Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимерные амины и их производные

    Полимерные амины и их производные  [c.23]

    ПОЛИМЕРНЫЕ АМИНЫ И ИХ ПРОИЗВОДНЫЕ [c.52]

    Количество азотсодержащего мономера в сополимере обычно составляет 5—10%. Возможно использование и других полимерных мономеров на базе производных пиридина и некоторых аминов. [c.640]

    Поливиниламин представляет собой твердое аморфное вещество, растворимое в воде, растворах кислот, спиртах, диоксане, аминах. Водные растворы поливиниламина имеют щелочную реакцию. Полимер образует с кислотами соли, реагирует с хлорангид-ридами или ангидридами кислот, образуя соответствующие полимерные производные, [c.389]


    Некоторые альдегиды (например, хлораль) реагируют с аммиаком, образуя производные Н СН(0Н)ЫН2, однако эти производные чаще всего реагируют дальще, давая полимерные продукты. Продукты присоединения первичных аминов как к альдегидам, так и к кетонам, самопроизвольно отщепляют воду и образуют, как было показано выше, основания Шиффа, например К СН = ЫК (VI). [c.206]

    Наибольшее применение получили высокомолекулярные амины и их производные, гетероциклические соединения и их полимерные продукты, содержащие азот, серу, фосфор, кислород. [c.71]

    Ионообменная хроматография. Ионообменные смолы являются полимерными органическими соединениями, содержащими функциональные группы, способные вовлекаться в ионный обмен. Различают положительно заряженные анионообменники, представленные органическими основаниями и аминами, и отрицательно заряженные катионообменники, содержащие фенольные, сульфо- или карбоксильные группы. Из сильно- и слабоосновных анионообменников чаще используют производные полистирола и целлюлозы, несущие функциональные группы  [c.29]

    Микробиологическую активность проявляют производные полиаминов [25—29] для сравнения следует отметить, что активность полиэтиленимина ниже, чем органических соединений олова [30]. В качестве бактерицидов и фунгицидов предложены полимерные соединения, содержащие аминогруппы [31]. Такие полимеры получают полимеризацией непредельных аминов [c.93]

    Наибольшее распространение в качестве стабилизаторов термической деструкции полимерных материалов в настоящее время получили низкомолекулярные соединения из класса ароматических аминов, фенолов, фосфитов и серосодержащих производных. [c.244]

    Наибольшее распространение в качестве стабилизаторов термоокислительной и термической деструкции полимерных материалов в настоящее время получили низкомолекулярные соединения из класса ароматических аминов, фенолов, фосфитов и серосодержащих производных. Классификация и назначение стабилизаторов приведены в табл. 43.3. Анализ данных таблицы показывает, что большинство термостабилизаторов эффективно защищают многие полимерные материалы не только от термодеструкции, но и других видов старения (окислительного, озонного, фотостарения и т. д.), т. е. термостабилизаторы обладают известной универсальностью, что чрезвычайно важно, поскольку открывает широкие возможности для сокращения количества защитных присадок, вводимых в конкретный полимер 14]. [c.434]

    По реакции Михаэля из полимерных аминов был синтезирован полиамфолит с р-аминокислотными боковыми цепями Полимерные амины были получены нитрованием полимеров и сополимеров N-винилбeнзимидaзoлa или его производных с последующим восстановлением полученных нитросоединений Образовавшиеся при этом полимерные амины применяли для изго-готовления азокрасителей и анионообменных смол. [c.708]


    В текстильной промышленности полиэтиленимин используется главным образом в качестве вспомогательного агента при крашении. Способность полиэтиленимина, в особенности, алкилированного по азоту, совмещаться с полиолефинами позволяет решить проблему крашения полипропиленовых волокон простым введением 2—5% полимерного амина перед прядением [255]. Использование полиэтиленимина в качестве инициатора полимеризации ь-капролактама [256] дает блок-сополимерный полиамид с лучшей, чем у найлона-6, окрашиваемостью, повышенной кристалличностью и устойчивостью к кипящей воде. Точно так же полиуретановое волокно, полученное поликонденсацией в присутствии небольшой добавки этиленимина [257], обладает лучшей окрашиваемостью и светостойкостью. Обработка пералкилированным полиэтиленимином [116] повышает прочность всех видов крашения и закрепляет на волокне пигменты и окись алюминия [258]. Соли полиэтиленимина и некоторые его производные используются [259] для обработки синтетических волокон и изделий из них с целью предотвращения аккумулирования ими электростатических зарядов. Адсорбция [c.189]

    Поиск новых термостабилизаторов и антиоксидантов за период 1966—1968 гг., по литературным данным, продолжался среди соединений класса фенолов, ароматических аминов, производных фосфористой кислоты [18—20], путем модификации молекул. Широкое распространение получают смешанные фосфор- и серасодержащие, сера- и азотсодержащие соединения, различные гетероциклические соединения [21 — 22]. Предметом ряда патентов являются металлоорганические соединения — соединения олова, кремния и др. в качестве термостабилизаторов [24, 25] Сравнительно новыми, как и в случае светостабилизаторов, являются рекомендации на применение полимерных соединений в качестве термо-стабвлизаторов [26]. [c.134]

    По установленному или предполагаемому механизму действия противоопухолевые ФАВ могут быть разделены на три группы алкилирующие агенты, антиметаболиты и ФАВ с иными механизмами действия. К алкилирующим агентам относятся ФАВ, которые взаимодействуют с важнейшими биополимерами внутри клетки (нуклеиновые кислоты, ферменты и т. д.). Это многочисленные производные 2-хлорэтиламина или 2,2-бис-(хлорэтил) амина, производные этиленимина и ряд других. Сшивая биополимеры, ФАВ этой группы препятствуют выполнению ими своих функций. Антиметаболиты представляют собой структурные аналоги веществ, участвующие в нормальном обмене (метаболитов), в частности пуринов, пиримидинов, фолиевой кислоты и т. д. Включаясь в метаболизм, антиметаболиты останавливают процесс на одной из стадий. К антиметаболитам относятся меркаптопурин, 5-фторурацил, метотрексат и др. Из противоопухолевых ФАВ с иным механизмом действия мы рассмотрим полимерные производные Цисплатина и противоопухолевые антибиотики, воздействующие прежде всего на нуклеиновые кислоты. [c.108]

    В наиболее широкий класс анионных ингибиторов входят производные карбоновых кислот, производные сульфокислот и фосфорпроизводные. Класс катионных реагентов включает полимерные производные алкилен-аминов, моноамины, четвертичные аммониевые основания. [c.241]

    При добавлении небольших количеств азотистых оснований (производных пиридина и хинолина) возрастает стабильность топлив нри повышенных температурах [778]. Извлеченные из кайен-ноугольных смол или продуктов нефтепереработки, но главным образом синтетические, ароматические амины и их оксипроизводные (аминофенолы) используются в качестве высокоэффективных антиоксидантов в топливах, маслах [779] и полимерных материалах [780]. [c.139]

    Иод-, бром- и хлорацетаты натрия легко взаимодействуют с сульфгидрильными, аминными, имидазольными группами полимерного субстрата с образованием соответствующих карбок-симетильных производных. Так, S-карбоксиметилирование белков в растворе иодуксусной кислоты происходит очень быстро и специфично. Реакции алкилирования иодистым метилом или дибромэтиленом протекают медленнее, нежели с иодуксусной кислотой, и реализуются преимущественно на -SH- и NH2-группах белка. В некоторых случаях возможен также деструктивный распад полимерной цепи. [c.369]

    Антиржавейную эффективность в автомобильных бензинах проявляют ингибиторы комбинированного действия олигомеры ненасыщенных кислот (экранирующий) + производные ими-дазолинов (смачивающий) гидразин или алкиламин (смачивающий) + жирные спирты до С,ц—(экранирующий) смеси высших жирных кислот С5—С20 (экранирующий) + смеси различных аминов — первичных, полимерных, алканоламинов и др. (смачивающий) [7]. [c.374]

    КАУЧУК СИНТЕТИЧЕСКИЙ (СК)-высокополимерный каучукоподобный материал, получаемый полимеризацией и сополимеризацией различных непредельных соединений (бутадиен, стирол, изопрен, хлоропрен, изобутилен, нитрил акриловой кислоты) или поликонденсацией соответствующих бифункциональных производных углеводородов. Подобно И К К. с. имеет длинные макромолекулярные цепи, иногда разветвленные, со средней молекулярной массой, равной сотням тысяч, иногда миллионам. Полимерные цепи К. с. в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, обусловливающая характерные для резины физико-механические свойства. Некоторые виды К. с. (напр., полиизо-бутиленовый, силиконовый и др.) — полностью предельные соединения, вулканизуются в присутствии органических пероксидов, аминов и др. По техническим свойствам некоторые К. с. значительно превосходят НК, но в отличие от НК в К с. при переработке требуется вводить специальные активные наполнители (сажу, активную кремнекис-лоту, оксид алюминия, каолин, мел и др.), усиливающие механическую прочность вулканизаторов. К. с. применяют для изготовления резин, резиновых изделий, автошин, транспортных лент, обуви, изделий для работы с органическими растворителями и др. [c.123]


    Полимерные амфолитные ПАВ природные (белки, нуклеиновые к-ты и т.п.) модифицированные природные (олигомерные гидролизаты белков, сульфатир. хитин) продукты ступенчатой конденсации аминов, формальдегида, альбумина, жирных к-т производные целлюлозы, полученные введением карбоксильных и диэтаноламиноэтильных групп синтетические, в молекулах к-рых сочетаются структурные особенности всех приведенных выше групп амфотерных ПАВ (см., напр., ф-лы XII-XVI). [c.588]

    В основе синтеза полимерных продуктов, содержащих карбоксильные группы, лежит реакция Дильса - Альдера. Предварительно ХБК подвергают дегидрохлорированию до диенбутилкаучука. Образующаяся система сопряженных С=С-связей в макромолекулах легко взаимодействует с малеиновым ангидридом. При нейтрализации ангидридных групп растворами солей металлов, аминами или их производными образуется ионно-структурированный полимер (иономер), который характеризуется повышенной озоностойкостью [18.  [c.283]

    Для получения структурно-ок]рашенных полимеров применяют красители, в молекулы которых введены ненасыщенные фуппировки, способные вступать в реакцию сополимеризации с исходными мономерами. Производным антрахинона здесь принадлежит ведущая роль. Первые антрахинонсодержащие полимеры получены в 1961 г. в Англии посредством сополимеризации бутилакрилата с изобутиловым эфиром 1-амино-4-акрилоиламиноантрахинон-2-карбоновой кислоты (1 1). Примером структурно-окрашенного полимерного материала может служить продукт сополимеризации акрилонитрила с антрахино-новым винилсульфоновым красителем (LII)  [c.27]

    На кафедре аналитической химии МХТИ им. Д. И. Менделеева разработаны методы кислотно-основного титрования в среде спиртов, кето-нов и нитрилов. Эти методы позволяют количественно определять многие MOHO- и дикарбоноБые кислоты, их галоген-, нитро- и оксипроизводные, фенолы и их производные, а также смеси карбоновых кислот друг с другом, с фенолами и минеральными кислотами амины, диамины и их производные, гетероциклические азотсодержащие соединения и их смеси, кремнийорганические соединения, а также мономерные и полимерные продукты. [c.157]

    Роль метанола, как и других спиртов, в стабилизации водных растворов, заключается в блокировании концевых групп полимерных молекул и в предотвращении образования нерастворимых полиоксиметиленов чрезмерно высокого молекулярного веса. Имеется большое число патентов по применению в качестве стабилизирующих добавок различных ПАВ, в основном относящихся к классу сложных аминов (гуанамин, бетаин, триазин и т. д.), либо к кислородсодержащим полимерам (поливиниловый спирт, поливинилацетат, целлюлоза и ее производные и пр.). Однако, как и метанол, эти добавки эффективно действуют лишь при концентрации формальдегида не выше 40—50%. Попытки применения многих из рекомендованных в патентах препаратов для стабилизации растворов с содержанием формальдегида 70— 80% и выше успехом не увенчались. [c.26]

    Как уже отмечалось выше, в температурных условиях вулканизации происходит диссоциация сульфен- и бис-(сульфен)-амидных производных I на тиобеизтиазолильный и аминный радикалы. Последние, взаимодействуя с каучуком (отщепляя водород от полимерной цепи), образуют I и амины. [c.115]

    Первичные ароматические амины окисляются особенно легко, даже кислородом воздуха при хранении В результате такого окисления образуются иминохиноны, хиноны, полимерные производные хинондиимина сложного состава (анилиновый черный) и др [c.840]

    Гликозидам родственны так называемые N-гликoзиды, т. е. производные моносахаридов, в которых аномерный центр связан не с атомом кислорода, а с атомом азота аминов или гетероциклов. К-Гликозидная связь характерна для нуклеозидов, нуклеотидов и нуклеиновых кислот, где моносахариды О-рибоза и 2-дезокси-0-рибоза (аналог О-рибозы без гидроксильной группы в положении 2) связаны с нуклеиновыми основаниями. Такие К-гликозиды называются нуклеозидами, например аденозин Сложные эфиры нуклеозидов — нуклеотиды, например у р и д и н-5 -ф о с ф а т, являются, как известно, мономерными звеньями нуклеиновых кислот. В целом полимерная молекула нуклеиновой кислоты построена из нуклеотидов, связанных между собой остатками фосфорной кислоты. [c.396]

    С/3 мм рт. ст. 0.918. п 1,4500—1,4520 раств. в СП., не раств, в воде. Получ. из а-пинена. Душиетое в-во (запах лимона) в парфюмерии. СВЕТОСТАБИЛИЗАТОРЫ (фотостабилизаторы), повышают светостойкость полимерных материалов. Действие основано на способности поглощать УФ излучение и тушить возбужд. состояния молекул полимера и ингредиентов, входящих в состав композиции (г. н. УФ абсорберы), и (или) ингибировать фотохим. деструкцию полимера. В кач-ве С. применяют производные бензофенона, салициловой к-ты, диалкилдитиокарбаматы Ni, пространственно затрудненные амины, нек-рые неорг. пигменты, напр, сажу, TiOz. ZnS. С. вводят в композицию прн ее изготовлении (0,1—5% от массы полимера). [c.517]

    При облучении у-лучами растворов полистирола в хлороформе в присутст]ши в качестве добавок соединений, содержащих подвижный атом водорода (фенолы, р-нафтол, некоторые амины), а также призводных тиомочевины, тиурама и дитиокарбаматов, снижение вязкости происходит в меньшей степени [200]. Производные мочевины, тиурама и дитиокарбаматов ингибируют и наблюдающуюся обычно после прекращения облучения деструкцию. Сообщалось о кажущемся равновесии между процессами полимеризации и деструкции при облучении раствора стирола и и полистирола в хлороформе у-лучами [201]. Этот факт требует критической оценки, так как деструкция под действием радиации и присоединение мономера к цепи не являются прямой и обратной реакциями одного и того же равновесного процесса. Процессы сшивания преобладают при облучении полистирола у-лучами в растворах этилацетата и диоксана, процессы деструкции — в растворах хлороформа и бензола эти процессы взаимно компенсируются в растворах в бутаноне и толуоле [202, 203]. Увеличение концентрации полимера способствует процессам сшивания, при этом становится возможной желатинизация растворов. При облучении полистирола у-лучами в растворе бензола наблюдается как образование разветвленных макромолекул, так и их деструкция [204]. Исследования с использованием меченых атомов свидетельствуют о наличии процессов рекомбинации полимерных радикалов даже в разбавленных растворах. [c.184]

    Антиокислители типа ароматических аминов применяют в турбинных, индустриальных и синтетических маслах. В промышленном масштабе вырабатываются фенил-сс- и -р-нафтиламины, алкилированные дифениламины, полимерные алкилдигидрохинолины и фенотиазин. Последний и его производные были всесторонне исследованы как антиокислители для смазочных масел типа диэфиров (сложных эфиров двухосновных кислот), используемых в авиационных реактивных двигателях [79, 204]. Действие фенотиазина основывается не только на его антиокислительной активности, но и на разложении органических перекисей. [c.13]

    Многие окислители не присоединяют кислород к азоту, а отщепляют водород. Эти реагенты никогда не окисляют анилин в р-фенилгидроксил-амин или нитрозобензол, а образуют бимолекулярные производные — азобензол и Ы-фенилхинондиимин. Только в жестких условиях может быть получен бензохинон — единственный мономолекулярный продукт реакции. По-видимому, он образуется из полимерных продуктов, которые характерны для данного типа окисления. [c.219]

    Производные пространственно-затрудненных фенолов несколько уступают по эффективности аминным стабилизаторам, но в отличие от них, как правило, малотоксичны и не окрашивают полимерные материалы. Поэтому фенольные стабилизаторы широко применяются для защиты светлых платсмасс и резин, в том числе для изделий, используемых в пищевой, медицинской промышленности и т. п. Типичными представителями фенольных стабилизаторов являются 4-метил-2,6-ди-/77рт-бутилфенол(аги- [c.435]

    При выборе стабилизирующей системы необходимо учитывать возможность взаимного влияния различных И. п. м. Так, нек-рые антиозонанты ускоряют фото-окислительную деструкцию полимеров. Ряд красителей обладает свойствами эффективных светостабилизаторов нек-рые наполнители (напр., сажа) ингибируют окисление пластмасс и резин. Ненасыщенные пластификаторы могут взаимодействовать со стабилизатором и подавлять его действие. В ряде случаев проявляется взаимное усиление действия двух и более стабилизаторов (так наз. синергич. эффект). Нек-рые стабилизаторы (напр., производные вторичных ароматич. аминов и п-фенилендиамина) обусловливают изменение цвета белых и светлоокрашенных полимерных материалов при их эксплуатации в условиях светового воздействия. См. также Стабилизаторы, Стабилизация. [c.418]

    Аналогично низкомолекулярным аминам. П., содержащие первичные и вторичные аминогруппы, при взаимодействии с ацилирующими или алкилирующими агентами образуют полимерные N-aцильныe и N-aл-кильные производные. При исчерпывающем алкилировании галогеналкилами получаются полимерные четвертичные соли (см. Иолиэлектролиты), последние также образуются при действии алкилируюищх соединений на П., содержащие третичные аминогруппы. Окисление полимерных третичных аминов приводит к полимерным К-окисям (см. Винилпиридина полимеры). Для всех линейных П. характерно образование с неорганич. к-тами полимерных аммонийных солей, растворимых в воде. [c.372]

    Известно, что контакт человека с феноло-, мочевино-, меламино-формальдегидными, эпоксидными, полиэфирными смолами, полиамидами, поливинилхлоридом, каучуками и клеями различного состава м. б. причиной аллергич. дерматитов. Аллергенными свойствами обладают выделяюпщеся из полимерных материалов акрилонитрил, ароматич. амины (напр., неозон Д), бензол, толуол, ксилолы, гексаметилендиамин, ацетон, резорцин, каптакс, фталаты, кумарон, малеиновый ангидрид, пиридин. Ряд ингредиентов полимерных материалов, напр, фталевый ангидрид, гидроперекиси, стирол, влияет на функции половых желез (гонадотропное действие). Известны тератогенные и эмбриотоксич. свойства бензола, фенола и его производных, формальдегида. К числу химич. мутагенов относят этилен- и пропиленоксид, диметилформамид, фенол, формальдегид, эпихлоргидрин, этиленгликоль, гидроперекись изопропилбензола. Из химич. веществ, входящих в состав полимерных материалов, канцерогенными свойствами обладают, напр., полициклич. углеводороды (3,4-бензпирен), перекиси. Ниже приводится С.-г. х. полимеров, наиболее широко применяемых в народном хозяйстве. [c.183]

    Учащиеся профессионально-техНйческих училищ изучают следующие классы органических соединений — углеводороды (предельные, непредельные и ароматические), кислородные производные углеводородов (альдегиды, кетоны, спирты, кислоты, ангидриды и хлорангидриды, простые и сложные эфиры), азотные производные (нитросоединения, амины, азо- и диазосоединения). Учащиеся должны также получить представление о жирах, углеводах, белках, ферментах и витаминах. Заключают курс основные классы полимерной органической химии — синтетические смолы и пластмассы, волокна и каучуки. Здесь же дается представление о силиконах. [c.7]

    В обычных условиях алюмогидрид лития не реагирует с двойной связью в а,р-непредельных амидах [143, 144], однако в некоторых случаях, когда реакция проводилась в жестких условиях [590, 944], были получены предельные соединения. Замещенные акриламиды (V) при восстановлении гидридом в случае применения обратного порядка прибавления реагентов дают различные соединения, такие, как предельные амиды (VI), их полимерные производные (VII—VIII) и сложную смесь аминов, в которой соотношение получаемых соединений зависит от величины [c.76]

    К анионным ингибиторам относятся производные карбоновых кислот (полимерные соединения акрилового ряда, сополимеры на основе малеинового ангидрида), производные сульфокислот, фосфоропроизводные (неорганические полифосфаты, органические фосфаты). К катионным ингибиторам относятся полиалкиленамины, моноамины, четвертичные аммониевые основания, полиэтоксилированные амины. [c.474]


Смотреть страницы где упоминается термин Полимерные амины и их производные: [c.933]    [c.940]    [c.235]    [c.43]    [c.517]    [c.258]    [c.89]    [c.374]    [c.183]    [c.487]    [c.116]   
Смотреть главы в:

Химия и технология полимеров Том 1 -> Полимерные амины и их производные




ПОИСК





Смотрите так же термины и статьи:

Амины полимерные



© 2025 chem21.info Реклама на сайте