Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Линейные п глобулярные полимеры

    Еще не так давно все различие свойств клетчатки и крахмала связывали именно с этой стереохимической деталью их строения и приводили указанные соединения в качестве примера того, как тонкие стереохимические различия могут вызвать очень существенное различие в свойствах. Ныне знают, что главная причина различия иная клетчатка — типичный представитель линейных полимеров, гигантская молекула которых имеет формулу нити крахмал — точнее, его главная составная часть — амилоза — столь же типичный представитель глобулярных полимеров с молекулой, имеющей форму объемной трехмерной частицы. [c.305]


    Следующим этапом структурообразования глобулярных полимеров является либо агрегация глобул с образованием более или менее плотно упакованных структур, либо при определенных гибкости макромолекул и температуре разворачивание глобул с последующим образованием линейных надмолекулярных структур. [c.69]

    Б. с могут быть линейными или слаборазветвленны-ми полимерами (напр., тейхоевые к-ты), сильно разветвленными глобулярными полимерами (напр., групповые вещества крови) или полимерами с жесткой трехмерной структурой (напр., т. наз. мукопептид клеточной стенки бактерий ). Для многих углеводсодержащих Б. с. характерно присутствие моно- и олигосахаридных остатков в качестве концевых групп полимерных цепей, причем они находятся на поверхности молекулы и определяют их биологич. свойства. Молекулярная масса Б. с. достигает нескольких миллионов, их мономерный состав сильно различается внутри каждого типа. [c.130]

    Линейные и глобулярные полимеры [c.462]

    Давно известными представителями двух основных типов высокомолекулярных веществ—линейных и глобулярных полимеров, являются целлюлоза и крахмал. По своей химической природе эти вещества, как известно, полисахариды, при полной деструкции превращающиеся в глюкозу. Вопрос о причинах различия в свойствах этих веществ, в конечном итоге составленных из одинаковых звеньев, давно уже занимал исследователей. [c.462]

    ЛИНЕЙНЫЕ И ГЛОБУЛЯРНЫЕ ПОЛИМЕРЫ [c.463]

    Вторичная структура белковой молекулы - это конформация участков полипептидной цепи. Линейный полимер, первичная структура которого включает много шарнирных фупп и взаимодействие между боковыми радикалами в котором не очень велико, образует статистический клубок. Он не обладает определенной трехмерной структурой или формой, так как она постоянно изменяется под действием микроброуновского движения. Однако вследствие взаимодействия боковых заместителей аминокислотных звеньев макромолекулы белка способны свертываться в более плотный, чем статистический, клубок, в результате чего возникает компактная глобулярная структура белковой макромолекулы. [c.344]

    Наличие алкильных заместителей в структурах асфальтенов за счет водородных связей позволяет расти ядру и перпендикулярно оси "С", что приводит к образованию глобулярных карбенов. И в первом, и во втором случае оправдывается мысль, что карбены - это линейный полимер асфальтеновых молекул [10], молекулярный вес которых достигает 68000 [c.45]

    В зависимости от строения основной цепи, наличия или отсутствия ионогенных функциональных групп, молекулы полимеров могут быть вытянутыми в нить , развернутыми в лист , иметь пространственное строение, быть свернутыми в клубки — глобулы и т. д. Например, молекулы каучуков обычно линейны, молекулы полиэтилена высокого давления имеют разветвленное строение, молекулы резины имеют вид пространственной сетки, а молекулы белка имеют глобулярное строение. [c.294]


Рис. 1.-15. Структура линейного полимера, состоящая из упорядоченных микрообластей типа складчатого микроблока (/), мицеллярного блока (2) и глобулярного образования (5). Рис. 1.-15. <a href="/info/1325674">Структура линейного полимера</a>, состоящая из упорядоченных микрообластей <a href="/info/71120">типа складчатого</a> микроблока (/), мицеллярного блока (2) и глобулярного образования (5).
    При изучении надмолекулярной структуры полимеров методом электронной микроскопии наименьшие искажения получаются при травлении полимеров в плазме высокочастотного кислородного разряда. Это дает возможность оценить соотношение между объемом, занимаемым упорядоченными микрообластями (микроблоками структуры) независимо от их природы, и неупорядоченной частью полимера (свободные цепи и сегменты), а также средний линейный размер микроблоков. Например, для эластомеров при комнатной температуре характерна объемная доля микроблоков примерно 20%. Это значит, что 80% по объему занимают свободные цепи и сегменты, ответственные за высокую эластичность этих материалов. Средний линейный размер структурных микроблоков 10—30 нм, что соответствует типичным размерам частиц в коллоидных системах. Малое различие в плотностях упорядоченных и неупорядоченных микрообластей (1—2%) является причиной того, что применение дифракционных методов для исследования структуры аморфных эластомеров не всегда эффективно. Некоторые полимеры в блоке характеризуются глобулярной структурой (рис. 1.12) с размерами микроблоков 12—35 нм. [c.27]

    В качестве примера на рис. 29.8 представлены зависимости П/с от с для двух разных ВМВ. Кривые / и 2 относятся к линейному полимеру (каучуку) в двух разных растворителях они имеют неодинаковый наклон, а следовательно, разные значения константы Ь, однако экстраполяция приводит к одному и тому же значению (П/с), - что дает постоянную величину молекулярной массы. Кривая 3 изображает зависимость П/с от с для глобулярного ВМВ (белка) примерно с той же молекулярной массой, что и у линейного изомера. Вследствие отсутствия вращения отдельных сегментов здесь П/с не зависит от с. [c.470]

    Характерной особенностью растворов ВМВ является их высокая вязкость по сравнению с чистым растворителем даже при малых концентрациях. Особенно сильно это свойство проявляется у полимеров с длинными линейными макромолекулами, например у каучука. Растворы полимеров с той же молекулярной массой, но сферической формой молекул (глобулярные ВМВ) имеют меньщую вязкость. Отсюда следует, что вязкость растворов полимеров возрастает пропорционально асимметрии их молекул. При одинаковой химической структуре молекул вязкость закономерно возрастает с увеличением молекулярной массы. Вязкость зависит также от концентрации полимера и межмолекулярных сил взаимодействия. [c.472]

    Исключение составляют макроскопические монокристаллы глобулярных белков, в узлах решетки которых располагаются отдельные белковые глобулу. Подобные кристаллы для синтетических линейных полимеров неизвестны, и их структура здесь не рассматривается. [c.172]

    Два важнейших полисахарида — целлюлоза и крахмал — со стереохимической точки зрения являются примером двух типов высокомолекулярных веществ линейных нитевидных и глобулярных (шарообразных) полимеров. Оба полимера составлены из глюкозных звеньев, и вопрос о причинах резкого различия в свойствах полимеров давно уже занимал исследователей. [c.633]

    В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, макромолекула линейного полимера в зависимости от геометрии элементарных звеньев и порядка их чередования (если они различаются по химическому составу и стереометрии) может по своей форме приближаться к жесткой палочке (полифенилены, полиацетилены), свертываться в спираль (амилоза, нуклеиновые кислоты, пептиды) или в клубок — глобулу (глобулярные белки). В зависимости от формы макромолекулы линейные полимеры могут значительно различаться по свойствам. Но в то же время они имеют ряд общих свойств, характерных именно для линейных полимеров, которые отличают их от полимеров с иной геометрической формой молекул. [c.47]

    Для эпоксидных полимеров, как и для других сильно сшитых полимеров, характерно образование глобулярной надмолекулярной структуры с диаметром глобул порядка нескольких сотен ангстрем [1—6, 21, 25, 80, 81]. Структуры других типов в эпоксидных смолах не обнаружены [25]. Следует отметить, что физико-механические характеристики полностью отвержденных эпоксидных полимеров сравнительно мало зависят от глобулярной структуры и от последующей термической обработки, если она не приводит к термодеструкции полимера [1, 25]. Таким образом, свойства эпоксидных полимеров определяются главным образом химическим и топологическим строением, а не надмолекулярной структурой, хотя в случае линейных полимеров последняя часто оказывает большое влияние на физико-механические характеристики. [c.58]


    Глобулярные структуры были также обнаружены в блоках различных полимеров (фенопласты, эпоксидные смолы, кремнийорганические полимеры и др.) при исследовании поверхности разлома или скола образца в электронном микроскопе. Вероятно, малые удлинения и сравнительно низкие разрывные прочности резитов связаны не столько с наличием пространственной сетки, сколько с их глобулярным строением, которое фиксируется во время синтеза полимера внутримолекулярным сшиванием свернутых линейных цепей  [c.432]

    Несмотря на то что изучение надмолекулярных образований в полимерах ведется давно, до сих пор еще не имеется достаточной ясности в вопросе о том, какие структуры характерны для аморфных полимеров. Основным типом надмолекулярной структуры аморфных полимеров являются глобулярные образования, типичные как для линейных, так и для сшитых полимеров [92]. Глобулы [c.48]

    Характеристика высокомолекулярных веществ по их молекулярному весу может относиться лишь к таким продуктам, которые имеют линейную или разветвленную структуру, вне зависимости от формы частиц (вытянутая или глобулярная). Молекулярные веса большинства полимеров, за небольшим исключением, находятся в пределах 10 —10 . Подавляющее большинство полимеров линейной и разветвленной структур удается растворить без разрушения химических связей между атомами, поэтому изучение свойств растворов является наиболее распространенным методом оценки молекулярных характеристик полимеров. [c.6]

    В связи с этим структуру аморфных полимеров [7.1] (полимерных стекол и эластомеров) можно представить состоящей из двух структурных частей неупорядоченной части, включающей свободные сегменты и цепи (их подвижность проявляется в а-процессах), и упорядоченной части, распространенной по всему объему в виде упорядоченных микрообластей флуктуационного происхождения (структурных микроблоков глобулярного, складчатого и мицеллярного типов различных линейных размеров — от 10 до 100 нм). [c.200]

    Оба метода расчета коэффициента диффузии, метод вторых моментов и метод максимальных ординат, должны давать одинаковые значения. Так оно и получается, если измерения правильны и соблюдены условия, при которых можно применять уравнение Фика 1) монодисперсность полимера, т. е. возможность приписывать макромолекулам определенное значение >, и 2) идеальность раствора, т. е. применимость к нему закона Вант-Гоффа. Фактически эти условия выполняются только при изучении глобулярных белков. В этом случае действительно получаются идеальные гауссовы распределения градиента концентрации и оба метода расчета дают одни и те же значения. В случае линейных полимеров оба условия, строго говоря, не выполняются. Поэтому кривые градиента концентрации оказываются негауссовыми и оба метода расчета приводят к различным результатам. [c.128]

    ЛИЧНЫМ полимерам с одной и той же молекулярной массой, а именно глобулярному белку (альбумину), разветвленному полисахариду (декстрану) и линейному гибкоцепочечному полимеру (полиэтилен-гликолю), будет получено три совершенно разных значения отсечения. Так, если раствор содержит два полимера с большим различием молекуярных масс, например 7-глобулин с М = 150 000 и альбумин с М = 69 000, отсечение более низкомолекулярного полимера оказывается зависимым от присутствия высокомолекулярного компонента из-за проявления эффектов, связанных с пограничными слоями (адсорбция на поверхности). Высокомолекулярный компонент будет полностью задерживаться, а образующийся при этом слой полимера будет значительно влиять на скорость переноса низкомолекулярного компонента. Не исключено также, что высокомолекулярный компонент просто забьет поры. То есть будет иметь место значительное взаимное влияние разделяемых полимеров. [c.192]

    Более крупные структурные образования супердомены) обнаруживаются при действии на полимер лазерного излучения. В линейных полимерах наряду с глобулярной структурой (в полистироле)" наблюдается и фибриллярная (в поликарбонате), причем длина фибрилл 2 мкм, а диаметр 50 нм. В настоящее время можно [c.27]

    Ио полимерные цепи могут в результате теплового движения их звеньев принимать разнообразные конформации из которых крайними являются линейная жесткая палочка и предельно гибкая цепь, стремящаяся свернуться в клубок. Цень сворачивается в клубок, так как это отвечает уменьшению поверхности и, следовательно, свободной энергии. Ограниченная гибкость реальной цеппой макромолекулы мешает ей npHHiiMaTb всегда сферическую форму" Однако в ряде случаев можно наблюдать возникновение сферических форм, или глобул, образованию которых способствуют гибкость цепи и ус.аовця, обеспечивающие превышение Энергии Внутримолекулярного взаимодействия ьад межмолекулярным. Поэтому, в зависимости от условий, жесткие молекулы полимера вследствие сильного внутримолекулярного взаимодействия могут сворачиваться а глобулы (поливинилхлорид, феноло-формальдегидные смолы), Гибкие, но слабо взаимодействующие неполярные макромолекулы обычна находятся не в глобулярном, а с развернутом состоянии. [c.93]

    Карбоцепные Ф,- аморфные полимеры с линейным и (или) глобулярным расположением слаборазветвленных макромолекул мол.м. (1-5) 10. В нек-рых типах Ф. содержится значит, кол-во о 80% по массе) тобулярного микрогеля с размером глобул 40-150 нм. Св-ва Ф. во многом зависят от их мол. структуры (тип каучука, соотношение мономеров, ММР). При наф. выше 200 °С, а также при взаимод. с щелочами, аминами и т. п. Ф. отщепляют галогеноводороды (HF, H I) при этом в молекуле образуются изолированные или сопряженные двойные связи, участвующие в вулканизации. [c.203]

    IV. 4. ХИМИЧЕСКОЕ ГЕЛЕОБРАЗОВАНИЕ НИЖЕ ПОРОГА ПЕРКОЛЯЦИИ. О ВЕРОЯТНЫХ ПРИЧИНАХ ОБРАЗОВАНИЯ МУЛЬТИЦЕПНЫХ ГЛОБУЛЯРНЫХ МОРФОЗ В ЛИНЕЙНЫХ И СЕТЧАТЫХ АМОРФНЫХ ПОЛИМЕРАХ [c.125]

    Ясно, что если такое химическое стеклование произошло, говорить об а-переходе, а иногда и р-переходе, в такой системе бессмысленно. Но в любой, даже очень хорошей монографии о сшитых полимерах а-переход обычно все же фигурирует 226]. Это может быть связано с двумя обстоятельствами. Во-первых, процесс может быть прекращен до химического стеклования. Во-вторых, частосшитые сетки, как правило, чрезвычайно топологически и морфологически неоднородны из-за очень широкого распределения линейных участков цепей по Мс обычно наблюдаются гетерогенные структуры, не вполне удачно называемые глобулярными, с выраженно чередующимися сгущениями и разрежениями. [c.311]

    Вискозиметрический метод определения молекулярной массы по Штаудингеру основан на том, что линейные макромолекулы, находящиеся в растворителе, даже при относительно низких концентрациях, значительно повышают его вязкость, причем повышение вязкости раствора пропорционально увеличению молекулярной массы. Этот метод применим только к линейным и мало разветвленным макромолекулам и не подходит для шарообразных или сильно разветвленных макромолекул (глобулярные белки, гликогены). Поскольку при определении молекулярных масс речь идет не об абсолютной вязкости, а об относительном повышении вязкости, то измерение заключается в определении вязкости раствора полимера т] и чистого растворителя rio и вычислений на основе этих измерений удельной вязкости Г1уд  [c.73]

    Кроме глобулярных надмолекулярных структур полимеров широко распространены линейные. Они возникают обычно в расплавах и растворах либо в результате действия межмолекулярных сил при складывании одной макромолекулы или ее частей, либо при сближении отдельных макромолекул. В линейных структурах складчатые образования ( домены , зерна) собраны в виде вытянутых волокноподобных супердоменов (рис. П. И). Супердомены могут агрегировать, образуя более крупные линейные структуры — фибриллы. Фибриллярная структура свойственна некоторым аморфным полимерам, но встречается реже, чем глобулярная. [c.32]

    Глобулы могут переходить в линейные образования, в особе 1ЮСТИ когда это связано с кристаллизацией полимера (глава VI Если же Они фиксированы достатоЧ прочными внутримолекулярными св Н 0- 9 яын, глобулярные системы сохраня  [c.94]

    Рассмотренные до сих пор низкомолекулярные вещества образуют нормальные стекла, для которых характерен сравнительно небольшой интервал размягчения, охватьГвающий 20—50 . К подобным стеклам относятся низкомолекулярные полимеры глобулярной структуры (канифоль, пеки, новолаки). Ниже Та такие полимеры отличаются хрупкостью и разрушаются до достижения предела упругости выше Тст они ведут себя как упруговязкие тела, у которых диаграмма растяжения состоит из линейного участка, отвечающего упругой деформации, и нелинейной части, соответствующей пластической деформации. [c.408]

    Морфология редкосшитых полимеров мало отличается от таковой для линейных полимеров [152—162]. В редкосшитых сетчатых полимерах могут быть реализованы все морфологические структуры (глобулы, сферолиты, кристаллиты, фибриллы и т. п.), характерные для линейных полимеров. Однако по мере увеличения концентрации узлов сетки наблюдаются прогрессирующие затруднения для образования хорошо упакованных морфологических структур с высокой степенью упорядоченности межузловых цепей, так что в конечном счете для густосетчатых полимеров (концентрация узлов, сетки 102 узлов см ) подобные структуры вырождаются вовсе и фундаментальным структурным элементом для густосетчатых полимеров являются исключительно глобулы [152, 153, 162—165]. Все попытки изменения характера морфологической структуры таких полимеров за счет широкого варьирования химического строения исходных реагентов — олигомеров и отверждающих агентов, за счет изменения условий образования полимера или воздействия на уже сформированный полимер тепловых и механических полей не приводят к изменению морфологии густосетчатого полимера во-всех случаях она остается глобулярной, варьируют в некоторой степени лишь размеры глобул. [c.150]

    Как известно, длинные цепные молекулы обладают гибкостью, а поэтому под влиянием теплового движения скручиваются. Именно этим обусловлено возникновение у полимеров высокоэластических свойств и аномалий их физических свойств. Способность ценных молекул изменять свою форму особенно резко проявляется в ориентационных явлениях при деформации аморфных и кристаллических полимеров, а также при течении растворов полимеров. Развившиеся за последние годы исследования формы цепных молекул в различных растворителях, возможность получения ряда линейных полимеров в глобулярной форме и другие экснеримептальные данные окончательно подтвердили гипотезу о легкой скручиваемости цепной молекулы. Это послужило основанием для развития современных представлений о характере расположения ценных молекул в аморфном полимере и о своеобразии упорядочения при кристаллизации полимера. Отсюда возникло представление о полимере как о системе хаотически спутанных, скрученных ценных молекул. Однако учет современных данных о строении вещества приводит к выводу, что упаковка хаотически скрученных цепных молекул, обладающих гибкостью вследствие вращения относительно С—С-связей, не может быть достаточно плотной, чтобы обеспечить наблюдаемые экспериментально значения плотностей полимеров. [c.108]

    Образование сферолитов характерно не только для полимеров. Впервые этот термин использован при описании поликристаллических структур, обнаруженных в изверженных породах. Сферолитные образования наблюдаются в различных неорганических и органических кристаллических соединениях [83, 84]. Глобулярные белки, такие как, например, фермент карбоксииепти-даза, также кристаллизуются из разбавленного раствора в сферо-литной форме [85]. Как было показано Робинсоном [86], после разделения фаз в разбавленном растворе поли-у-бензил-1--глутамата в спира-лизующих растворителях образуются большие, хорошо очерченные сферолиты (рис. 112) . При наблюдении между скрещенными поляроидами оптическая природа этих сферолитов оказывается той же, что у сферолитов ленточного типа, образующихся при кристаллизации линейных молекул из расплава. Следовательно, вязкость среды не влияет решающим образом на возможность образования сферолитов. Характерная черта сферолитов поли-у-бензил-1-глутамата — появление полос гашения, расположенных по радиусу и хорошо видимых в обычном свете. [c.314]

    Полученные данные позволяют заключить, что при механической деструкции полимеров, имеющих вытянутые асимметричные макромолекулы, происходит их разложение на линейные фрагменты с меньшей степенью асимметрии у полимеров с глобулярной структурой деструкщ1я протекает медленнее с образованием асимметричных фрагментов, что, как было показано [c.39]


Смотреть страницы где упоминается термин Линейные п глобулярные полимеры: [c.69]    [c.69]    [c.81]    [c.55]    [c.470]    [c.637]    [c.267]    [c.555]    [c.38]   
Смотреть главы в:

Основы стереохимии -> Линейные п глобулярные полимеры




ПОИСК





Смотрите так же термины и статьи:

Линейные полимеры



© 2025 chem21.info Реклама на сайте