Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение металлов и их пассивность

    В книге рассмотрены основные понятия электрохимии и современные методы исследования кинетики электродных процессов. Описаны классические и релаксационные методики изучения электродной поляризации. Представлены специальные и вспомогательные приборы, применяемые в электрохимических исследованиях. Уделено внимание особенностям лабораторного эксперимента. В задачах установлены закономерности фарадеевских реакций, электропроводности растворов, чисел переноса, э. д, с. элементов, электрокапиллярных явлений и строения двойного электрического слоя, диффузионной кинетики и полярографии, механизма образования на электродах новой фазы, пассивности и коррозии металлов. [c.2]


Рис. 46. Строение и потенциал двойного электрического слоя у поверхности раздела металла (а — активного и б — пассивного) с раствором его соли Рис. 46. Строение и <a href="/info/72518">потенциал двойного электрического слоя</a> у <a href="/info/1716404">поверхности раздела металла</a> (а — активного и б — пассивного) с раствором его соли
    Анодная пассивность, так же как и пассивность металлов в различных средах при отсутствии тока, связана с возникновением на поверхности металлов защитных пленок фазового, или адсорбционного характера, содержащих кислород и называемых кислородным барьером. Окислы и другие соединения образуют достаточно плотные фазовые пленки. При адсорбции кислорода поверхностью металла возникают пленки адсорбционного типа, причем между кислородом и металлом образуются химические связи хемосорбция). Благодаря этому адсорбированный кислородный слой может перейти в окисел, если имеется определенное соответствие между кристаллическими решетками металла и окисла. В общем случае вследствие неоднородности кристаллического строения поверхности металла одни ее участки в состоянии пассивности покрыты окислами, на других сохраняется слой хемо-сорбированного кислорода. [c.341]

    Значительный вклад в развитие электрохимии внесли также русские ученые. В. В. Петров (1761—1834) изучал электропроводность растворов, химические действия электрического тока, электрические явления в газах и т. п. С помощью созданного им крупнейшего для того времени химического источника тока в 1802 г. он открыл электрическую дугу. Б. С. Якоби (1801—1874) в 1834 г. изобрел электродвигатель, работавший на токе от химического источника. В 1838 г. он предложил гальванопластический метод (см. разд. У.П). П. Н. Яблочков (1848—1914) изобрел электродуговую лампу (1875 г., свеча Яблочкова ), работал над созданием химических источников тока, выдвинул (1877 г.) идею создания топливного элемента (см. разд. А.12). Н. А. Изгарышев (1884—1956) развил теорию химического источника тока, работал над проблемой защиты металлов от коррозии, открыл явление пассивности металлов в неводных растворах электролитов, и по праву считается одним из основателей электрохимии неводных растворов. А. Н. Фрумкин (1895—1971) разрабатывал вопросы кинетики электрохимических процессов, развил теорию строения двойного электрического слоя. [c.233]


    Свойства металлов действительно зависят от внутреннего строения атомов, а следовательно, и от электронных конфигураций, но пассивность металлов является функцией не только внутренних, но и внешних факторов. Таким образом, пассивное состояние ме- [c.310]

    Строение металлов и их пассивность [c.145]

    Естественно, что целостность пленки иа каком-то участке нужно было предварительно нарушить, так как иначе метал т ие смог бы растворяться. Данные электронографических и оптических исследований также подтверждают существование пленки иа иоверхности пассивного металла к даже позволяют в ряде случаев установить ее состав и строение. [c.482]

    Большое внимание уделено методике электрохимических намерений и использованию их в физико-химических и электрохимических исследованиях. Обсуждаются условия появления и строение двойного электрического слоя. Рассмотрены адсорбция органических соединений на электродах, механизм электроосаждения и ионизации металлов, явление пассивности и коррозии, особенности процессов окисления и восстановления с выделением газообраз ных веществ на электродах. Специально обсуждаются вопросы применения электрохимической теории к решению некоторых современных проблем технической электрохимии. [c.2]

    Явление пассивности металлов. Строение и толщина пассивных пленок на металлах [c.393]

    Никель, как и железо, способен к пассивации. Его пассивность в отличие от железа более устойчива и может возникать на воздухе, в водных растворах щелочи и при анодной поляризации. Добавка никеля к стали или чугуну обычно оказывает облагораживающее действие а черные металлы, их сплавы с никелем более стойки к коррозии. Пассивность никеля обусловлена образованием стойких окисных пленок, закрывающих поверхность металла и затрудняющих переход его ионов в раствор. В зависимости от способа пассивации строение и состав окисных пленок могут быть различны. Пассивность никеля может вызываться хемосорбцией гидроксильных или кислородных ионов иа поверхности металла, образованием его окислов и гидроокисей или других нерастворимых в данном растворе соединений. Пассивирование никеля при анодной поляризации определяется свойствами анионов электролита и сильно зависит от величины pH раствора чем больше его pH, тем скорее и полнее пассивируется металл . Пассивации способствуют также повышение анодной плотности тока, снижение температуры и наличие в растворе ионов никеля. Противоположное влияние на пассивацию никеля оказывает присутствие в электролите хлор-иона, сульфатов, карбонатов и других кислотных анионов 5 З", а также наличие примесей в металле Агрессивное действие ионов хлора и кислородсодержащих анионов проявляется тем сильнее, чем меньше концентрация щелочи. В растворах карбонатов никелевый анод нестоек. [c.212]

Рис. 47. Строение и потенциал двойного электрического слоя у поверхности раздела металла е раствором его соли а — активный металл б — пассивный металл Ме — металл 8 — раствор его соли Р — поверхность раздела Е — электрический потенциал Е — расстояние от поверхности металла Рис. 47. Строение и <a href="/info/72518">потенциал двойного электрического слоя</a> у <a href="/info/1716404">поверхности раздела металла</a> е раствором его соли а — <a href="/info/2081">активный металл</a> б — <a href="/info/7318">пассивный металл</a> Ме — металл 8 — раствор его соли Р — <a href="/info/3853">поверхность раздела</a> Е — <a href="/info/15838">электрический потенциал</a> Е — расстояние от поверхности металла
    Необходимо указать, что пленочная и адсорбционная теория не противоречат, но лишь дополняют одна другую. По мере того, как адсорбционная пленка, постепенно утолщаясь, будет переходить в фазовую пленку, на торможение анодного процесса вследствие изменения строения двойного слоя постепенно будет накладываться также торможение этого процесса, вызванное затруднением прохождения ионов непосредственно сквозь защитную пленку. Таким образом, более правильно говорить об объединенной пленочно-адсорбционной теории пассивности металлов. Несомненно, что в зависимости от физических внешних условий окружающей среды и характера взятого металла возможны самые различные градации толщины защитных слоев. Исходя из анализа многочисленных экспериментальных исследований, можно, по-видимому, полагать, что в отдельных случаях, особенно в случае пассивирования благородных металлов, например платины, воздействие кислорода может и не завершаться образованием фазовых слоев, но останавливаться на стадии чисто адсорбционного кислородного слоя. Однако в других случаях за стадией адсорбции кислорода следует стадия образования сплошной пленки адсорбционного соединения и далее — пленки фазового окисла. При этом не обязательно, чтобы окисел, образующий пленку, был вполне иден-, тичен с существующими компактными окислами для данного ме- талла. После возникновения подобного защитного слоя (пленки) ч существенное и даже в некоторых условиях превалирующее зна-чение может иметь торможение анодного процесса, определяемое <3 пленочным механизмом. [c.17]


    Таким образом, в ряде случаев материал подложки влияет на структуру осадка не только через природу металла, обусловленную его атомным строением, кристаллографической ориентацией, но и через состояние поверхности катода, соотношение активных и пассивных участков на ней, а также ее макро-и микрорельефа. Наилучшими материалами, например, для никелевого порошка, служат титан, для серебряного— алюминий, медного— медь, алюминий, сурьмянистый свинец. Эти материалы, кроме оптимальных условий образования порошка, обеспечивают более легкое удаление рыхлого катодного осадка с поверхности электрода. [c.518]

    Кабановым с сотрудниками [68, 71, 721 было показано, что наступление анодной пассивности железа вызывается адсорбцией на нем кислорода, изменяющей строение двойного слоя на границе металл — раствор. Растворение железа в щелочных электролитах резко замедлялось уже при наличии на аноде весьма малых количеств кислорода, не достаточных даже для образования моноатомного слоя. [c.65]

    Необходимо указать еще на то, что пассивное состояние металла, обусловливаемое возникновением адсорбционных слоев, часто объясняется и не на основе представлений о двойном слое. Известно, что адсорбция окислителя приводит к насыщению свободных валентных сил поверхностных атомов, что может уже само по себе, без учета изменения строения двойного слоя, уменьшить реакционную способность металла. Иными словами, для пассивации металла вовсе не требуется покрыть всю его поверхность монослоем, а достаточно связать (так сказать, насытить) валентные силы наиболее реакционноспособных атомов. [c.79]

    Все это, а также отзывы по второму изданию книги, поступившие в связи с широким техническим и научным обсуждением этого учебного пособия, в которых были высказаны пожелания о введении некоторых изменений и необходимости дополнения книги новыми главами, побудило автора переделать некоторые главы книги, сократить менее ценный материал и написать новые главы. Книга дополнена следующими главами глава VI Влияние конструктивных особенностей элементов аппаратов и сооружений на коррозионный процесс глава VII Разрушение металлов при совместном действии коррозионных и механических факторов глава XV Коррозия новых конструкционных металлов и сплавов . Вместо одной главы Пластические массы , помещенной во втором издании, дано пять глав по высокополимерным материалам. Коренной переработке подверглись главы И, III и IV по кинетике процессов электрохимической коррозии и пассивности металлов и глава IX по химической коррозии. Глава XXXI по углеграфитовым и древесным материалам значительно расширена в первой части, учитывая большое значение этих материалов в химическом машиностроении, и сокращена во второй части. Сокращены также глава I, поскольку вопросы строения металлов и растворов подробно рассматриваются в различных учебниках, и глава XVI Металлические защитные покрытия и химические методы обработки , поскольку эти способы защиты в химическом машиностроении неэффективны. [c.4]

    Адсорбционная теория в возникновении пассивного состояния металла главную роль отводит образованию на его поверхности более тонких адсорбционных защитных слоев молекулярного, атомарного и отрицательно ионизированного кислорода, а также гидроксильных анионов, причем адсорбированные частицы образуют монослой или долю его. Процесс образования адсорбционного пассивирующего слоя может происходить одновременно с анодным растворением металла и иметь с металлом общую стадию адсорбции гидроксила. Существует два варианта объяснения адсорбцион ного механизма пассивности — химический и электрохимический [177]. Согласно химическому варианту адсорбированный кислород насыщает активные валентности поверхностных атомов металла, уменьшая их химическую активность. Электрохимический вариант объясняет возникновение пассивности электрохимическим торможением анодного процесса растворения. Образовавшиеся на поверхности адсорбционные слои (например, из кислородных атомов), изменяя строение двойного слоя и смещая потенциал металла к положительным значениям, повышают работу выхода катиона в раствор, вследствие чего растворение металла затормаживается. Адсорбционная теория сводит пассивирующее действие адсорбированных слоев к таким изменениям электрических и химических свойств поверхности (из-за насыщения свободных валентностей металла посторонними атомами), которые ведут к энергетическим затруднениям электрохимического процесса. [c.29]

    Железо, а также другие переходные металлы переходят в пассивное состояние в присутствии кислот с оксианионами, например 50Г, N0 , СЮГ, ТеО и др. Относительно подлинного механизма установления пассивности общего согласия еще не достигнуто. Должна существовать какая-то адсорбция (возможно подобная показанной на фиг. 58), сопровождаемая десорбцией и ростом окисла. Известен ряд требуемых ступеней причем не ясно, какая из них является определяющей. Первая важнейшая ступень адсорбции может определяться строением электронных орбит атомов [71]. Устойчивая структурная решетка окислов может иметь значение для установления концентраций дефектов в таких пределах, чтобы пленка имела необходимую электронную проводимость. [c.115]

    В зависимости от химического состава, кристаллического строения, толщины окисной пленки и т. п. металл находится в активном или в пассивном состоянии. Термодинамические свойства активного металла характеризуются стандартным электродным потенциалом. Металл в пассивном Состоянии характеризуется наличием пленки, изолирующей его от воздействия Среды потенциал металла в этом случае облагораживается, сдвигается в сторону положительных значений коррозионная стойкость повышается. Ниже сравниваются значения потенциалов некоторых металлов в разбавленном (0,5 н.) растворе хлорида натрия [2, с. 181] со стандартными электродными потенциалами этих металлов в активном состоянии  [c.16]

    В книге изложены современные теории прохождения тока через растворы электролитов приведены основные положения теории слабых и сильных электролитов рассматриваются электродвижущие силы гальванических элементов и скачки потенциалов, возникающие на границе фаз описываются концентрационные элементы и условия их применения анализируется строение, свойства и теория двойного электрического слоя даны сведения об электрокапиллярных и электроки-нетических явлениях приводится анализ природы и особенностей электродной поляризации рассматриваются современная теория и закономерности электроосаждения металлов из растворов их простых и комплексных солей представлены новейшие данные по коррозии металлов и явлению пассивности. [c.2]

    Кистяковский, Изгарышев, Акимов и их сотр. экспериментально доказали существование поверхностных пленок фазового характера. Эвансу (1930) удалось, подбирая специальные растворы, действующие только на металл, но не на пленку, отделить ее от металла,, сделать видимой и, таким образом, ее продемонстрировать. Естественно, что целостность пленки на каком-то участке нужно было предварительно нарушить, так как иначе металл не смог бы растворяться. Данные электронографических и оптических исследований также подтверждают существование пленки на поверхности пассивного металла и даже позволяют в ряде случаев установить ее состав и строение. [c.513]

    Пассивность металлов может иметь место и при отсутствии тока и заключается в их способности переходить в такое состояние в котором они перестают участвовать в процессах, обычно им свойственных и термодинамически возможных. Согласно пленочно-адсорбционной теории пассивность обусловлена образованием на поверхности металлов защитных пленок. Окислы и другие соединения металлов образуют фазоеы пленки. При адсорбции кислорода или других веществ на поверхности металлов образуются пленки адсорбционного типа, причем между кислородом и металлом возникает химическая связь хемосорбция). При определенных условиях адсорбционные пленки могут переходить в фазовые, и в общем случае вследствие неоднородности кристаллического строения металла на поверхности его пленка может иметь сложный адсорбционнофазовый характер. [c.339]

    Следует подчеркнуть, что коррозионная стойкость металла в пассивном состоянии зависит от строения, толщины, пористости защитной пленки и ее устойчивости в данной среде. [c.24]

    П, Д. Данков применил более тонкий электронографический метод исследования. Благодаря тому, что электроны не проникают внутрь металла, а рассеиваются поверхностными слоями, этот метод позволяет получить представление о состоянии поверхностного слоя. Электронограммы показали явное различие между строением поверхностей активного и пассивного металлов. В частности, было установлено, что при пассивировании йикеля на нем образуется NiO, железа-у-РеаОз, алюминия — AI2O3. Толщина окисных слоев составляет всего несколько десятков ангстрем. [c.636]

    Однако не всякая окисная пленка вызывает пассивное состояние. Пассивность возникает только при образовании нерастворимой пленки непосредственно на анодных участках металла. Строение защитной пленки на разных металлах различно. Она может представлять собой очень тонкий молекулярный адсорбционный слой, но может быть и значительно более толстой на легко окисляющихся металлах. [c.15]

    Пассивность, вызванная адсорбционными слоями, является в основном результатом изменения химических свойств поверхности вследствие насыщения свободных валентностей металла посторонними атомами. Изменение эго может влиять на кинетику электрохимических процессов различными путями, например через изменение строения двойного электрического слоя или затрудняющее прохождение иона через двойной слой, или изменяющее величины энергий адсорбции реагирующих частиц. Если адсорбционный пассивирующий слой является сплошным или даже имеет значительную толщину (несколько молекулярных диаметров), то влияние его на кинетику растворения может быть связано и с затруднением проникновения ионов через слой, конечно нри условии затрудненности реакции химического или физического растворения хемосорбционного слоя. [c.140]

    С этой точки зрения, нул<но ожидать, что адсорбционные слои, имеющие свойства двухмерного газа, не должны существенно замедлять растворение металла. Твердые, по-верхностпо-кристаллические адсорбционные слои (двухмерные кристаллы) должны оказывать различное действие, в зависимости от характера связей в слое. Если при неполном заполнении поверхности атомы адсорбированного вещества прочно связываются между собой в плотные поверхностно-кристаллические островки, по не очень прочно связываются с металлом, то защитное действие таких слоев должно носить характер экранирования части поверхности. Если же связь частиц адсорбированного вещества с кристаллической решеткой металла весьма прочна, прочнее, чем частиц между собой, то адсорбция на неоднородной поверхности металла может приводить к более эффективному замедлению растворения, которое выражается, например, в экспоненциальной зависимости скорости растворения от количества адсорбхфованного кислорода [265]. Надо отметить, что поверхностные, как и объемные, кристаллические структуры не бывают без дефектов. Последние создают локальные изменения энергетического состояния поверхности, что осложняет ожидаемые закономерности. В частности, в таких местах возможно ускоренное проникновение атомов пли понов металла через пассивирующий слой к раствору, что может изменять механизм растворения пассивного металла [275] или приводить к постепенному изменению величины п состояния поверхности. Пассивирующими являются, по-видимо-му, адсорбционные слои, имеющие сравнительно мало дефектов. Представление о дефектах и нарушениях в строении адсорбционного пассивирующего слоя в известном смысле аналогично использовавшемуся в теории коррозии [c.153]

    Наличие пленки как причины пассивности не выс-ывает сомнений, Однако существуют различные взгляды на строение и действие этой пленки. Наиболее распространенным является. представление о сплошной пленке, полностью экранирующей поверхность и тем самым изолирующей металл от внешней среды. Ионы металла и электроны медленно диффун .ируют через пленку, а потому скорость взаимодействия делается очень малой и лимитируется скоростью диффузии. В ряде случаев образование таких сплошных пленок доказано (АЬОз), и для этих случаев механическая теория пассивирующего дейсгвия правильна. [c.637]

    Большоё влияние на коррозионный процесс оказывает адсорбция катионов и особенно анионов соли на поверхности корродирующего металла. При этом происходит изменение строения двойного электрического слоя или нарушение пассивной пленки, что влияет на протекание электродных процессов и, следовательно, на скорость коррозии. [c.27]

    Адсорбционная концепция исходит из представлений об энергетич. неоднородности пов-сти металла предполагается, что П.М. может обеспечиваться долями монослоя кислорода, к-рый образуется при диссоциативной хемосорбции воды на металле. Хемосорбированный кислород изменяет строение двойного электрического слоя или блокирует активные центры на пов-сти, образуя прочные хим. связи с металлом (частично ковалентного типа). Пассивация долями. монослоя экспериментально подтверждена для ряда систем, напр. Fe в щелочных р-рах, Pt и Ni в кислых. К тому же пассивирующие оксидные слои в нек-рых случаях настолько тонки, что их трудно считать фазовыми (Сг в к-та,к), В пользу адсорбц. концепции свидетельствует тот факт, что, напр.. Ni ведет себя как пассивный металл в серной к-те с добавлением ионов I или в диметилсульфоксидных р-рах в условиях, когда на его пов-сти образуются адсорбц. слой ионов I или молекул диметилсульфоксида (фазовые оксидные пленки отсутствуют). Кривая анодного растворения в области перехода к пассивному состоянию (участок AB D на рис.) м. б. рассчитана, на основе представлений о конкуренции анодного растворения (р-ции 2,3) и пассивирующей адсорбции кислорода (р-ции 2, 4, 5)  [c.449]

    Однако только после Октябрьской революции в пашей стране широко и всесторонне развивается теоретическая и прикладная электрохимия, занимающ ая сегодня в ряде разделов ведущее положение в мировой науке. Советским ученым принадлежат широко известные труды в области электрохимической кинетики, исследование механизма и особенностей реакции выделения водорода, выделения и ионизации кислорода, выяснение связи между скоростью. электродной реакции и строением двойного электрического слоя и многие другие. В нашей страг(е плодотворно развивается электрохимическая теория коррозии и пассивности, внесен большой вклад в теорию электроосаждепия металлов. [c.62]

    Большую роль в развитии теории пассивности в начале XX в сыграли работы В. А. Кштлкоъското [В. А. Кистяковский, Электрохимические реакции и электродные потенциалы некоторых металлов, 1910]. В них получила развитие и конкретизацию окисная теория пассивности, которую оспаривал Гитторф и др. В. А. Кистяковский показал, что для появления пассивности не только необходимо присутствие окислов на поверхности, но эти окислы должны иметь особое строение. Этот обш,ий вывод подтвержден современными исследованиями. В. А. Кистяковский показал также, что процесс пассивации при определенных условиях весьма чувствителен к движению пассивирующего раствора (мотоэлектрические явления). Работы В. А. Кис-тяковского по изучению пассивирующих пленок развиваются П. Д. Данковым и др. [c.654]

    В связи с проблемой коррозии пассивность металлов изучали Г. В. Акимов и его сотрудники. Особое внимание в этих работах уделялось вопросам строения толстых окисных пленок, например, определению пористости пленок на железе, алюминии и т. д. Методом измерения потенциала во время механической зачистки поверхности металлов под раствором была исследована зависимость пассивирующего действия пленок от положения металла в периодической системе Менделеева [У". В. Акимов, Теория и методы исследования коррозии металлов, Изд. АН СССР, М.—Л., 1946]. В последние годы по теории пассивности опубликован ряд работ советских ученых. Наконец, в связи с проблемой пассивности следует упомянуть о работах В. И. Веселовского, посвященных фотоэлектрохимическим явлениям, заключающимся в снижении перенапряжения электрохимической реакции под действием света. В. И. Веселовский дал теорию сенсибилиза-ционного действия пассивирующих слоев при фотоэлектрохимических процессах [В. И. Веселовский, ЖФХ, 15, 144 (1941) 22, 1302, 1427 (1948) 24, 366 (1950)]. (Прим. ред.) [c.654]


Смотреть страницы где упоминается термин Строение металлов и их пассивность: [c.55]    [c.345]    [c.2]    [c.449]    [c.79]    [c.291]    [c.51]    [c.291]    [c.2]    [c.457]    [c.244]   
Смотреть главы в:

Химия и технология лакокрасочных покрытий -> Строение металлов и их пассивность




ПОИСК





Смотрите так же термины и статьи:

Металлы пассивность

Пассивность

Пассивные металлы

Строение металлов



© 2025 chem21.info Реклама на сайте