Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы радиочастотная спектроскопия

    Парамагнитный резонанс является составной частью спектроскопии, поскольку дает возможность определить положение энергетических уровней магнитных частиц. Диапазон применяемых в этом методе частот лежит далеко за пределами инфракрасного спектра и находится между 10 и 10 гц (область радиочастот), что позволяет находить расстояния между очень близкими энергетическими уровнями, которые не могут быть определены обычными спектроскопическими методами. Методы парамагнитного резонанса называют также методами радиочастотной спектроскопии. [c.60]


    В заключение отметим, что резонансное магнитное поглощение происходит в области длин радиоволн, поэтому методы ЭПР и ЯМР называют методами радиочастотной спектроскопии. [c.113]

    Наряду с методами оптической спектроскопии для исследования органических соединений широко используется метод ядерного магнитного резонанса (ЯМР). Ядерный магнитный резонанс — избирательное взаимодействие магнитной компоненты радиочастотного электромагнитного поля с системой ядерных магнитных моментов вещества. Это явление наблюдается в постоянном магнитном поле напряженностью Но, на которое накладывается радиочастотное поле напряженностью Я , перпендикулярное Но- Для диамагнитных веществ, у которых спин атомных ядер равен 1/2 ( И, С, Р и др.), в постоянном [c.283]

    Метод ЯМР широко применяется для исследования структуры органических соединений наряду с методами оптической спектроскопии. Поглощение энергии радиочастотного излучения, которое используется в этом методе, связано с магнитными свойствами ядер. [c.142]

    При делении спектроскопических методов по свойствам атомных систем различают ядерную, атомную, молекулярную, радиочастотную спектроскопию и спектроскопию конденсированных систем. [c.333]

    С помощью методов оптической спектроскопии, в том числе спектроскопии в УФ, видимой и ИК-области, можно получить важные сведения о строении молекул. В настоящее время источником ценной информации для химиков стала еще одна область электромагнитных колебаний — микроволны, или волны радиочастотного диапазона, которые ранее представляли интерес лишь для инже-неров-электроников и связистов. Несмотря на то что приборы микроволновой спектроскопии не имеют почти ничего общего с приборами, применяемыми в оптической спектроскопии, в основе обеих групп методов лежат одни и те же принципы. Любые спектры возникают вследствие квантованных переходов в соответствии с условием частот Бора. [c.236]

    Поэтому наряду с усовершенствованием старых и созданием новых термодинамических методов измерения величины адсорбции, равновесного давления или концентрации и калориметрических методов измерения теплоты адсорбции и теплоемкости адсорбционных систем необходимо привлекать методы, позволяющие исследовать явление адсорбции на молекулярном уровне. Сюда относятся прежде всего методы оптической и радиочастотной спектроскопии. Изотопный обмен и масс-спектроскопия необходимы для получения сведений о числе и природе поверхностных соединений. Существенно получить по возможности разностороннюю информацию и [c.11]


    Электронный парамагнитный резонанс представляет собой явление поглощения излучения микроволновой частоты молекулами, ионами или атомами, обладающими электронами с неспаренными спинами. Называют это явление по-разному электронный парамагнитный резонанс (ЭПР) , электронный спиновый резонанс и электронный магнитный резонанс . Все эти три термина эквивалентны и подчеркивают различные аспекты одного и того же явления. ЯМР и ЭПР характеризуются общими моментами, и это должно помочь понять суть метода ЭПР. В спектроскопии ЯМР два различных энергетических состояния (если I = 7г) возникают из-за различного расположения магнитных моментов относительно приложенного поля, а переходы между ними происходят в результате поглощения радиочастотного излучения. В ЭПР различные энергетические состояния обусловлены взаимодействием спинового момента неспаренного электрона (характеризуемого т = /2 для свободного электрона) с магнитным полем — так называемый электронный эффект Зеемана. Зеемановский гамильтониан, описывающий взаимодействие электрона с магнитным полем, дается выражением [c.5]

    ЯМР-спектроскопия основана на поглощении веществом, помещенным в сильное однородное магнитное поле, энергии радиочастотного излучения. Сущность этого физического метода исследования молекулярных структур излагается в специальных руководствах. [c.62]

    Аналогично тому как это делается в ЯМР фурье-спектроскопии, спектры ЯКР получают также, регистрируя кривую спада свободной индукции после наложения мощных радиочастотных импульсов прямоугольной формы. Реализуемый на спектрометрах метод импульсного квадрупольного спинового эха обеспечивает большой выигрыш в чувствительности и разрешении, которое в этом случае практически определяется естественной шириной линии и не зависит от аппаратурных факторов. [c.111]

    ЭПР-спектроскопия используется для обнаружения, идентификации и определения количества свободных радикалов, обладающих, как известно, неспаренным электроном. Подобно методу ЯМР, она относится к радиоспектроскопическим методам и основана на особенностях поведения неспаренного электрона в магнитном поле. Как и указанные выше магнитные ядра, неспаренный электрон обладает магнитным моментом и при определенных условиях может поглощать кванты радиочастотного излучения, меняя при этом ориентацию в магнитном поле. [c.233]

    Отличие метода молекулярной рефракции от рассмотренных выше спектральных методов состоит в том, что для определения структуры по молекулярной рефракции необходимо располагать данными о составе исследуемых соединений и молекулярной массе, (брутто-формуле) или основаниями для предположений о структурной формуле, без чего невозможны расчеты аддитивных величин. Такая тесная связь структурной интерпретации рефрактометрических данных со сведениями о количественном составе вещества ограничивает независимое использование рефракции. Однако именно благодаря аддитивности молекулярной рефракции открывается возможность контроля данных о молекулярной формуле, чего не дает ни один из видов спектроскопии в оптической и радиочастотной областях спектра. [c.198]

    Физическими можно назвать методы измерения свойств, относящихся к индивидуальным соединениям. Их применяли вначале для исследования кристаллических веществ, затем стали исследовать и растворы, выделяя параметры, относящиеся к индивидуальным комплексам в растворе. Такие исследования позволяют получить сведения о составе и строении внутренней сферы комплексов, об их симметрии, о распределении зарядов, типе и характере связи, полностью расшифровать структуру кристаллических комплексов и т. д. К физическим методам относятся дифракционные (рентгенография, электронография, нейтронография), спектральные методы в широком диапазоне длин волн (от УФ до радиочастотной), гамма-резонансная, рентгеноэлектронная и фотоэлектронная спектроскопия, исследования магнитной восприимчивости и др. [c.199]

    Таким образом, с помощью мессбауэровской спектроскопии можно получить информацию, необходимую для определения структуры химических соединений, выявления тонких деталей химической связи и описывать быстрые реакции. Возможно и чисто аналитическое применение, которое в дальнейшем будет расширяться. Чувствительность метода позволяет даже исследовать динамику атома примеси при концентрации 10- % (ат.), изучать радиационные и другие дефекты в материалах (в том числе на поверхности высокодисперсных систем и в пленках), механизм воздействия ультразвука и радиочастотных колебаний на параметры технологических процессов, диффузию атомов в твердых телах и на их поверхности. Установлено, например, что ионы Ре -ь, локализованы на поверхности силикагеля и цеолита даже после адсорбции воды, в то время как в ионообменной смоле КУ-2 после адсорбции воды ионы Ре + диффундируют в поры смолы, образуя диффузный слой, компенсирующий отрицательный заряд сульфогрупп. По-видимому, большое значение будут иметь методы определения состояния элементов с переменной степенью окисления (табл. 31.8), выявления фаз, включенных в сложные композиции в незначительных количествах, и др. [c.748]


    ЯМР-фурье-спектроскопия (импульсная ЯМР-спектроскопия) представляет собой метод, основанный на использовании ряда коротких радиочастотных импульсов ( 30 мкс) вместо непрерывного сигнала, применяемого в обычной ЯМР-спектроскопии. [c.330]

    Фурье-спектроскопия ЯМР со скроенным возбуждением — форма ЯМР-ФП, при которой желательный частотный спектр для возбуждения сигнала синтезируется методом Фурье и используется для модуляции возбуждающего радиочастотного поля. [c.441]

    Радиочастотная область спектра в сочетании с магнитным полем используется в методе ядерного магнитного резонанса (ЯМР). ЯМР наблюдается у веществ, содержащих атомы, ядра которых обладают магнитным моментом (ядра и др.). В спектроскопии ЯМР образец вещества помещают между полосами магнита и подвергают радиочастотному облучению. При определенной частоте облучения и напряженности магнитного поля наблюдается резонансное поглощение энергии, которое может быть обнаружено. Ядра атомов, имеющие различное химическое и магнитное окружение, дают сигнал при различных значениях приложенного магнитного поля. По положению и интенсивности сигналов в спектре ЯМР судят о строении [c.213]

    Спектроскопия магнитного резонанса отличается от других видов спектроскопии тем, что расщепление энергетических уровней существует только в присутствии магнитного поля. Для обычно достижимых в лабораторных условиях магнитных полей переходы между уровнями энергии ядер, являющихся магнитными диполями, наблюдаются в радиочастотной области, а переходы между уровнями энергии спинов неспаренных электронов —в микроволновой области. Эти новые спектроскопические методы — ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) дают богатую структурную информацию, что делает их незаменимыми в химии. [c.495]

    Решающие успехи были достигнуты с применением импульсной спектроскопии ЯМР. В этом методе используют радиочастотный импульс для возбуждения сразу всех ядер одного типа в образце. Как получают импульс Генератор обычно работает на фиксированной частоте Однако, если включить генератор только на короткий промежуток времени Тр (рис. 9.3-7), формируется импульс, содержащий не только частоту 1/1, но также и непрерывную полосу частот, симметричных относительно основной частоты 1/1. Эффективная ширина полосы пропорциональна т . Например, если Тр = 10 с, ширина полосы составляет примерно 10 Гц. Выбор частоты генератора 1/1 определяется величиной Во и природой исследуемых ядер. Например, для наблюдения переходов протонов при Во = 4,7 Тл (тесла) частота генератора должна быть равна 200 МГц, в то время как для наблюдения резонанса на ядрах она должна быть 50,3 МГц (см. табл. 9.3-1) [c.209]

    Изучение структуры органических соединений методом спектроскопии адер-ного магнитного резонанса (ЯМР) требует определения многих спектральных параметров. Для решения этих задач в современной методологии ЯМР постоянно появляются новые многомерные методики. В книге рассмотрены методы, основанные исключительно на селективных радиочастотных импульсах и полевых градиентах. Предложена новая методика исследования медленных динамических процессов на основе мультиплетно-селективного возбуждения связанных спиновых систем. [c.2]

    В наши дни большинство спектрометров ЯМР высокого разрешения работают в режиме Фурье-преобразования, при котором возбуждение создается мощными неселективными радиочастотными (РЧ) импульсами. Наиболее часто встречающейся проблемой при работе на таких спектрометрах является подавление резонансных сигналов растворителя. Поэтому возникает необходимость возбуждения одного ядра или одной спектральной линии спинового мультиплета без возмущения остальной части молекулы. После перехода импульсной Фурье-спектроскопии к своему новому этапу развития (двумерный эксперимент), роль и популярность селективных методов стали быстро возрастать. [c.4]

    Аналитическая химия тесно связана с физикой. Химический анализ в значительной мере базируется на успехах спектроскопии (оптической, рентгеновской, радиочастотной), ядерной физики и других разделов физики. Многие методы анализа совершенствуются главным образом под влиянием постоянного развития соответствующих разделов физики и на базе прогресса в приборостроении. [c.12]

    Спектроскопия ядерного магнитного резонанса (ЯМР-спек-троскопия) — физический метод, основанный на регистрации индуцированных радиочастотным полем переходов между ядерными магнитными энергетическими уровнями молекул вещества, помещенного в постоянное магнитное поле. Переходы между ядерными магнитными уровнями возможны для ядер, обладающих магнитным моментом, т. е. имеющих спиновое квантовое число 1, не равное нулю. Такими свойствами обладают ядра Н, С, Р, Р, у которых 1 = /2, и др. Совокуп--чость сигналов переходов между энергетическими уровнями [c.50]

    Радиочастотная плазма проста в работе, безопасна и приобретение оборудования для нее не требует больших затрат. Методы определения с использованием радиочастотной плазмы обладают высокой чувствительностью и пригодны для определения многих элементов, поэтому радиочастотная плазма является очень перспективным эмиссионным источником возбуждения, успешно конкурирующим с другими менее эффективными источниками возбуждения элементов в эмиссионной спектроскопии. [c.717]

    Двойной резонанс или спин-развязка, т. е. подавление спин-спинового взаимодействия. В этом случае образец дополнительно подвергается воздействию сильного радиочастотного поля с частотой, равной резонансу одной из взаимодействующих групп. Спин-спиновое взаимодействие между ядрами подавляется и мультиплет необлученной группы коллапсирует (сливается) в синглет. Этот метод применяют и для подавления спин-спинового взаимодействия ядер разных изотопов — гетероядерный двойной резонанс. Он особенно важен в спектроскопии 1 С для подавления спин-спинового взаимодействия — Н. Спектры снятые с подавлением ( развязкой ) спин-спинового взаимодействия с Ч-1, иногда обозначают 1 С— 41 . [c.254]

    Спектры ЭПР. Этот вид спектроскопии, в отличие от метода ядерного резонанса, связан с магнитным резонансом непарных электронов. В интенсивном магнитном поле нормальный энергетический уровень электронов меняется так, что энергетический переход наблюдается в микроволновой области. Эта область представляет собой часть электромагнитного спектра, которая находится между дальней инфракрасной и радиочастотной областями, т. е. в области частот от 0,1 до 30 см. Используемая при этом аппаратура аналогична аппаратуре, употребляемой при измерении спектров ЯМР. [c.53]

    Все металлические коммуникации заменены на стеклянные. Газом-носителем служил азот, дополнительно очищенный с помощью четырех последовательно соединенных стеклянных колонок диаметром 35 мм и длиной 800 мм, заполненных молекулярными ситами типа 5 А [10]. Влажность газа-носителя на выходе из системы очистки не превышала 1 10 объемн. %. Содержание воды контролировали методом радиочастотной спектроскопии. Образец в хроматографическую колонку может вводиться непосредственно или впрыскиванием микрошприцем жидкости через испаритель с фторопластовым поршнем или в виде пара посредством вакуумной системы дозирования Применение последней обусловливалось окислением треххлористого фосфора до] оксихлорида кислородом воздуха при] обычном введении образца. Объем жидкой пробы составлял 2— 0мпл, а газообразной 5 мл при5 давлении 50—80 мм рт, ст. [c.191]

    Мониторинг внутренних состояний частиц в пучках с использованием оптических методов или методов радиочастотной спектроскопии также не требует рекордных характеристик по чувствительности. Вопросы чувствительности и сложности применяемых устройств зависят, главным образом, от степени детализации необходимой информации, и, если требуемая глубина детализации достаточно велика, то агапаратурная реализация может быть сложной и дорогостоящей. [c.194]

    Спектроскопия ЯМР высокого разрешения как наиболее информативный и мощный метод структурных и дагаамических исследований столь глубоко пронизывает все химические дисциплины, что без овладения ее основами нельзя рассчитывать на успех в работе в любой области химии. Поразительная особенность этого метода необычайно быстрое его развитие на протяжении всех последних 45 лет с момента открытия ЯМР в 1945 г. События последних 10 лет завершились полным обновлением методического арсенала и аппаратуры ЯМР. Основу приборного парка сейчас составляют спектрометры, оснащенные мощными сверхпроводящими соленоидальными магнитами, позволяющими создавать постоянные и очень однородные поля напряженностью до 14,1 Т. Каждый из таких приборов представляет собой сложный измерительно-вычислительный комплекс, содержащий помимо магнита и радиоэлектронных блоков одрш или дна компьютера, обладающие высоким быстродействием, большими объемами оперативной памяти и дисками огромной емкости. Импульсные методики возбуждения и регистрации сигналов с последующим быстрым фурье-преобразованием окончательно вытеснили режим непрерывной развертки, доминировавший в ЯМР до конца 70-х годов. Как правило, получаемая спектральная информащ1я перед ее отображением в виде стандартного спектра подвергается сложной математической обработке. На несколько порядков возросла чувствительность приборов. Методы двумерной спектроскопии и другие методики, реализующие сложные импульсные последовательности при возбуждении систем магнитных ядер, кардинально изменили весь методический арсенал исследователей и открыли перед ЯМР новые области применений. Эти новые и новейшие достижения уже нашли свое отражение в нескольких монографиях, появившихся за рубежом и в переводах на русский язык. Но они рассчитаны иа специалистов с хорошей физико-математической подготовкой. Между тем подавляющее большинство химиков-экспериментаторов ие обладают такой подготовкой. Более того, для практического приложения современного ЯМР вполне достаточно ясного понимания лишь основных физических пришдапов поведения ансамблей магнитных ядер при воздействии радиочастотных полей. Это понимание обеспечивает химику правильный выбор метода [c.5]

    Информацию о ротамерии получают также с помощью радиочастотной спектроскопии, ЯМР, электронографии, измерения ДП польных моментов и т. д. Теоретический расчет величин АЕ проводится, естественно, теми же методами, что и расчет барьеров (с. 93). Если энергия системы зависит от нескольких углов (в случае н-бутана от углов [c.66]

    Необходимо отметить, что нанометровые объекты хорошо известны с прошлого и позапрошлого века, как, например, коллоиды или гетерогенные катализаторы, включающие наночастицы на поверхности носителей. Однако в последнее десятилетие двадцатого века произошло выделение таких понятий, как нанокластер, наноструктура, и связанных с ними явлений в отдельную область физико-химии. Это произошло главным образом в результате значительного прогресса в получении и исследовании нанообъектов, возникновении новых наноматериалов, нанотехнологий и наноустройств. Синтезированы новые гигантские нанокластеры ряда металлов, фуллерены и углеродные нанотрубки, многие наноструктуры на их основе и на основе супрамолекулярных гибридных органических и неорганических полимеров и т.д. Достигнут замечательный прогресс в методах наблюдения и изучения свойств нанокластеров и наноструктур, связанный с развитием туннельной и сканирующей микроскопии, рентгеновских и оптических методов с использованием синхротронного излучения, оптической лазерной спектроскопии, радиочастотной спектроскопии, мессбауэровской спектроскопии и т. д. [c.9]

    В многоуровневых системах, подобных показанной (рис. 111.15) при воздействии достаточно мощных радиочастотных полей, может происходить спиновая поляризация, т. е. возникать неравновесная заселенность уровней с выравниванием заселенности и насыщением каких-то из них. Эта спиновая поляризация и лежит в основе уже рассмотренных в гл. II методов множественного резонанса в спектроскопии ЯМР, а также явлений ДЭЯР и ЭЛДОР, в которых при изучении спектра ЭПР под действием сильного поля (накачки) насыщаются, соответственно, ядерный или электронный зеемановский переход. Измененный спектр ЭПР регистрируется при этом с помощью второго СВЧ-поля (наблюдения). [c.80]

    ТДо 1951 года метод ЯМР применялся почти полностью в физических исследованиях он использовался для нахождения магнитных и других характеристик атомных ядер. С 1951 года, когда Дж. Арнольд, С. Дарматти и М. Паккард доказали, что с помощью ЯМР-аппаратуры достаточной разрешающей силы можно получить отдельные радиочастотные сигналы от химически неэквивалентных ядер водорода в молекуле этанола, стало очевидно, что ЯМР-спектроскопия высокого разрешения призвана сыграть доминирующую роль в определении химической структуры, особенно структуры органических соединений.  [c.5]

    В злектрич. спектроскопии газов регистрируют поглоще-ше злектрич. компоненты радиочастотного электромагн. воля, обусловленное переходами между уровнями энергии, соответствующими вращат. движению молекул, обладающих пост. электрич. моментом (микроволновая спектроско-вии). Электрич. радиоспектроскопич. методом является также ион-циклотронный резонанс, к-рый в равной мере относят и к масс-спектрометрии. [c.491]

    Важную роль в установлении М. р. играет исследование природы продуктов и промежут. в-в методами УФ, ИК и гамма-резонансной спектроскопии, ЭПР, ЯМР, масс-спект-рометрии, хим. поляризации ядер, электрохим. методами и т.п. Разрабатываются способы получения и накопления высокоактивных промежут. продуктов ионов, радикалов, возбужденных частиц с целью непосредственного изучения их реакц. способности. Для получения констант скорости тех стадий сложной р-ции, в к-рых участвуют высокоактивные частицы, информативно моделирование этих стадий в специальных ( чистых ) условиях, напр, путем проведения р-ций при низких т-рах (до 100-70 К), в ионном источнике масс-спектрометра высокого давления, в ячейке спектрометра ион-циклотронного резонанса и т.п. При изучении гетерогенно-каталитич. р-ций важно независимое исследование адсорбции всех участвующих в р-ции в-в на пов-сти катализатора, изучение спектров адсорбир. частиц в оптич. и радиочастотном диапазонах, а также установление их природы физ. и физ.-хим. методами (рентгеновская и У Ф фотоэлектронная спектроскопия, оже-спектроскопия, спектроскопия энергетич. потерь электронов и др.). [c.75]

    Разработка импульсного метода записи спектров ЯМР с фурье-преобразованием в 1960-х годах гюзднее явилась основой значительного числа экспериментальных методик, о которых едва можно было мечтать в то время. В рамках этого раздела мы гюпытались лишь кратко обрисовать принципы трех наиболее важных и используемых из этих подходов ВЕРТ-эксперимент и 2В-методы —Н,Н-С08 и Н,С-С08 , не вникая в детали. Арсенал разнообразных методов (с обилием сокращений, приводящих в замешательство даже спехщалистов) продолжает расти. В рамках полуклассической модели, представленной в разд. Свободный спад индукции и релаксация (разд. 9.3.2, с. 212), все эти процедуры основаны на управлении вектором макроскопической намагниченности посредством радиочастотных импульсов, перемежающихся с периодами сбора данных. Интересующиеся читатели могут найти детали в обширной литературе. Та невероятная скорость, с которой развивалась и продолжает развиваться спектроскопия ЯМР, делает этот метод [c.253]

    В случае системы связанных спинов полная интерпретация 2М обменных спектров представлялась невозможной без подавления эффектов когерентного переноса намагниченности по каналам скалярной связи, вызываемых вторым и третьим смешивающими 90°-ми радиочастотными импульсами стандартной трехимпульсной последовательности, применяемой в 2М обменной спектроскопии. Это существенно ограничивало возможности метода в исследованиях процессов структурной нежесткости.. [c.134]

    К радиоспектроскопическим (спиирезонансным) методам анализа, изучаюпц взаимодействие вещества с излучением в радиочастотном диапазоне, относятся спектроскопия ядерного магнитного резонанса (ЯМР) и электронного парамагнитного резонанса (ЭПР). Явление электронного парамагнитного резонанса открыто в 1944 г. советским ученым Е. К. Завойским, годом позже независимо друг от друга два американских ученых, Э. Перселл и Ф. Блох, заявили об открытии аналогичного явления для ядер, получившего название ядерного магнитного резонанса. [c.342]


Библиография для Методы радиочастотная спектроскопия: [c.283]    [c.283]   
Смотреть страницы где упоминается термин Методы радиочастотная спектроскопия: [c.7]    [c.134]    [c.59]    [c.30]    [c.21]    [c.197]   
Курс современной органической химии (1999) -- [ c.118 , c.338 ]




ПОИСК





Смотрите так же термины и статьи:

Метод радиочастотный

Спектроскопия радиочастотная



© 2025 chem21.info Реклама на сайте