Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Значения Rf для различных групп органических соединений

    Значения Rf для различных групп органических соединений Перечень таблиц [c.135]

    Значения свободной энергии различных групп органических соединений в разных растворителях приведены в табл. 2 [36]. [c.428]

    Возможен и другой вариант расчета. В работе [19] приведены (табл. 1-13) значения энергий взаимодействия различных групп органических соединений с различными растворителями. Зная ДО", ДО", ДО и ДО", легко рассчитать работу адсорбции. [c.170]


    Поверхностно активные вещества широко применяют при электроосаждении металлов для получения плотных высококачественных осадков, обладающих блеском, мелкокристаллической структурой и т.д. Введение в электролит поверхностно активных веществ предотвращает образование на катоде шишек и дендритов, способствует коагуляции шлама, образующегося на аноде. Все многообразие применяемых поверхностно активных веществ можно разделить на три типа катионоактивные, анионоактивные и молекулярные. Многие из этих веществ содержат серу, азот и относятся к различным классам органических соединений. Существенное значение имеет структура поверхностно активных вещества. Так, например, активность алифатического ряда спиртов повышается по мере увеличения длины углеводородного радикала моно- и дикарбоновые кислоты обладают большей активностью, чем соответствующие спирты, а кислоты с большим числом полярных групп активнее кислот с меньшим числом полярных групп действие параизомеров фенола более эффективно, чем орто- и метаизомеров. Следовательно, чем больше число свободных пар электронов в органической молекуле, способных взаимодействовать с поверхностными атомами металла, тем большей активностью обладают эти вещества. [c.247]

    Эта реакция открыта А. Вильямсоном 2 пользуясь ею, можно этерифицировать спиртовые и фенольные гидроксильные группы в различных классах органических соединений поэтому значение ее очень велико. Метод применяют для получения простых и смешанных эфиров с алкильными радикалами большего молекулярного веса, чем этил, а также для получения жирноароматических эфиров. [c.340]

    Все же использование значений 1/2, которые для различных классов органических соединений (как и для неорганических ионов) различны и специфичны, может дать приближенную информацию о наличии определенных функциональных групп в исследуемых соединениях (или определенных ионов в исследуемом растворе). А если использовать еще и некоторые дополнительные приемы (взаимодействие с различными реагентами и последующее полярографирование получаемых продуктов, изменение pH фона и др.) то можно сделать в большинстве случаев вполне достоверные заключения о качественной природе исследуемых химических соединений (см. также [1, 3]). [c.60]

    Безразмерная шкала дает то значительное удобство, что выраженный в ней химический сдвиг не зависит от значения Яо, при котором снимали спектр на данном спектрометре. Поэтому, указывая величину химического сдвига, не нужно приводить резонансную частоту (поле), при которой он был получен, как это требуется для химических сдвигов, выраженных в единицах поля (Гс) или частоты (Гц). Для протонных спектров в качестве внутреннего эталона предложен и широко используется тетраметилсилан [20]. В т-шкале сигналу тетраметилсилана приписан химический сдвиг 10,000 т, так как его протоны экранированы сильнее, чем протоны практически всех других органических соединений. В спектре, приведенном на рис, 1.12, положения пиков выражены в т-шкале. Большинство химических сдвигов в протонных спектрах лежат в диапазоне от О до 10 т. На рис. 1.14 приведена диаграмма химических сдвигов протонов различных структурных и функциональных групп органических соединений. [c.40]


    Таким образом, чтобы выделить различные типы органических соединений из осадка, последний нужно подвергнуть действию разнообразных реагентов. В природных водах органическое вещество находится главным образом в растворенном, а не в измельченном виде. Поэтому при анализе вод решающее значение имеет концентрирование из растворов молекулярно-диспергированного органического вещества. Следует заметить, что процесс последующего выделения индивидуальных групп из экстракта менее сложен, чем кропотливая процедура концентрирования органического вещества для анализа. [c.12]

    ТАБЛИЦА 3.1. Значения силовых полей для различных функциональных групп органических соединений [c.171]

    При отборе материала для четвертого издания учебника учитывалось, как и ранее, значение определенных разделов биохимии для формирования отчетливых представлений по общей биохимии, а также то, что развитие самой биохимии в отдельных ее частях идет неравномерно за последнее время произошли огромные сдвиги в изучении строения и обмена некоторых групп органических соединений. Поэтому в книге уделено много внимания строению белков, нуклеиновых кислот и ферментов, рассмотрены особенности белковых тел как носителей жизни, обращено внимание на принцип комплементарности в строении нуклеиновых кислот и его значение в матричном биосинтезе природных полимеров, изложены современные представления о биологическом окислений, регуляции обмена веществ и взаимосвязи обмена соединений различных классов. Там, где это уместно, освещены вопросы использования достижений биохимии в развитии новых направлений в биологических науках (химическая систематика, молекулярные основы наследственности, изменчивости и эволюции и др.), медицине (наследственные болезни, биохимическая диагностика, стратегия химиотерапии, взаимодействие вирусов и клеток и т. п.), сельском хозяйстве (биохимическая паспортизация генетического фонда, экологическая биохимия, клеточная инженерия и др.) и промышленном производстве (инженерная энзимология, техническая биохимия, фармацевтическая химия, микробиологический синтез и т. п.). [c.3]

    Активный ил представляет собой сложный комплекс микроорганизмов различных классов, простейших микроскопических червей, водорослей. Количественное и качественное формирование этой экосистемы диктуется искусственными условиями существования. Гетеротрофные микроорганизмы способны усваивать углерод из готовых органических соединений различной химической структуры. Но разные группы микроорганизмов адаптировались к использованию углерода из определенного числа этих соединений. Существенное значение при использовании органических веществ микроорганизмами в качестве источников углерода имеет их строение. Насыщенные соединения — биологически стойкие и могут усваиваться только некоторыми видами микроорганизмов. Ненасыщенные органические соединения— хороший источник углерода для многих микроорганизмов. [c.99]

    В. Б. Фальковский используя результаты работ Питцера, рассчитал средние инкременты отдельных связей или групп связей для стандартной энтропии (Sms) различных органических соединений в газообразном состоянии и инкременты связей для теплоемкости как функции температуры. На основе полученных результа- тов и значений АЯ/. 298 он рассчитал инкременты связей и групп [c.261]

    Сравнительные методы расчета недостающих значений наиболее полно разработаны для алканов (нормальных и изомерных). Для нормальных алканов в табл. VII, 28 приведены инкременты группы СНг для ЛЯ , ода и различных Д5 (отсюда легко рассчитать соответствующие инкременты других параметров). Данные, приведенные в табл. IV, 4, показывают, что для АЯо, гэа указанные инкременты группы СНг относятся не только к алканам. По-видимому, и для других рядов углеводородов и других классов органических соединений характерна подобная закономерность, причем даже для спиртов значение этого инкремента почти не изменяется. [c.306]

    Применение Н ЯМР-спектроскопии к анализу нефтяных фракций не получило столь широкого развития, как газо-жидкостной хроматографии или масс-сПектрометрии, что связано со спецификой метода. Так, в сложных смесях,— учитывая и без того небольшой интервал значений характеристических величин, в данном случае химических сдвигов (всего 20 м. д. для протонов из всех возможных классов органических соединений) — близкие по структуре соединения дают лишь уширение сигналов. Дальнейшее усложнение спектров происходит за счет спин-спинового взаимодействия Н-атомов. Применение ПМР-спектров для количественной оценки тех или иных групп обычно затруднено. Так, определить интенсивности сигналов протонов различных алифатических групп трудно в виду их перекрывания. Определение интегральных интен- [c.140]


    Кроме перечисленных групп окрашенных соединений, очень большое значение имеют различные комплексы металлов с органическими реактивами. Некоторые из них упоминались ранее ( 22) при рассмотрении органических реактивов. Хорошо известно окрашенное соединение алюминия с ализарином и др. Комплексные соединения металлов с органическими реактивами характеризуются часто очень интенсивной окраской это дает возможность определять чрезвычайно малые количества металлов. [c.213]

    Одним из первых органических соединений, в спектре ЯМР которого обнаружено несколько отдельных пиков, был этанол (Дж. Арнольд с сотр., 1951 г.). В молекуле этанола есть три типа протонов, находящихся в различном химическом окружении три протона метильной группы, два протона метиле-иовой и один протон гидроксильной группы. Вследствие этого при плавном изменении напряженности приложенного магнитного поля Яо (и поддержании постоянной частоты генератора) протоны, находящиеся в разных местах молекулы, вводятся в резонанс один за другим, и их сигналы образуют спектр в соответствии со значениями констант экранирования этих протонов. Для этанола спектр ЯМР должен состоять из трех сигналов. Поскольку интенсивности сигналов, т. е. площади под резонансными пиками, пропорциональны числу магнитных ядер, спектр ЯМР этанола должен выглядеть, как показано на рис. 24. [c.62]

    Кислородные соединения кремния, содержащие силоксановую связь 51—0, занимают главное место в химии этого элемента. Специфические свойства этой- обширной группы природных и синтетических материалов, включающей различные формы кремнезема, силикаты, алюмосиликаты и др., прежде всего обусловлены природой силоксановой связи. Средние значения длины связей в органических соединениях кремния и силикатах приведены ниже  [c.27]

    Галоидопроизводные углеводородов и других органических соединений широко применяются в качестве исходных веществ в ряде синтезов. Относительно большая подвижность атома галоида делает возможным его замещение на различные группы и радикалы—на гидроксил, аминогруппу, цианогруппу, карбоксил и пр. Из разнообразных методов получения галоидопроизводных наибольшее значение имеют  [c.51]

    Анализ спектров ПМР многих классов органических соединений показывает, что величина химического сдвига протона, связанного с атомом углерода, довольно характеристична. Это значит, что сигналы ПМР СНд-, СНз- и СН-групп расположены в узком диапазоне значений б, т. е. химические сдвиги таких протонов определяются, в первую очередь, ближайшими соседями, находящимися на расстоянии двух-трех связей от данного протона. На рис. 56 приведены гримерные химические сдвиги различных типов органических соединений (области поглощения протонов). Отклонение химических сдвигов за пределы типичных диапазонов наблюдается в молекулах, содержащих магнитно-анизотрон-ные группы, электронные токи которых могут обусловливать значительное экранирование на далеком расстоянии (бензольное ядро, гетероциклические соединения и т. п.). [c.126]

    Наличие бензольного кольца и различных функциональных групп делают лигнин способным к большому числу разнообразных реакций, характерных для различных классов органических соединений. Так, реакция образования фенолятов имеет важное значение при щелочных методах делигнификации древесины. Все свободные гидроксильные фуппы способны к реакциям алкилирования и ацилирования (этерификации). Гидроксилы бензнлового спирта и бензилэфирные фуппы во многом определяют поведение лигнина при сульфитных и щелочных методах варки целлюлозы. Фенольные гидроксилы способствуют реакциям окисления лигнина, а также активируют бензилспиртовые гидроксильные фуппы и определенные положения бензольного кольца к реакциям замещения. Во многих реакциях лигнина, в том числе при делигнификации, принимают участие карбонильные фуппы. Наиболее характерная реакция бензольного кольца [c.423]

    До сих пор мы рассрлатривали влияние структуры на основность гомологов различных классов органических соединений, имеющих одну и ту же функциональную группу. Теперь пришло время рассмотреть те немногие имеющиеся данные по такому важному вопросу, как зависимость основности соединения от положения в периодической таблице атома элемента, несущего основные свойства, среди столь сходных по структуре соединений, как амины, фосфины, арсины, сульфиды, простые эфиры, хлориды и т. д. (табл. 8). Кислотно-основное взаимодействие — почти единственная химическая реакция, присущая всем этим соединениям, и вопрос о том, как их можно сравнивать на этой основе, имеет большое теоретическое значение. [c.267]

    Пространственно-затрудненные фенолы составляют весьма специфическую группу органических соединений. По своему химическому поведению они резко отличаются и от фенолов других типов. Особенности строения пространственно-затрудненных фенолов приводят к появлению у них новых свойств. Так, пространственно-затрудненные фенолы могут легко взаимодействовать с различными радикалами, образуя относительно малоактивные феноксильные радикалы. Это свойство пространственно-затрудненных фенолов, с одной стороны, привело к появлению нового класса стабильных радикалов — ароксилов, а с другой, — послужило основой для изучения закономерностей различных радикальных превращений и, в первую очередь, радикально-цепных процессов окисления органических соединений. Способность пространственно-затруднец-ных фенолов тормозить (ингибировать) подобные процессы и позволила широко использовать их в качестве эффективных антиокислителей. В этом плане значение пространственно-затрудненных фенолов особенно возросло в свйзи с проблемой ста билизации различных полимерных соединений, пластмасс и волокон в процессах их переработки и эксплуатации. Около 70% известных в настоящее время термостабилизаторов полимерных материалов составляют производные пространственно-затрудненных фенолов. Наконец, развитие в Институте химической физики АН СССР концепции о значении свободно-р адикальных состояний в биологических [c.5]

    Во всех случаях в качестве влагостойких присадок рекомендуются поверхностно-активные вещества. Гидрофобизация поверхности гидрогелей осуществляется благодаря наличию у вводимых соединений полярных групп, взаимодействие которых с гидроксильными группами поверхности, например силикагеля, сообщает гелям олеофильиые свойства. Прочность этого взаимодействия может быть различной и определяется прежде всего характером связи. Большое значение приобретает здесь водородная связь, на роль которой в процессе адсорбции впервые указано советскими исследователями [33]. Проявление водородной связи особенно характерно у присадок поверхностно-активных веществ непосредственно в смазочном масле или в загущенной композиции. Схематически гидрофобизацию поверхности силикагеля посредством водородной связи различными классами органических соединений можно представить следующим образом  [c.391]

    Надо иметь в виду, что, кроме специальных органических справочников,, ценные данные, относящиеся к отдельным группам органических или элемент-органических соединений, можно найти и в изданиях более общего характера. Так, в справочнике Термические константы веществ в томе IV представлены-относящиеся к 298,15 К значения величин Ср, S, Afff и др., а также параметры фазовых переходов и литература, примерно, для 2500 соединений, содержащих один или два атома углерода в молекуле. В том же и следующих томах приведены аналогичные данные для кремнийоцганическцх, борорганических и> различных металлоорганинеских соединений (AI, Ga, Sn и др.). [c.469]

    Кроме разложения клетчатки внимание ученых привлекло и разложение дру1их стойких органических соединений, Среди них наиболее важное значение для круговорота углерода в природе имеют углеводороды, жиры и близкие к ним соединения. Много внимания изучению процесса разложения соединений, содержащих углерод, было уделено русским исследователем В. О. Таусоном. Ему удалось выделить бактерии, которые разлагают углеводороды нефти бензин, керосин, различные парафины, а также бензол, ксилол, кумол, фенантрен и др. Все эти соединения оказались хорошими источниками углерода для многих групп бактерий. [c.242]

    Однако представление о каком-то особом сродстве полимеров к растворителям не имеет достаточных оснований. Еще в 1932 г. Маринеско, определяя количество воды, энергетически связываемой крахмалом, путем сравнения значений диэлектрической проницаемости раствора со значениями диэлектрических проницаемостей его компонентов получил данные, указывающие, что это количество воды незначительно и приблизительно соответствует образованию мономолекулярного слоя. А. В. Думанский, а также С. М. Липатов в результате калориметрических исследований пришли к такому же выводу Наконец, к аналогичным выводам прищел и А. Г. Пасынский, определявший сольватацию по сжимаемой части растворителя. Этот метод основан на том, что в сольватной оболочке растворитель находится под большим внутренним давлением сжимаемость он определял по скорости распространения ультразвука в растворах. Ниже приведены обобщенные результаты исследований А. Г. Пасынского по гидратации различных полярных групп ряда органических соединений  [c.433]

    Предполагая, что потенциалы, возникающие в растворах многих органических веществ, имеют водородный характер, можно сделать два вывода. Во-первых, не следует ожидать выделения водорода в газовую фазу при г>0 в количествах, превьш1ающих термодинамически допустимое (при Ег = 29 мВ и комнатной температуре 10% Нг). В значительных количествах водород может появиться только вследствие некоторых побочных процессов, протекающих в приэлектродном слое раствора. Во-вторых, если термодинамический потенциал системы органическое вещество — продукт его окисления лежит значительно ниже обратимого водородного, то этот потенциал не может быть достигнут. Предельное катодное значение потенциала определяется скоростью дегидрирования вещества и перенапряжением разряда Н+, которое мало на металлах группы платины. С этими выводами согласуется большинство экспериментальных результатов по потенциалам разомкнутой цепи в присутствии органических соединений различных классов. [c.287]

    Г идрогенолиз связи С-галоген является важным методом дега-логенирования органических соединений. Реакция протекает легко на различных катализаторах. Поэтому прогидрировать ненасыщенные функции в галогеносодержащем субстрате и при этом избежать потери галогена нередко не менее сложно, чем удалить атом галогена, сохранив неизменными другие восстанавливающиеся группы. Решающее значение в каждом конкретном случае имеет характер связи С-галоген (тип галогенопроизводного) и условия реакции, в первую очередь температура. [c.67]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]

    Полученные значения ДСадс Для функциональных групп позволяют с достаточной степенью точности вычислить АСддс для широкого класса различных органических соединений (как сумму АСадс составляющих ингредиентов), тем самым прогнозируя сорбционную способность этих веществ. Однако данные для надежных расчетов АСадс пока существуют лишь для ароматических соединений. [c.70]


Смотреть страницы где упоминается термин Значения Rf для различных групп органических соединений: [c.233]    [c.93]    [c.127]    [c.190]    [c.85]    [c.31]    [c.11]    [c.96]    [c.914]   
Смотреть главы в:

Справочник химика Том 4 Издание 2 1965 -> Значения Rf для различных групп органических соединений




ПОИСК





Смотрите так же термины и статьи:

Органические соединения значение

Различные соединения

соединения группа



© 2025 chem21.info Реклама на сайте