Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод радиочастотный

    Парамагнитный резонанс является составной частью спектроскопии, поскольку дает возможность определить положение энергетических уровней магнитных частиц. Диапазон применяемых в этом методе частот лежит далеко за пределами инфракрасного спектра и находится между 10 и 10 гц (область радиочастот), что позволяет находить расстояния между очень близкими энергетическими уровнями, которые не могут быть определены обычными спектроскопическими методами. Методы парамагнитного резонанса называют также методами радиочастотной спектроскопии. [c.60]


    Измерение емкости можно производить несколькими методами. Наиболее подходящими методами можно считать метод радиочастотного моста и метод биений [5—7]. Метод радиочастотного моста является наиболее точным, но при его использовании требуется постоянная регулировка фазы, что приводит к некоторым трудностям, особенно при автоматической регистрации. Поэтому остановились на ирименении метода биений , как наиболее простом из этих двух методов и удовлетворительном по чувствительности измерений. [c.133]

    Большое влияние на рост производства усиленных пластмасс оказала разработка непрерывного метода получения прочных листовых формовочных материалов, которые поддаются быстрой и простой переработке. В производстве стеклопластиков все более широкое развитие получают такие прогрессивные методы, как трансферное прессование и литье под давлением. Внедрение этих методов стало возможным в результате разработки катализаторов, обеспечивающих более быстрое отверждение, и применения более высоких температур. Перспективным является метод радиочастотного нагрева и радиационного отверждения для ускорения цикла формования. [c.220]

    В заключение отметим, что резонансное магнитное поглощение происходит в области длин радиоволн, поэтому методы ЭПР и ЯМР называют методами радиочастотной спектроскопии. [c.113]

    А. Л. Бучаченко, Ю. Н. Молиным и сотр. установил (1975—1980-е) влияние магнитных полей (100— 1000 эрстед) на хим. процессы, открыл (1975) магнитный изотопный эффект. Обнаружил явление хим. поляризации ядер в газах и предложил пути его использования для решения ряда технических задач. Предложил новые методы для изучения короткоживущих радикалов и радикальных пар в хим. р-циях, в частности метод радиочастотного зонда и метод стимулированной поляризации ядер. Ленинская премия (1986), [c.389]

    В магнитометрах, применяющихся в биологии и геофизике, до сих пор использовались в основном не ПТ-сквиды, которые могут обеспечить более высокую чувствительность, а высокочастотные сквиды (ВЧ-сквиды). Состояние сверхпроводящего кольца в таких приборах определяют методами радиочастотной электроники. Сверхпроводящее кольцо ВЧ-сквида включает один джозефсоновский контакт (или так называемое слабое звено), через который может идти сверхпроводящий ток. Размеры контакта, переходящего в определенные моменты работы сквида в нормальное состояние, для достижения необходимых характеристик устройства должны быть достаточно малы по сравнению с размерами кольца. [c.153]


    Электронный парамагнитный резонанс представляет собой явление поглощения излучения микроволновой частоты молекулами, ионами или атомами, обладающими электронами с неспаренными спинами. Называют это явление по-разному электронный парамагнитный резонанс (ЭПР) , электронный спиновый резонанс и электронный магнитный резонанс . Все эти три термина эквивалентны и подчеркивают различные аспекты одного и того же явления. ЯМР и ЭПР характеризуются общими моментами, и это должно помочь понять суть метода ЭПР. В спектроскопии ЯМР два различных энергетических состояния (если I = 7г) возникают из-за различного расположения магнитных моментов относительно приложенного поля, а переходы между ними происходят в результате поглощения радиочастотного излучения. В ЭПР различные энергетические состояния обусловлены взаимодействием спинового момента неспаренного электрона (характеризуемого т = /2 для свободного электрона) с магнитным полем — так называемый электронный эффект Зеемана. Зеемановский гамильтониан, описывающий взаимодействие электрона с магнитным полем, дается выражением [c.5]

    Метод ЯМР основывается на следующем эффекте. Если система, обладающая ядерным спином, находится в тепловом равновесии с окружающей средой и располагается в сильном постоянном магнитном поле, то при наложении слабого радиочастотного поля с резонансной частотой (частотой Лармора) ядро индуцирует сигнал величиной [139] [c.108]

    За последние годы получил применение ядерный магнитный резонанс (ЯМР), который относится к радиоспектроскопическим методам. Явление ЯМР возникает под действием слабого радиочастотного поля, наложенного на сильное магнитное поле. ЯМР — это резонансный эффект изменения намагниченности вещества, который обнаруживают по возникновению электродвижущей силы индукции в катушке, окружающей образец исследуемого вещества. Спектр ЯРМ дает информацию о структуре соединения, о химической природе, пространственном расположении и числе атомов водорода в функциональной группе молекул, о ходе реакции, так как можно [c.230]

    ЯМР-спектроскопия основана на поглощении веществом, помещенным в сильное однородное магнитное поле, энергии радиочастотного излучения. Сущность этого физического метода исследования молекулярных структур излагается в специальных руководствах. [c.62]

    Радиочастотная область спектра в сочетании с магнитным полем используется в методе ядерного магнитного резонанса (ЯМР). ЯМР наблюдается у веществ, содержащих атомы, ядра которых обладают [c.228]

    Наряду с методами оптической спектроскопии для исследования органических соединений широко используется метод ядерного магнитного резонанса (ЯМР). Ядерный магнитный резонанс — избирательное взаимодействие магнитной компоненты радиочастотного электромагнитного поля с системой ядерных магнитных моментов вещества. Это явление наблюдается в постоянном магнитном поле напряженностью Но, на которое накладывается радиочастотное поле напряженностью Я , перпендикулярное Но- Для диамагнитных веществ, у которых спин атомных ядер равен 1/2 ( И, С, Р и др.), в постоянном [c.283]

    В соответствии с принципами методов двойного резонанса техника этих методов, как видно из сказанного, имеет свои особенности в спектрометрах имеются два источника радиочастотного излучения (накачки и наблюдения) и две регистрирующие системы. Для проведения эксперимента необходима возможность перестройки частоты источников в широком диапазоне, т. е. сканирования по частоте, в отличие от обычных спектрометров, где осуществляется сканирование по полю. Существуют также приборы с импульсными источниками и с регистрацией методом электронного спинового эха. [c.82]

    Аналогично тому как это делается в ЯМР фурье-спектроскопии, спектры ЯКР получают также, регистрируя кривую спада свободной индукции после наложения мощных радиочастотных импульсов прямоугольной формы. Реализуемый на спектрометрах метод импульсного квадрупольного спинового эха обеспечивает большой выигрыш в чувствительности и разрешении, которое в этом случае практически определяется естественной шириной линии и не зависит от аппаратурных факторов. [c.111]

    ЭПР-спектроскопия используется для обнаружения, идентификации и определения количества свободных радикалов, обладающих, как известно, неспаренным электроном. Подобно методу ЯМР, она относится к радиоспектроскопическим методам и основана на особенностях поведения неспаренного электрона в магнитном поле. Как и указанные выше магнитные ядра, неспаренный электрон обладает магнитным моментом и при определенных условиях может поглощать кванты радиочастотного излучения, меняя при этом ориентацию в магнитном поле. [c.233]


    Экспериментальное оборудование в методе ЯМР в основном такое же, как и в методе ЭПР. Отличие состоит лишь в том, что микроволновые источник излучения и детектор заменяются на радиочастотные. [c.250]

    В поле магнита 1 Тл частота, требуемая для ЭПР-пере-хода при g = 2. составляет около 28 000 МГц, тогда как протонному магнитному резонансу (ПМР) соответствует частота всего 42 МГц. При напряженности поля магнита в 0,32 Тл переходы ЭПР имеют место нри частотах в СВЧ-области (9000 МГц), в том же поле переходам ЯМР отвечает радиочастотная область. Эти различия объясняют тот факт, что методы ЯМР и ЭПР имеют различное инструментальное оформление. [c.215]

    Радиочастотное магнитное поле в металле может проникать лишь на небольшую глубину (около 5-10 см), поэтому метод ядерного резонанса позволяет изучить слои лишь у поверхности. Кроме того, спин-решеточная релаксация в металлах определяется магнитным взаимодействием ядер с электронами проводимости, которое приводит не только к расширению линии, но и к ее сдвигу. По этим связанным между собой эффектам можно судить о состояниях электронов у границы распределения Ферми. [c.534]

    Отличие метода молекулярной рефракции от рассмотренных выше спектральных методов состоит в том, что для определения структуры по молекулярной рефракции необходимо располагать данными о составе исследуемых соединений и молекулярной массе, (брутто-формуле) или основаниями для предположений о структурной формуле, без чего невозможны расчеты аддитивных величин. Такая тесная связь структурной интерпретации рефрактометрических данных со сведениями о количественном составе вещества ограничивает независимое использование рефракции. Однако именно благодаря аддитивности молекулярной рефракции открывается возможность контроля данных о молекулярной формуле, чего не дает ни один из видов спектроскопии в оптической и радиочастотной областях спектра. [c.198]

    Структурные данные можно получить также методами, которые используют энергии в радиочастотной области. К ним относятся ядерный магнитный резонанс и парамагнитный резо- [c.197]

    Требования к частям б) и в) импульсного и стационарного приборов различны. Например, передатчик в импульсном методе должен генерировать импульсы мощностью несколько киловатт, чтобы создать в образце поле Ну с амплитудой 10 — 10 А/м. В то же время в стационарном ЯМР-спектрометре передатчик имеет мощность меньше 1 Вт, так как в стационарном эксперименте требуется поле Ну с амплитудой около 10 А/м (малые значения амплитуды радиочастотного поля Я, необходимы, чтобы избежать насыщения). Приемник для импульсного прибора должен выдерживать большие перегрузки по амплитуде и очень быстро (за 10 мкс и менее) восстанавливать свою чувствительность после них. В стационарных спектрометрах этой проблемы не существует.  [c.38]

    Физическими можно назвать методы измерения свойств, относящихся к индивидуальным соединениям. Их применяли вначале для исследования кристаллических веществ, затем стали исследовать и растворы, выделяя параметры, относящиеся к индивидуальным комплексам в растворе. Такие исследования позволяют получить сведения о составе и строении внутренней сферы комплексов, об их симметрии, о распределении зарядов, типе и характере связи, полностью расшифровать структуру кристаллических комплексов и т. д. К физическим методам относятся дифракционные (рентгенография, электронография, нейтронография), спектральные методы в широком диапазоне длин волн (от УФ до радиочастотной), гамма-резонансная, рентгеноэлектронная и фотоэлектронная спектроскопия, исследования магнитной восприимчивости и др. [c.199]

    Метод радиочастотного моста был использован в первых исследованиях Бломбергена, Парселла, и Паунда [3]. Образец помещается в катушку индуктивности -С-контура, включенного в одно из плеч моста. Этот мост служит для предотвращения помех за счет изменения напряжения или тока от источников, возбуждающих мост. Изменение комплексной радиочастотной проницаемости в момент резонанса приводит к появлению сигнала в балансной точке моста за счет изменения сопротивления в плече, содержащем образец. Регулируя начальный разбаланс по фазе или амплитуде, можно обнаружить сигнал чистой дисперсии и сигнал поглощения. Во всех рассмотренных выше методах на образец налагалось линейно поляризованное радиочастотное излучение. Как показано на рис. 2, только один из двух компонентов этого радиочастотного поля, поляризованных по кругу, вызывает переходы. [c.29]

    Метод радиочастотной полярографии отличается от переменнотоковой величиной частоты наложенного переменного напряжения. Если она в неременнотоковой полярографии равна 50—300 гц, то в радиочастотной полярографии она порядка сотен тысяч герц. К сожалению, в текущей литературе почти нет сообщений о применении радиочастотного метода. Опыты, проведенные Сенкевичем, Бруком и Оргияном по созданию радиочастотного полярографа и [c.151]

    Все металлические коммуникации заменены на стеклянные. Газом-носителем служил азот, дополнительно очищенный с помощью четырех последовательно соединенных стеклянных колонок диаметром 35 мм и длиной 800 мм, заполненных молекулярными ситами типа 5 А [10]. Влажность газа-носителя на выходе из системы очистки не превышала 1 10 объемн. %. Содержание воды контролировали методом радиочастотной спектроскопии. Образец в хроматографическую колонку может вводиться непосредственно или впрыскиванием микрошприцем жидкости через испаритель с фторопластовым поршнем или в виде пара посредством вакуумной системы дозирования Применение последней обусловливалось окислением треххлористого фосфора до] оксихлорида кислородом воздуха при] обычном введении образца. Объем жидкой пробы составлял 2— 0мпл, а газообразной 5 мл при5 давлении 50—80 мм рт, ст. [c.191]

    Однако встречаются случаи, когда оптические датчики имеют существенное преимущество перед другими типами датчиков. Это относится к методам радиочастотного ионного распыления, при котором работа всех датчиков, в которых используются электрические измерения, нарушается помехами от тлеющего разряда. В связи с этим, как сообщили Шейбл и Стендли [321], в последнее время вновь возник интерес к оптическим датчикам. Это привело к разработке систем, в которых осветитель и фотоэлемент размещены вне вакуумной системы [322]. Система такого типа, приведенная на рис. 56 для установки радиочастотного катодного распыления, была разработана Дэвидсом и Мейселом [323]. Поскольку в этой установке используется большой кварцевый катод, расположенный в непосредственной близости от подложки, то необходимо использовать углы падения 0 порядка 80°. Поскольку угол 0 приближается к углу Брюстера или [c.152]

    Мониторинг внутренних состояний частиц в пучках с использованием оптических методов или методов радиочастотной спектроскопии также не требует рекордных характеристик по чувствительности. Вопросы чувствительности и сложности применяемых устройств зависят, главным образом, от степени детализации необходимой информации, и, если требуемая глубина детализации достаточно велика, то агапаратурная реализация может быть сложной и дорогостоящей. [c.194]

    На этом явлении и основан метод ЭПР при постоянной частоте электромагнитного излучения и медленном изменении внешнего магнитного поля регистрируется изменение поглощаемой в образце мощности. В применяемых спектрометрах ЭПР автоматически регистрируется интенсивность поглощения или ее производная как функция напряженности статического магнитного поля. Обычно в спектрометрах ЭПР при напряженности Я = 3200Э (1Э (эрстед) = [1000/4п]А/м) явление резонанса наблюдается при частоте излучения ч 9000 мГц (>. = 3 см), т. е. в радиочастотной области (радиоспектроскопия). По интенсивности полосы в спектре ЭПР можно судить о концентрации частиц с неспаренными спинами электронов в веществе. [c.148]

    Метод ЯМР HinpoKo применяется дли исследования структуры органических соединений наряду с методами оптической спектроскопии. Поглонгеиие энергии радиочастотного излучения, которое используется в этом методе, связано с магнитными свойствами ядер. [c.97]

    Наличие нескомпеисированных электронов а сложных органических системах, подвергнутых термодеструкции, обусловливает появление магнитного момента, который можно зафиксировать методом ЭПР. Метод ЭПР относится к спектральным методам исследования в радиочастотной области он весьма чувствителен и позволяет получать спектры при наличии около 0,1 г вещества. [c.150]

    Спектры ЭПР. Этот вид спектроскопии, в отличие от метода ядерного ре. онанса, связан с магнитным резонансом непарных элект-. ронов. В интенсивном магнитном поле нормальный энергетический/ уровет1Ь электронов меняется так, что энергетический переход наблюдается в микроволновой области. Эта область представляет со- бой часть электромагнитного спектра, которая находится, между дальней инфракрасной и радиочастотной областями, т. е. в области частот от 0,1 до 30 см. Используемая при этом аппаратура аналогична аппаратуре, употребляемой при измерении спектров ЯМР. [c.53]

    При обсуждении импульсных методов удобно относить движение вектора намагниченности в снсте.ме координат, вращающейся относительно Яо в наиравлении ирецессирующих ядерных моментов. Такая система координат удобна для объяснения поведения вектора намагниченности при облучении системы ядерных сПинов коротким радиочастотным импульсом, магнитный вектор которого перпендикулярен вектору Яо и вращается с частотой м (рад/с). Во вращающейся системе координат вектор намагниченности ядерных спинов прецессирует вокруг некоторого фиктивного поля Яф, обусловленного вращением. При резонансе Я( , компенсирует поле Яо-Вектор намагниченности М взаимодействует только с Я,, лежащим в плоскости ху (рис. 91). Такое взаи.модействие приводит к тому, что вектор намагниченности М в ходе прецессии повернется за время облучения t иа угол, равный [c.257]

    В многоуровневых системах, подобных показанной (рис. 111.15) при воздействии достаточно мощных радиочастотных полей, может происходить спиновая поляризация, т. е. возникать неравновесная заселенность уровней с выравниванием заселенности и насыщением каких-то из них. Эта спиновая поляризация и лежит в основе уже рассмотренных в гл. II методов множественного резонанса в спектроскопии ЯМР, а также явлений ДЭЯР и ЭЛДОР, в которых при изучении спектра ЭПР под действием сильного поля (накачки) насыщаются, соответственно, ядерный или электронный зеемановский переход. Измененный спектр ЭПР регистрируется при этом с помощью второго СВЧ-поля (наблюдения). [c.80]

    Существуют стационарные и импульсные методы наблюдения сигналов ЯКР в области от до 1000 МГц. Основные блоки простого стационарного спектрометра регенеративного типа показаны на схеме, рис. IV.8. Исследуемый образец помещают в катушку колебательного контура ЬС с обратной связью. Частота колебаний в контуре V может плавно меняться изменением емкости С. При выполнении условия резонанса АЕ=Ьх (АЕ—разность энергий квадрупольных уровней) происходит поглощение образцом радиочастотной энергии, что меняет активную составляющую проводимости контура ЬС, т. е. его добротность. Изменение напряжения на контуре детектируется и усиливается. В стационарных методах для наблюдения сигналов ЯКР применяется частотная или магнитная (зеема-новская) модуляция. Последняя существенно увеличивает отношение сигнала к шуму (приблизительно в 100 раз). [c.110]

    Исследуемое вещество атомизируют, распыляя его раствор в пламя газовой горелки. Через полученный пар обычно пропускают излучение, соответствующее атомному спектру определяемого элемента. В качестве источника излучения используют радиочастотные лампы. Световой поток, прошедший через поглощающий слой и монохроматор, выделяющий резонансную линию, регистрируют фотоэлектрически. В соответствии с законом Бугера мерой концентрации элемента служит поглощающая способность, которая зависит от строения атомов, агрегатного состояния вещества, его концентрации и температуры, толщины слоя, длины волны, поляризации падающего света и других факторов. По положению линий в спектре можно сделать вывод о строении атомов или идентифицировать их. Достоинствами метода являются высокая избирательность, низкие пределы обнаружения (10 —10 мкг/мл) и высокая воспроизводимость. [c.241]

    Радиоспектроскопия уто со1 <)купность методов исследования состава, строения и реакционной способности веществ, которые основаны на явлениях резонансного поглоп ения или испускания энергии радиочастотного электр0магнитн010 поля. В магнитной радиоспектроскопии регистрируют поглощение магнитной компоненты поля, обусловленное переходами между уровнями энергии, которые возникают при взаимодействии магнитных моментов электронов или ядер с внешним постоянным магнитным полем. [c.248]

    ТДо 1951 года метод ЯМР применялся почти полностью в физических исследованиях он использовался для нахождения магнитных и других характеристик атомных ядер. С 1951 года, когда Дж. Арнольд, С. Дарматти и М. Паккард доказали, что с помощью ЯМР-аппаратуры достаточной разрешающей силы можно получить отдельные радиочастотные сигналы от химически неэквивалентных ядер водорода в молекуле этанола, стало очевидно, что ЯМР-спектроскопия высокого разрешения призвана сыграть доминирующую роль в определении химической структуры, особенно структуры органических соединений.  [c.5]

    Метод упрощения спектров ЯМР с помощью двойного резонанса был предложен Ф. Блохом в 1954 году. В эксперименте с двойным резонансом исследуемый образец подвергается, кроме сильного постоянного поля действию двух радиочастотных полей Нг и Н2- Допустим, молекула исследуемого соединения содержит две группы неэквивалентных ядер А И X (например, метильная и метиленовая группы в нитроэтане или протоны метильной группы и ядро атома фтора в СНз—Р). Если в момент резонанса ядер группы А (совместное действие полей Но и Ну) воздействовать дополнительным радиочастотным полем Яа на ядра только группы X, то первые (группа А) также ощущают это воздействие, проявляющееся в спектре ЯМР в изменении вида сигнала ядер группы А по сравнению с сигналом этой группы прн отсутствии поля Яа-Обычно различают гегпероядерный (группы А и X содержат различные ядра, например молекула СНд—Р) и гомоядерный двойной резонанс (ядра групп Л и X одного изотопа, например протоны метильной и метиленовой групп СНз—СНа—МОа). [c.95]

    Значение гиромагнитного отношения для ядра зна чительно меньше, чем для протона (см. табл. 1 приложения). Резонансная частота поглощения в поле 1,12 10 А/м равна 24,288 МГц. Кроме того, величина у входит в уравнение для фактора насыщения, и потому сигналы ЯМР ядер меньше насыщаются, чем сигналы протоноЕ , так как время релаксации для ядер Р в жидком состоянии примерно такое же, что и для ядер Н, т. е. 0,01 —10 с. При равной концентрации ядер Ф и 44 чувствительность ядер фосфора составляет 6,63 % чувствительности протонов. Следо1зательно, для измерения спектров ЯМР Р растворы должны быть более концентрированные. При этом нужно учесть, что большой диапазон химических сдвигов ядер Ф (500 м. д. и более) дает возможность использовать большую скорость развертки для определения химических сдвигов. В свою очередь, это дает возможность работать при большей мощности радиочастотного поля Н , чем при использовании протонов, что способствует повышению чувствительности метода. [c.146]

    Принцип использования выпрямляющего действия фарадеевского импеданса (в отличие от емкости двойного электрического слоя) положен в основу методов так называемой высокочастотной или радиочастотной полярографии [95], также предложенных Баркером, и метода высоковолновой полярографии [94]. [c.158]

    Высокочастотный (радиочастотный) метод. Баркер (1958) применил эффект фарадеева выпрямления в полярографии. Для [c.227]


Смотреть страницы где упоминается термин Метод радиочастотный: [c.503]    [c.177]    [c.53]    [c.83]    [c.250]    [c.134]   
Оптические спектры атомов (1963) -- [ c.566 , c.573 ]




ПОИСК





Смотрите так же термины и статьи:

Методы радиочастотная спектроскопия

Некоторые дальнейшие применения радиочастотного метода

Определение ядерных моментов неоптическими методами. Метод радиочастотный



© 2025 chem21.info Реклама на сайте