представить и существование начального акта распада, который должен характеризоваться нарушением контактов между вторичными надмолекулярными структурными образованиями. При этом подвижность таких сложных образований должна возрасти, а количество низкомолекулярного вещества, сорбированного на местах контактов, должно быть, по-видимому, весьма небольшим. Излон енные соображения явились предметом настоящего исследования. [c.387]

    Иную картину проявления механических свойств полимера мы будем иметь, вероятно, при межпачечной пластификации. В идеальном случае такой пластификации температура стеклования полимера пе должна вообще снижаться в присутствии пластификатора. Тогда, следовательно, механическая прочность, задаваемая пачками высокоориентированпых цепей полимера, окажется высокой. В то же время эластичность пластифицированного полимера определяется гуковской упругостью пачек, обладающих весьма высокой асимметрией их формы, т. е. будет определяться эластичностью формы таких вторичных структурных образований. Указанная пластификация, но-видимому, наиболее выгодна для получения морозостойких полимерных материалов, обладающих повышенной прочностью к ударным воздействиям, т. е. для таких условий эксплуатационного использования полимерных материалов, когда от материала требуется проявление высоких упругих свойств, задаваемых эластичностью формы структурных элементов материала. [c.323]

    Процессы деструкции могут быть использованы в исследовательско-аналитических целях, если протекают до образования мономеров, характеризуемых определенной молекулярной массой. Таким путем определяется состав и строение полимера. Деструкция при воздействии известных факторов (температура, давление, кислород воздуха) используется для производственно-технологических целей при пластификации полимеров, при получении блок-сополимеров и привитых сополимеров из смесей нескольких полимеров или полимеров с мономерами. В условиях эксплуатации и хранения техники деструкция — процесс нежелательный, ухудшающий физико-механические свойства полимеров. Деструкция приводит [c.42]

    Джексон и Колдуэлл " показали, что при введении в поликарбонат на основе бисфенола-А некоторых веществ модуль упругости и разрушающее напряжение полимера возрастают, а относительное удлинение уменьшается. Такое изменение механических свойств полимера противоположно изменению, наблюдаемому при пластификации, поэтому этот эффект был назван антипластификацией . [c.128]

    Так, Соколов и Фельд.ман [129] отмечали, что механические свойства пластиката зависят, в первую очередь, от числа введенных в полимер молекул пластификатора, независимо от их молекулярию го веса, o raiBiai ш строен ия. Последующими работами эта точка зрения была опровергнута [61, 123, 153, 155—156]. Эффект пластификации ПВХ различными пластификаторами неодинаков и зависит от их химической природы и строения [61, 135, 153]. Пластикаты, содержащие эиви-молярные доли различных пластификаторов, имеют разные физико-механические свойства [156—157], а содержащие одинаковые весовые количества пластификатора различаются по прочностным свойствам, значениям относительного удлинения и те.мпературной зависимости модуля упругости [135, 152, 153, 158]. [c.206]

    Исследование кино- и фотоматериалов, магнитных лент и некоторых других носителей информации, изготовленных на гибких подложках и представляющих собой полимерные пленочные системы, показало, что формирование пленочных систем из различных по физико-механическим свойствам слоев не может проводиться без учета их влияния на физико-механические свойства пленочной системы в целом. Так, в системе полиэтилентерефталат — желатина полиэфирная основа, обладая высокой прочностью, большой деформацией при разрыве и высокой ударной прочностью, теряет прочность при соединении с желатиновы]ми пенластифицированными слоями. Пластификация хрупких слоев системы, частичная или полная их замена термопластичными и каучукоподобпыми полимерами, а также уменьшение толщины хрупких слоев ведет к повышению прочностных показателей пленочной системы. [c.73]

    Измерение показателей физико-механических свойств пластифицированных полимеров проводилось, как правило, при одной фиксированной (комнатной) температуре. В связи с этим сложилось представление о специфическом влиянии малых концентраций пластификаторов на физико-механические свойства полимеров. Предполага-лось - что при больших концентрациях пластификаторов имеет место иной механизм пластификации. [c.127]

    Механическим свойствам полимерных мембран на ранних стадиях их разработки уделяли мало внимания особое значение придавалось эксплуатационным характеристикам, таким как проницаемость, селективность. В результате не удалось добиться повышения прочности патронных фильтров, особенно тех, которые содержат микрофильтры с максимальной пористостью (а следовательно, с минимальной прочностью). Механические свойства зависят от строения химических групп, макромолекул, микрокристаллического и коллоидного уровней. Рассмотрим, например, значение структуры для одного из основных механических свойств — эластичности. Аморфные полимеры типа поликарбонатов и полисульфонов имеют характерную эластичность как в плотном, так и в пористом состоянии. Сильнокристаллические и сильносшитые полимеры, с другой стороны, имеют тенденцию к хрупкому состоянию. Поликристаллические полимеры могут быть отнесены к любому из этих классов в зависимости от природы сил молекулярного взаимодействия и способа, которым их перерабатывают. Например, разветвленный полиэтилен низкой плотности со слабыми когезионными силами проявляет соответствующую эластичность, поскольку подвижные аморфные области, не содержащие поперечных сшивок, проявляются как одна из форм внутренней пластификации со снятым напряжением. С другой стороны, поликристаллические полимеры, проявляющие склонность к образованию водородных связей, имеют тенденцию к повышению хрупкости, поскольку межмолекулярные и внутримолекулярные связи являются эффективными поперечными связями, а хрупкость пропорциональна плотности поперечных связей. Если набухшие в воде мембраны из целлюлозы и найлона 6,6 высушить, то капиллярные силы будут способствовать высокой концентрации эффективных поперечных связей, и в результате мембрана уплотнится и хрупкость ее повысится. Однако в том случае, когда сушку проводят, заменяя растворитель (например, часто заменяют изопропанол гексаном), плотность поперечных связей минимальна, а эластичность будет сохраняться и в сухом состоянии. [c.117]


Смотреть страницы где упоминается термин Пластификация полимеро и механические свойств: [c.199]    [c.2]    [c.22]    [c.44]    [c.348]    [c.322]    [c.29]    [c.328]    [c.202]    [c.39]   
Физико-химические основы переработки растворов полимеров (1971) -- [ c.349 ]




ПОИСК





Смотрите так же термины и статьи:

Механические свойства полимеро

Пластификации

Пластификация механическая

Полимеры механические свойства



© 2025 chem21.info Реклама на сайте