Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Среда для экстракции

    В случае низших алкилгалогенидов часто можно отгонять образующийся эфир, поскольку он обладает более низкой температурой кипения, чем спирт (почему ). Иногда эфир может быть удален из реакционной среды экстракцией (экстрактивная этерификация, см. разд. Г,7.1.4.1). [c.270]

    Разработанные в разное время химические и физико-химические методы обесфеноливания (окисление фенолов озоном и хлором в слабощелочной среде, экстракция фенола из сточных вод каким-либо растворителем, сорбция активированным углем) наряду с целым рядом положительных сторон имеют и свои недостатки. Поэтому приходится искать новые методы очистки. [c.212]


    Для предупреждения аварий в цехах экстракции прежде всего следует обеспечивать герметичность системы. Официальными нормативными документами предусмотрено технологические аппараты и трубопроводы проверять на герметичность перед включением их в работу. Технологические аппараты, не бывшие в работе, а также прошедшие тщательную очистку с последующим лабораторным анализом среды в аппарате, могут испытываться на герметичность сжатым воздухом. Все остальные технологические аппараты должны испытываться инертным газом. В процессе испытания сосудов,. аппаратов и коммуникаций все соединения проверяют на пропуск газа мыльным раствором или другим надежным способом. Испытание ведут в течение 4 ч при периодической проверке. Вновь установленные аппараты испытывают в течение 24 ч. Результаты испытания на герметичность считают удовлетворительными, если падение давления в течение 1 ч не превышает 0,1% от начального при токсичных и 0,2% при пожаро- и взрывоопасных средах для вновь устанавливаемых технологических аппаратов и 0,5%—Для технологических аппаратов, подвергаемых повторному испытанию. [c.367]

    Удаление парафина. Существует ряд исследований и патентов по удалению парафина из смазочных масел сольвентной экстракцией при температурах выше точки плавления парафина, но ниже температуры полного смешения. Среди недавно опубликованных работ появилось исследование Гюнтера и Брауна [ИЗ], которые пришли к выводу, что обработка сырья, содержащего 15% парафина, анилином в качестве растворителя может быть экономически невыгодной, но этот процесс можно использовать для сырья, очень богатого парафином промышленного применения этого процесса пока пе существует. [c.285]

    Недостатки процесса более низкая скорость экстракции и более высокая коррозионная агрессивность рабочих сред. Большая часть оборудования изготовляется из легированных сталей. Для аппаратуры, работающей в среде ненасыщенной кислоты, используются свинец, монель-металл и графит. [c.726]

    Колонные аппараты с механическим перемешиванием взаимодействующих потоков нашли преимущественное применение для осуществления жидкостной экстракции, а в отдельных случаях — для ректификации и абсорбции. Среди этих аппаратов наибольшее распространение получили конструкции, схематически представленные на рис. 1-5 роторно-дисковые экстракторы (РДЭ), асим- [c.19]


    Следует отметить, что EQx не тождественна более известной константе распределения. Так как знаменатель этого выражения включает концентрацию продуктов реакции, то экстракционное равновесие зависит от концентрации как катионов, так и анионов в водной фазе. Для точного определения константы экстракции в не слишком разбавленных растворах необходимо вместо концентраций использовать активности. В связи с тем что на экстракционную систему обычно кроме равновесия, представленного в уравнении (г), влияет еще ряд факторов, ситуация еще более усложняется. Среди этих факторов следующие  [c.21]

    Хотя растворимость i[R4N+0H ] в средах типа фенилацетонитрила лучше, чем в бензоле, однако различие в константах экстракции ОН и С1 препятствует присутствию в органической фазе заметного количества гидроксида (разд. 1.3). Кроме того, как уже отмечалось выше, это незначительное количество 0Н будет реагировать с раствором фенилацетонитрила. [c.57]

    В ранних работах по МФК реакций в присутствии сильных неорганических оснований предполагалось, что механизм этих реакций включает экстракцию [Q+OH-] в органическую среду, где и происходит депротонирование и алкилирование субстрата  [c.57]

    Наиболее простой механизм МФК в присутствии сильных щелочей (например, механизмы Н/В-обмена и изомеризации), по всей видимости, включают экстракцию гидроксида. Многие другие механизмы глубоко не изучены. В случае МФК механизмы могут сильно изменяться в зависимости от характера субстрата и условий реакции. Так, например, р-элиминирование может проходить межфазно, если катализатор облегчает стадию депротонирования. В то же время, если в органической фазе присутствуют малые количества ионов гидроксида четвертичного аммония, то и депротонирование будет осуществляться в этой же фазе. Однако известен еще и третий механизм. Он наблюдается в отсутствие оснований при повышенных температурах. В неполярных средах относительно несольватированные ионы галогенидов ведут себя как основания (см. гл. 1) на-лример, пентахлорэтан дегидрохлорируется галогенидами аммония в условиях запатентованного промышленного процесса  [c.64]

    Несколько групп исследователей изучили образование и устойчивость комплексов, образующихся между ионами диазония и краун-эфирами [1772, 1783] или эфирами полиэтиленгликоля [1221]. Эти комплексы позволяют экстрагировать ионы диазония из воды в неполярную среду и интересны сами по себе как пример экстракции катионов. Такого же результата можно до- [c.280]

    Эту величину принято называть эксергией экстракции [1], которая определяет затраты работы на извлечение 1 моля смеси заданного состава из внешней среды при Р и Т. [c.237]

    При анализе газоразделительных установок в качестве внешней среды можно условно принять исходную газовую смесь с параметрами То, Ро и составом ,о. В этом случае константа отсчета и эксергия исходной смеси принимается равной нулю, а эксергии продуктов разделения определяются как сумма эксергии энтальпии и эксергии экстракции продуктов разделения, отсчитанные от параметров, равновесных исходной газовой смеси. [c.238]

    Процессы разделения жидких систем играют важную роль во многих отраслях народного хозяйства. Для осуществления этих процессов уже давно применяют разнообразные способы перегонку и ректификацию, абсорбцию и адсорбцию, экстракцию и др. Однако природа за миллионы лет эволюции живых организмов выработала наиболее универсальный и совершенный метод разделения с использованием полупроницаемых мембран. Действительно, биологические мембраны обеспечивают направленный перенос необходимых организму веществ из внешней среды в клетку, и наоборот. Без мембран невозможны были бы дыхание, кроветворение, синтез белка, усвоение пищи, удаление отходов и другие процессы. [c.13]

    Существуют различные способы очистки нефтяных дистиллятов от сернистых соединений. Среди них широкое применение нашла каталитическая гидроочистка и экстракция сернистых соединений из нефтепродуктов различными экстрагентами. В случае необходимости очистки топлив только от меркаптанов в основном используют способы окислительной демеркаптанизации. [c.10]

    Пропан применяется как в качестве самостоятельного растворителя, так и в комбинации с другими жидкостями [52—56]. При температуре окружающей среды пропан растворяет исходное масло, а при повышении температуры до 40—60 °С из раствора выделяются смолистые и асфальтовые соединения. При критической температуре пропана 96,8 °С его растворяющая способность падает до минимума и выделяются последующие масляные фракции. Разделение масла происходит по плотности фракций и имеет сходство с эффектом дистилляции, но из-за относительно низких температур проходит в более постоянных условиях. Пропан не отделяет ароматических и нафтеновых углеводородов от парафиновых, и экстракция с его участием нисколько не улучшает свойств масел. Ранее же описанные растворители повышают качество масел. В связи с этим обработка масел пропаном служит только для удаления асфальтовых соединений. [c.394]


    В современных установках экстракция пропаном проводится в противоточной колонне, благодаря чему получается хорошее рас-фракционирование сырца ( сухой асфальт). Схема такой установки с дальнейшей отгонкой пропана представлена на рис. 6-11. В колонну поступает снизу жидкий, подогретый пропан, а сверху—горячее исходное масло. Асфальты отбираются снизу, а сверху—раствор масла в пропане. В колонне поддерживается такое давление, чтобы, несмотря на повышенную температуру, растворитель удерживался в жидком состоянии. В зависимости от чистоты пропана и температуры, это давление составляет 10 ат ( 1 10 н/м ) и более. Отгонка пропана, производится в два приема сначала поддерживается давление на таком уровне, чтобы конденсация отогнанного пропана происходила при температуре окружающей среды, а затем атмосферное, так что для сжижения газообразный пропан должен быть сжат. Асфальтовая фракция нагревается в трубчатой печи, а масляная— в двух соединенных последовательно выпарных аппаратах, нагреваемых водяным паром низкого и высокого давления. Затем продукты [c.394]

    Маточным раствор после экстракции хлороформом содержит хино.шн (11%), карбостирил (6%) и непрореагнровавший хниолпн-М-оксид (3%). кото-рь е вычеляют из щелочной среды экстракцией эфиром и хлороформом. [c.58]

    Фенол (а) Взаимодействие 4-аминоантинирина (4-аминофеназона) с фенолом и Ре(СН) " с образованием красно-оранжевого хинолина в слабощелочной среде, экстракция в хлороформ [54], измерение при 500 нм (б) Восстановление с 4-диметиламиноантипирином и Ре(СН)й" в буферных растворах, содержащих аммиак, до обычного хинон-имина, 500 нм [54], реакции не возможны для крезолов [c.310]

    Отделение галлия от алюминия [720] и индия [14, 509] может быть осуществлено экстрагированием купфероната галлия хлороформом из 2 N НС1 и 2 Л/ H2SO4 соответственно. В зависимости от кислотности среды экстракция купфероната галлия может быть проведена диэтиловым эфиром, изоамиловым спиртам, бензолом, циклогексано-ном [14]. Щавелевая и этилен-диаминтетрауксусная кислоты уменьшают извлечение купфероната галлия [14]. [c.58]

    Количественная экстракция свинца с помощью ДДДА происходит в среде 0,1—1,2 н. хлороводородной кислоты. В нейтральном растворе или в сильнокислой среде экстракция неполная. Использование в качестве растворителя МИБК менее удобно, так как при этом диапазон кислотности среды значительно уже, чем при использовании ксилола. Другие ароматические растворители дают светящееся пламя с заметной абсорбцией в области 283 нм. Если отношение объемов водная фаза ксилол не превышает 20, то экстракция свинца количественная. [c.177]

    Особенно перспективно непосредственное сочетание ( оп-Ипе ) СФЭ и газохроматографического анализа [36, 37]. При определении пестицидов и ПАУ в объектах окружающей среды экстракция осуществляется в течение 15 мин при температуре 50—60°С и давлении 14—20 мПа. Далее газохроматографический анализ на капиллярной колонке (25 м х 0,25 мм) с силиконом P-Sil 19СВ (толщина пленки 0,2 мкм) при программировании температуры колонки в интервале 50—300°С со скоростью подъема температуры 10°С/мин [36]. Вариант on-line особенно удобен при определении токсикантов в биологических и медицинских объектах [37, 38] и в анализе высококипящих загрязнений воздуха [38]. [c.263]

    Поскольку днэтилдитиокарбамат натрия быстро разрушается в кислой среде, экстракцию следует проводить сразу же после прибавления избытка реактива. Кольцо может быть окрашено в коричневый цвет за счет продуктов разложения диэтилдитиокарбамата натрия. Окраску разрушают, выдерживая кольцо в парах брома. [c.253]

    Он основан на применении гликолевоводной смеси (8—10% воды), обладающей очень высокой селективностью по отношению к ароматическим углеводородам. Поэтому нет необходимости применять при экстракции узкие фракции, но можно бензол, толуол и ксилолы экстрагировать совместно. Экстракция производится, как и в методе Эделеану, в условиях противотока в очень эффективной, специально для этого процесса разработанной колонне. Экстрагирующую среду (растворитель) подают в голову колонны, экстракт отводится снизу. Экстрагируемое масло поступает в среднюю (по высоте) часть колонны. Часть ароматических подается в низ колонны как орошение . Обогащенный ароматическими растворитель поступает в разде- литоль, где ароматические отделяются от растворителя, который возвращается в экстракционную колонну. [c.107]

    Колонные аппараты для массообменных процессов. Разнообразие свойств жидких и газовых сред, в которых протекают массообменпые процессы при ректификации, абсорбции, экстракции и дистилляции в различных отраслях химической иромьпплен-иости, потребовало применения специальных конструкций колонной аппаратуры. [c.44]

    Влияние температуры экстракции на растворимость химических компонентов сырья различного молекулярного строения в неполярных растворителях обсуждалось в 6.2.3. Как видно из рис. 6.4, при пониженных температурах (50 — 70 °С) пропан проявляет высокую растворяющую способность и низкую избирательность и является преимущественно осадителем асфальтенов. При повышенных температурах экстракции (85 °С и выше) у пропана, наобо — рот, низкая растворяющая способность и повышенная избирательность, что позволяет фракционировать гудроны с выделением групп углеводородов, различающихся по структуре и молекулярной массе. Следовательно, в этой температурной области пропан является фракционирующим растворителем. Высокомолекулярные смолы и полициклические ароматические углеводороды, выделяющиеся при предкритических температурах, благодаря действию дисперсионных сил извлекают из дисперсионной среды низкомолекулярные смолы и низкоиндексные углеводороды, повышая тем самым качество деасфальтизата, но снижая его выход. Антибатный характер зависимости растворяющей способЕюсти и избирательности пропана от температуры можно использовать для целей регулирования выхода и качества деасфальтизата созданием определенного тем — перагурного профиля по высоте экстракционной колонны повышенной температуры вверху и пониженной — внизу. Более высокая температура в верхней части колонны будет способствовать повы — шению качества деасфальтизата, а пониженная температура низа колонны будет обеспечивать требуемый отбор целевого продукта. [c.230]

    Среди многообразия процессов химической технологии значительное место занимают процессы массообмена. По существу почти любой химико-технологический процесс в той или иной степени сопровождается явлениями массопередачи. Однако имеется большая группа процессов, для которых массонередача является основным фактором, определяющим их назначение. Примерами таких процессов служат ректификация, экстракция, абсорбция, десорбции и т. д., где лшссообмеи ироисходит между различными фазами, в результате чего достигается обогащение одной фазы одним или несколькими компонентами. В настоящее время ироцессы массоиередачи интенсивно исследуют методами математического моделирования что позволяет использовать методы оптимизации для оптимальной организации этих процессов. [c.66]

    В Колумбии [21, Перу, Аргентине [32, 17а, 43] и Тринидаде в течение нескольких лет добывалось сравнительно мало нефти. Нефть Колумбии похожа на легкую нефть из долины Сан-Жоакин в Калифорнии. Содержание бензиновых фракций в этой нефти составляет около 10 %, отсутствие твер.цых парафинов позволяет получать из нес смазочные масла с низкой температурой застывания. Перуанская нефть обладает низким удельным весом, содержит более 40% бензиновых фракций и очень незначительные количества серы. Несколько продуктивных площадей имеется в Аргентине наиболее продуктивные месторождения дают тяжелую нефть промежуточного типа с содержанием бензиновых фракций не выше 10%. Другие месторождения дают болео легкие нефти среди них имеются нефти парафинового основания некоторые типы нефтей могут быть использованы для получения смазочных масел. В Тринидаде большинство добываемых нефтей смешанного основания и напоминают нефти Калифорнии. Бензин, получаемый из этих нефтей, обладает высоким октановым числом это согласуется с тем, что керосиновые дистилляты содержат такой высокий процент ароматических углеводородов, что требуется очистка экстракцией растворителями. Среди добываемых нефтей существуют некоторые различия, одна напоминает нефть из месторождения Понка Сити (Оклахома) с содержанием бензиновых фракций 32%. Все четыре страны вместе добывают около 2,0% мировой добычи. [c.56]

    Воды в реакционной среде быть не должно, так как М,Ы -карбо-нилдиимидазол гидролизуется даже во влажном воздухе (с образованием двуокиси углерода и имидазола) . Реакция поликонденсации проводится в инертных растворителях (тетрагидрофуран, ме-тилеихлорид) . Образующийся имидазол по окончании реакции удаляют из раствора поликарбоната экстракцией соляной кислотой и водой или другим способом, так как его присутствие даже в небольших количествах приводит к потемнению и разложению поликарбоната в процессе переработки. Реакции ди-(4-оксифенил)-алка-нов с Ы,М -карбонилдиимидазолом в расплаве приводят к получению окрашенных низкомолекулярных поликарбонатов вследствие разложения бис-фенолов и поликарбонатов имидазолом > мв-мо В настоящее время этот способ получения поликарбонатов промышленного применения не имеет. [c.46]

    Работы типа (а) можно исключить как не относящиеся к тематике этой книги, но материалы, входящие в (б) и (в), весьма родственны нашим объектам, и мы будем обсуждать их довольно основательно, поскольку МФК включает как экстракцию в органическую среду, так и протекающие в ней химические превращения. Мицеллярньга катализ как по механизму своего действия, так и по препаративному выполнению отличается от стандартного МФК. Разница между межфазным и ми-целлярным катализом будет рассмотрена настолько подробно, насколько это возможно в настоящее время. [c.10]

    Самоассоциация между ионными парами ведет к образованию агрегатов, например димеров, трпмеров или квадруплетов. Такая ассоциация энергетически выгодна и часто наблюдается в неполярной среде, если растворы не бесконечно разбавлены. Ассоциация становится измеримой уже при таких низких концентрациях, как 0,001 моль/л. Например, криоскопическая степень ассоциации (отношение экспериментально найденной молекулярной массы к формульной) для тиоцианата тетра-н-бутиламмония в бензоле составляет 2,5 при концентрации 0,0013 моля на 1000 г растворителя, увеличивается до 31,9 при 0,281 моля на 1000 г растворителя и снова несколько снижается при более высоких концентрациях (22,7 при 0,753 моля на 1000 г растворителя) [25]. Такая ассоциация ионных пар оказывает очень сильное влияние на экстракцию солей из водной фазы в органическую (разд. 1.3.1). Степень ассоциации зависит от катиона, аниона, растворителя и концентрации. Тримеры одновалентных ионов являются заряженными частицами и проводят электрический ток таким же образом, как и ионные пары, содержащие многовалентные ионы. [c.19]

    Хорошо известно, что высокомолекулярные амины могут экстрагироваться в виде ионных пар аммониевых солей с различными противоионами из водных растворов в среду, подобную хлороформу. Недавно селективная экстракция такого типа была положена в основу ряда аналитических методов [44, 47—51, 54, 58] и способов разделения [7, 52, 53]. Как уже упоминалось в разд. 1.3.1 и хорошо описано в обзорах Брендстрёма [11, 112], могут существовать чрезвычайно сложные равновесные системы с несколькими константами, которые зависят от структуры аниона, катиона и растворителя, а также от pH, ионной силы и концентраций. В результате физико-химических и аналитических исследований подобного равновесия установлено, что существует взаимосвязь между размером катиона и константой экстракции. Этот факт очень важен для МФК. [c.27]

    Среди органических анионов наиболее гидрофильными являются ацетат и формиат. При сравнении констант экстракции салицилата (внутренняя водородная связь ) и 3-гидроксибензо-ата необходимо учитывать сильные структурные отличия этих соединений. В принципе влияние структуры установлено и для гомологических рядов анионов. Каждая дополнительная СНа-группа делает анион более липофильным. Кроме алкильных групп сильно увеличивают константы экстракции другие липо-фильные заместители, такие, как нитрогруппа, хлор, бром и т. д. [c.33]

    Другие реакции МФК требуют, очевидно, экстракции гидроксид-иона. Среди них отметим реакции гидролиза и омыления. Как было показано при использовании в качестве модельного субстрата дихлорметана и Bu4NHS04 как катализатора, гидролиз проходит довольно быстро, поскольку в отсутствие более липофильного, чем 0Н , аниона [Ви4М+0Н ] может экстрагироваться в органическую фазу [30]. Скорость реакции постепенно снижается до очень низкой из-за того, что образующийся хлорид-ион дает ионную пару с катализатором в органической фазе. [c.64]

    Однако следует помнить, что при работе в неполярных средах даже с самыми липофильными катионами их растворимость и способность к экстракции являются только предварительно необходимым условием успешного проведения химической реакции. Как было показано в гл. 1, при сравнении различных катализаторов видно, что прямая связь между их растворимостью, экстрактивными свойствами и анионной активностью или скоростью реакции отсутствует. Следует учитывать наряду с равновесиями, предшествующими реакции, также и другие факторы. Особенно важными среди них являются взаимодействие аниона и катиона в ионной паре и количество гидратной воды, переносимое в органический слой. Поэтому неудивительно, что в гомологическом ряду, например для симметричных тетраалкиламмо-нийных солей, при переходе от очень гидрофильных к липофиль-ны-м ионам активность возрастает чрезвычайно резко, а затем, когда начинают сказываться эти другие факторы , она медленно уменьшается. [c.68]

    Катализаторы для экстракции катионов. Все до сих пор рассмотренные катализаторы используются для переноса анионов в неполярную среду. Обратный процесс — перенос отдельных катионов в эти фазы — используется не очень часто, хотя он легко осуществим так, для переноса солей щелочных металлов необходимо использовать липофильные анионы, например иодид [1398], липофильные сульфонаты [1257, 1737], длинноцепочечные карбоксилаты или тетраарилбораты [1795]. [c.88]

    Для того чтобы облегчить экстракцию ассоциированных ионных пар в органическую фазу в водно-органических двухфазных системах, водная фаза должна быть по возможности концентрированной. Хотя среди МФК-реакций очень мало экзотермичных, все же разумно при проведении неизвестных реакций соблюдать предосторожности — иметь наготове баню со льдом или добавлять реагент небольшими порциями. В присутствии концентрированных растворов едкого натра часто образуются устойчивые эмульсии. В некоторых случаях разрушению эмульсии помогает нейтрализация или центрифугирование, однако, чтобы убрать избыток щелочи, часто проще промыть смесь несколько раз водой. Такая промывка способствует разделению фаз. Следует помнить, что при использовании R4N+HSO4 для нейтрализации необходимо добавлять больше чем один эквивалент щелочи. [c.94]

    Метод экстракции ионных пар по Брендстрёму очень упрощает их приготовление. Поэтому, прежде чем перейти к истинным межфазным процессам, мы остановимся на реакциях восстановления с помощью аммонийборонатов в гомогенной среде. [c.368]

    Как известно, экстракция ионов ОН- из водной фазы в органическую среду проходит с трудом. Поэтому можно ожидать, что ион НОа также будет плохо экстрагироваться, или, другими словами, анионы, входящие в состав катализатора, такие, как хлориды или бромиды, будут иметь большую константу экстракции, чем моноанион пероксида водорода. Однако было найдено, что экстракция частиц с окислительными свойствами из 35%-ного ( 10 М) Н2О2 в метиленхлорид легко осуществляется при использовании некоторых катализаторов [57]. Иодо-метрическое титрование органической фазы после установления равновесия с катализатором приводит к результатам, представленным в табл. 3.28. [c.387]

    Ионы церия (IV) могут быть перенесены в неполярные органические среды типа циклогексана путем комплексообразования с 4,4 -диоктадекаокси-2,2 -бипиридин-1,Г-диоксидом А (схема 3.252). Это является одним из примеров межфазного процесса экстракции катиона, что встречается довольно редко. Реагент был использован для некоторых реакций окисления, приведенных ниже. Противоионом экстрагируемому Се-комплек-су является нитрат-ион. [c.410]

    Расчеты и накопленный фактический материал показывают, что применение полупроницаемых мембран может дать значительный экономический эффект в сложившихся традиционных производствах, открывают широкие возможности для создания принципиально новых, простых и малоэнергоемких технологических схем (особенно при сочетании с такими широко распространенными методами разделения, как дистилляция, адсорбция, экстракция и пр.), для улучшения качества продукции и позволяет использовать различные отходы. А тот эффект, который может дать широкое применение обратного осмоса и ультрафильтрации для решения, например, важнейшей технической и экологической проблемы современности — защиты окружающей среды от загрязнений, даже трудно переоценить. [c.8]

    Псевдоожижение твердых частиц называют т р е х ф а а н и м, если оно осуществляется с применением двух ожижающих агентов, обычно — газа и жидкости (такой процесс часто называют также газожидкостным псевдоожижением). Псевдоожижающей средой могут также служить две несмеши-еающиеся жидкости, что представляет потенциальный интерес применит тельно к жидкостной экстракции и некоторым другим процессам. [c.657]


Смотреть страницы где упоминается термин Среда для экстракции: [c.64]    [c.54]    [c.205]    [c.178]    [c.287]    [c.21]    [c.21]    [c.26]    [c.382]   
Смотреть главы в:

Вирусы растений -> Среда для экстракции




ПОИСК





Смотрите так же термины и статьи:

Аппараты для проведения процессов диффузии и экстракции пищевых сред

Дитизонаты металлов экстракция из щелочной среды

Научное обеспечение процессов диффузии и экстракции пищевых сред

Реакция водной среды и экстракция фенолов

Экстракция цинка (II) и кадмия (И) 1, 3, 4, 5-тетра- и 3, 4, 5-тризамещенными пиразолами из солянокислых и сернокислых сред Авилина, О. В. Иванов, В. М. Дзиомко



© 2024 chem21.info Реклама на сайте