Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись этилена каталитическим окислением этилена

    При прямом гомогенном окислении этилена кислородом - образуется ряд ценных продуктов окись этилена, формальдегид, органические кислоты. Долгое время внимание исследователей было сосредоточено на процессе окисления этилена до формальдегида. Действительно, получение формальдегида при окислении этилена кислородом при 400 или 600 °С одновременно с окисью этилена и другими кислородсодержащими соединениями в относительно простой аппаратуре, без применения дорогого катализатора представляет большой интерес. Не менее заманчивым является путь синтеза окиси этилена гомогенным окислением этилена в газовой фазе, так как для этого процесса не требуется затрат ни дорогого катализатора, ни хлора. Кроме того, прн этом способе получения окиси этилена не требуются этилен и воздух такой высокой степени очистки, как при каталитическом окислении этилена. К недостаткам этого метода относятся многообразие образующихся продуктов и низкая селективность, что объясняется цепной природой происходящих превращений и высокой температурой. Однако развитие теории цепных процессов открывает новые пути совершенствования реакций газофазного окисления этилена, поэтому можно надеяться, что этот процесс, находящийся пока в стадии лабораторно-модельных исследований, будет использован в промышленности для синтеза окисей олефинов. [c.187]


    Тогда как каталитическое окисление этилена в окись этилена на серебряном катализаторе идет с участием хемосорбированного кислорода, атакуемого этиленом, каталитическое окисление других олефинов, в частности пропилена в акролеин и бутилена в бутадиен, протекает по иному механизму. Наиболее подходящим катализатором является молибдат висмута при температуре порядка 450°. [c.146]

    На установке, собранной на основе хроматографа Цвет-1 , проведен полный анализ смеси, содержащей продукты каталитического окисления этилена кислород, азот,, углекислый газ, этилен, окись этилена. Поскольку на одной колонке невозможно разделить сразу все компоненты, анализ проводился на двухступенчатой установке с одним детектором по теплопроводности. Кислород и азот, не разделенные в газожидкостной колонне, направлялись во вторую колонну с молекулярными ситами 5А. Двухступенчатые хроматографические установки, описанные в литературе сложны и состоят из большого числа (до 10) различных кранов и вентилей. В нашей установке к стандартной схеме хроматографа Цвет-1 добавлены лишь четырехходовой кран, вентиль тонкой регулировки и пенный измеритель. [c.85]

    Разрабатывавшиеся в Германии методы каталитического окисления этилена отличались от приведенных выше некоторыми деталями [121. Так, например, предполагали подвергать окислению 4—5-процентную этилен-воз-душную смесь, применяя в качестве катализатора чистое серебро, нанесенное на пемзу, и проводить процесс при 200—240° С и атмосферном давлении с продолжительностью контакта 3—5 сек. Вычисленное значение для выхода окиси этилена равно 50%, считая на пропущенный этилен вычисленный состав газа, выходящего из реактора, следующий 2—2,2% окиси этилена, 4—6% двуокиси углерода и 0,8—0,9% этилена. По проекту, окись этилена адсорбируется активированным углем, а часть выходящих из адсорбера газов, содержащих еще некоторое количество этилена, возвращается на окисление [131. [c.145]

    На рис. 43 показана одна из схем производства окиси этилена каталитическим окислением этилена. Очищенные от примесей воздух и этилен смешиваются с рециркулирующим газом и поступают в основной реактор 1 (реактор первой ступени). Выходящие горячие газы, пройдя теплообменник 5,нагревают рециркулирующие газы, сжимаются компрессором 8 и поступают в основной абсорбер 2 (абсорбер первой ступени), в котором окись этилена и образующиеся в качестве побочных продуктов незначительные количества ацетальдегида и часть двуокиси углерода поглощаются водой. После абсорбера 2 большая часть газов возвращается в цикл на смешение со свежим этиленом и воздухом, а остальные газы после нагревания в теплообменнике смешиваются с добавочным количеством воздуха и поступают в дополнительный реактор 3 (реактор второй ступени). Добавочное количество воздуха вводится для более полного окисления этилена в реакторе 3. Отвод образующегося тепла из обоих реактаров Производится циркулирующим теплоносителем, который, в свою очередь, отдает тепло кипящей воде. Таким образом, теплота реакции используется для получения водяного пара. [c.227]


    Каталитическое окисление этилена на серебряном катализаторе служит примером реакции, при которой кислород непосредственно присоединяется к ненасыщенному углеводороду. Марголис [30] показала, что, хотя при температурах около 200° на чистой поверхности серебра этилен почти не адсорбируется, на серебряной поверхности, предварительно адсорбировавшей кислород, адсорбция этого углеводорода происходит быстро. Результаты калориметрических исследований Стоуна [1, 31] подтвердили, что кислород, предварительно адсорбированный на новерхности закиси кобальта, увеличивает адсорбцию этилена. Последовательный напуск порций этилена на обезгаженную и обработанную кислородом поверхность закиси кобальта показал, что теплота сорбции этилена снижается от 80 до 18 ккал-молъ по мере постепенного увеличения степени заполнения кислородом поверхности катализатора. Наблюдения за изменением теплот адсорбции выявили три характерные стадии парциального окисления этилена а) образование окиси этилена, б) образование ацетальдегида и в) образование формальдегида. Теплоты адсорбции, соответствующие образованию этих веществ в адсорбированном состоянии, соответственно равны 15, 40 и 100ккал-моль . Таким образом, на начальных стадиях взаимодействия этилена с предварительно адсорбированным кислородом одна молекула этилена, по-видимому, реагирует с двумя атомами адсорбированного кислорода в результате этой реакции образуется формальдегид. На более поздних стадиях одна молекула этилена взаимодействует с одним атомом адсорбированного кислорода, при этом образуются окись этилена и ацетальдегид. Эти результаты в значительной степени согласуются с более ранними выводами Твига [32, 33], который исследовал кинетику окисления этилена на серебряном катализа- [c.325]

    Изотопно-кинетический метод применялся при исследовании каталитических реакций. Промышленное значение имеет процесс каталитического окисления этилена на серебре. Продуктами реакции являются технически важная окись этилена и углекислый газ. Предстояло выяснить, происходит ли образование СОа в результате доокисления окиси этилена или независимым путем, в качестве побочного направления процесса окисления этилена. В реакционную смесь вводили меченый этилен и немеченую окись этилена. Удельная активность образующегося СОг оказалась во много раз выше активности окиси этилена. Следовательно, основная масса [c.235]

    Существенным недостатком процесса получения окиси этилена через этиленхлоргидрин является большой расход хлора и извести, а также значительные капитальные затраты. Этих недостатков в значительной мере лишен процесс прямого каталитического окисления этилена в окись этилена. При этом методе расходуются только этилен и воздух, не требуются затраты хлора и извести, не образуется побочный продукт — дихлорэтан, меньше капитальные затраты. Поэтому метод прямого окисления приобретает все большее распространение [138, 139]. [c.157]

    Описание процесса (рис. 67). Сжатый воздух или кислород смешивается с этиленом и циркулирующим газом, после чего смесь вводится в трубчатый каталитический реактор. Температуру окисления регулируют подачей органического хладагента (система охлаждения на схеме не показана). Содержащие окись этилена газы по выходе из реактора охлаждаются сначала в теплообменнике, нагревая циркулирующий газ, а затем в водяном холодильнике, после чего сжимаются. Далее газ поступает в скруббер, где окись этилена адсорбируется разбавленным водным раствором. Большая часть неабсорбированного газа возвращается через указанный выше теплообменник обратно в реактор, после чего цикл повторяется. При применении воздуха в качестве окислителя часть газов после скруббера направляют во вторичный реактор для продувки содержащихся в них балластных компонентов и связывания остаточного непревращенного этилена в газах. Выходящие из вторичного реактора газы охлаждаются, как и газы с первой ступени. Окись этилена абсорбируется в скруббере, а отходящий газ сбрасывается из системы в атмосферу. [c.133]

    Очевидно, из всех имеющихся статей следует выбрать те, которые дают более полное представление о каталитическом окислении этилена сюда относятся работы Мак-Би, Хасса и Уайзмена [124]. Эти исследователи проводили окисление на окиси алюминия, покрытой 21 % окиси серебра, к которой в качестве промотора было добавлено 2% перекиси бария. Окись алюминия была главным образом в виде корунда, т. е. в виде высокотемпературной формы окиси алюминия. Эти исследователи в своих работах изменяли температуру, соотношение воздух — этилен и. время контакта. [c.260]

    Опубликована схема [243] каталитического окисления этилена в окись этилена с участием радикалов (рис. 49). Этилен образует [c.113]

    Прямое окисление этилена в окйсь этилена в присутствии серебряного катализатора в экономическом отношении больших преимуществ перед хло ргидринны м методом не имеет. Однако каталитическое окисление находит широкое развитие благодаря тому, что оно исключает расход дорогостоящего и дефицитного хлора. При хлоргидринном методе на 1 кг окиси этилена расходуется 0,9 кг этилена, 2,2 кг хлора и 2 кг гидрата окиси кальция. С учетом пбразования побочных продуктов — 0,20—0,22 кг дихлорэтана и немного 3, р -дихлорэтилового эфира, расход хлора на 1 кг окиси этилена составляет 1,8 кг, а этилена 0,7 кг. При каталитическом окислении расходный коэффициент этилена на окись этилена составляет около 1,3 кг кг. Если этилен был бы дороже хлора примерно в 6 раз, то затраты на сырье в этих двух процессах были бы одинаковы. Однако, так как хлор дефицитен и дорог, затраты на сырье при прямом окислении значительно меньше. Но вместе с тем, процесс каталитического окисления требует применения дорогого катализатора, аппаратурное оформление его несколько сложнее, а энергетических затрат значительно больше, чем по хлоргидринному способу. [c.117]


    Так как катализатором окисления этилена в окись является именно металлическое серебро, каталитическую массу нужно обрабатывать таким образом, чтобы произошло выделение серебра в чистом виде. Восстановление серебра производится или в процессе нанесения каталитической массы с помощью органических восстановителей (обычно моно- и диэтилен-гликолей), а также при обработке готового катализатора водородом или этиленом при 100—300 °С или реакционной газовой смесью при 230—260 °С. [c.212]

    Окисление этилена. Олефины каталитически окисляются значительно легче, чем соответствующие парафиновые углеводороды. Окисление некоторых олефинов может представлять интерес для химика-органика. Например, этилен с хорошим выходом можно окислить в окись этилена методом Макби, Хасса и Вайзмепа [341]. По этому методу смесь воздуха и этилена (в отношении 8 1 и выше) пропускают над серебряным катализатором при 260—280°, в результате чего образуется окись этилена с выходом 50% и выше конверсия за один проход при времени контакта 1 сек. несколько ниже указанного выхода. Добавление небольших количеств дихлорэтилена к смеси реагентов повышает производительность катализатора. [c.149]

    Каталитическое действие примеси окислов азота N0 и N0.2 известно давно. Метан, этап, этилен, бензол окисляются в их присутствии при более низкой температуре, что способствует сохранению промежуточных продуктов окисления — муравьиного а.льдегида, уксусного альдегида, фенола, спиртов, кетонов и т. п. По-видимому (хотя это еще непосредственно и не доказано), N0 и N02 проявляют при этих довольно высоких температурах свою радикальную природу и, реагируя с молекулами горючего, образуют активные углеводородные радикалы, начинающие цепи окисления. Окись азота почти снимает типичный для окисления чистых углеводородов период индукции, увеличивает скорость окисления в период реакции (после периода индукции) и нередко меняет самый вид кинетических кривых. [c.252]

    Окись этилена получают в промышленности либо обработкой этилен-хлоргидри1га растворами щелочей (чаш,е всего известковым молоком), либо каталитическим окисленном этилена 1108]. [c.394]

    Кинетика окисления этилена на серебряном катализаторе исследовалась в изотермическом режиме (при 218 °С) в безгра-диентном реакторе в широком интервале концентраций этилена, кислорода, окиси этилена, воды и двуокиси углеро-дд87, 88, 08, 110, 111 j pjj выводе кинетических уравнений было учтено стационарное течение процесса, использованы представления теории адсорбции Лангмюра и сделано несколько предположений относительно механизма процесса, близкого к иредлол< ен-ному ранее . Считается, что адсорбированный молекулярный кислород быстро распадается иа атомы, покрывающие большую часть поверхности катализатора. Затем атомарный кислород взаимодействует с этиленом, образуя одновременно окись этилена, двуокись углерода и воду. Эти продукты адсорбируются на поверхности катализатора и уменьшают каталитический эффект серебра. [c.285]

    Опубликована схема [191] каталитического окисления этилена в окись этилена с участием радикалов (рис. 37). Этилен образует с кислородом перекисный бирадикал (7), который изомеризуется (2, 6, 7) с образованием окиси этилена 2, 9, Ю), диметилено во го эфира (5) и кетена 11). Эти нестойкие соединения превращаются в углекислый газ и воду 14, 17), а окись этилена изомеризуется в ацетальдегид, из которого каким-то образом получается формальдегид, легко окисляющийся в СО 2 и Н2О 4 , 5). [c.87]

    Влияние небольших количеств этилена было несколько большим в случае прогретых при 160—165° образцах, чем в случае образцов, не подвергавшихся прогреву. Уже это говорит о том, что указанный эффект не может быть приписан влиянию этилена на золотой отсчетный электрод. О том же убедительно свидетельствуют данные, полученные с Аи-электродом и Ni-образцом, а также с Ni-электродом и Ag-об-разцом. Следовательно, увеличение к.р.п. в присутствии этилена объясняется уменьшением работы выхода серебра вследствие хемосорбции этилена, который при этом поляризуется положительно, смещая один или несколько своих электронов к серебру или хемосорбированному на нем кислороду. Поэтому при совместном присутствии Ог и С2Н4 отрицательный заряд на поверхности серебра значительно меньше, чем в присутствии только О2, или поверхность даже заряжается положительно. В литературе имеются данные (например, Трепнела [1]) об отсутствии хемосорбции этилена на обезгаженной поверхности серебра. В докладе Л. Я- Марголис (см. стр. 410) указывается, что на чистой поверхности серебра этилен заряжается отрицательно. Следовательно, при совместном присутствии кислорода и этилена хемосорбция протекает иначе, чем при наличии в газовой фазе одного этилена. Это обстоятельство следует учитывать, в частности, при построении механизма каталитического окисления этилена в окись этилена на серебре. [c.170]

    Кинетическое исследование, отражая механизм каталитического процесса окисления этилена в целом, позволяет сопоставипт скорости отдельных стадий и определить основные и второстепенные реакции. С помощью кинетического метода, например, установлено, что этилен на серебряном катализаторе превращается в окись этилена и параллельно — в двуокись углерода и воду. Однако кинетический метод не всегда дает возможность судить о характере промежуточных продуктов, о тех элементарных химических актах, которые протекают слишком быстро, существенно не отражаясь на общей скорости процесса. [c.287]

    Прямое каталитическое окисление этилена. При пропускании смеси воздуха с этиленом (нижний предел взрываемости этиленовоздушной смеси — 3,4% С2Н4) на серебряном катализаторе при 250—280°С образуется окись этилена  [c.17]

    Неполное, или так называемое мягкое, окисление углеводородов на всех катализаторах сопровождается глубоким окислением, в результате которого в продуктах реакции, кроме кислородсодержащих соединений, всегда присутствуют углекислый газ и вода. Так, при окислении этилена в окись этилена на серебре в продуктах реакции содержатся три компонента окись этилена, углекислый газ и вода. При каталитическом окислении непредельных углеводородов (этилен, пропилен) и ароматических на ванадиевых катализаторах образуется большое число соединений альдегиды, кислоты, ангидриды (фталевый, малеиновый), окись углерода, углекислый газ и вода. Такое разнообразие продуктов реакции свидетельствует о многочисленных превращениях, которые испытывают углеводороды на этих катализаторах. Меньшее число веществ обнаружено при превращении пропилена в акролеин на закисномедном катализаторе, где в газовой фазе присутствуют только углекислый газ, иногда следы окиси углерода, а в жидкой фазе — акролеин и следы ацетальдегида. [c.182]

    ЧТО колебания зависят от содержания тяжелого металла. Эффективность следов марганца (не менее 1/1000 эквивалента) зависит от того, добавляют ли растворимую соль марганца или нерастворимую окись марганца. Кроме того, каталитическое окисление может происходить в достаточно концентрированных растворах в течение 15 мин. при надлежащем контроле pH. Наконец, тяжелые металлы играют роль в превращении этилен-бас-дитиокарбаматов в изотиоцианаты [2, 11]. Людвиг и Торн [42] установили, что активность этилентиураммоносульфида против Monilinia fru ti oia повыщается в 4—8 раз при добавлении небольших количеств (10 мг) гидроокиси цинка. Они доказали также образование изотиоцианатов из моносульфидов в невод- [c.160]

    Каталитическое окисление этилена в окись этилена представляет в настоящее время интерес в том отношении, что вследствие дефгщита хлора широкое развитие хлоргидринного метода затруднено. При производстве окиси этилена из этиленхлоргидрина на каледый килограмм товарной окиси расходуется около 2 кг хлора, 0,9 кг этилена и 2 кг гидроокиси кальция. Поскольку в процессе получают одновременно 0,20—0,22 кг дихлорэтана и немного р,р -дихлордиэтилового эфира, то с учетом расхода части хлора на эти побочные продукты оказывается, что расходные коэффициенты на самом деле составляют по хлору 1,8 кг кг, а по этилену 0,74 кг кг. В современном методе каталитического окисления этилена потребность в олефине равна 1,04 кг на 1 кг окиси, что дает перерасход в 0,3 кг кг по сравнению с хлоргидрипным способом. Следовательно, чтобы сэкономить 0,3 кг этилена, нужно израсходовать 2 кг хлора и 2 кг гидроокиси кальция или по 6 кг этих продуктов, если расчет вести на 1 кг сэкономленного этилена. Таким образом, с точки зрения стоимости сырья хлоргидриновый процесс был бы равноценен каталитическому окислению, если бы стоимость этилепа превышала по меньшей мере в 6 раз стоимость хлора. На самом деле этого пе может быть, тахс как хлор дефицитен и дорог. [c.398]

    Предполагают, что на поверхности катализатора кислород образует каталитически активный слой, содержащий пер-оксирадикал AgOO, который, взаимодействуя с этиленом, дает окись этилена. Для подавления сильно экзотермической реакции полного окисления этилена [c.263]

    Сайентифик Дизайн Компани сооружает установки, в которых окислителем служит воздух. Указывается, что выход по этилену равен 55—57% это соответствует расходу 1,1 кг этилена на 1 кг окиси. Принимают, что затраты на сырье составляют 75% затрат на сырье в хлоргидриновом процессе. Поскольку реакторы для каталитического окисления значительно сложнее, стоимость оборудования будет дороже. Достаточно падежных сведений о конструктивных деталях и о составе катализатора в настоящее время пока не опубликовано. Величина экснлуатацпопных расходов приближается к таковой хлоргидринового нроцесса. Окись этилена, полученная каталитическим окислением, более чиста, чем производимая из этиленхлоргидрина. Единственным побочным продуктом является ацетальдегид, который почти полностью окисляется в углекислоту, следовательно, продукты реакции состоят исключительно из окиси этилена, углекислоты и воды. [c.398]

    Каталитическое окисление эта1на, в отличие от пропана и бутана, должно давать менее сложный состав продуктов реакции. Однако даже на основании простейших теоретичеоких предпосылок можно ожидать образование формальдегида и ацетальдегида, соответствующих спиртов, кислот, окиси этилена и других соединений, которые идентифицированы при гомогенном некаталитическом превращении этана [3]. В газовой фазе могут присутствовать окись и двуокись углерода, этилен, метан и ненрореагировавший этан. [c.61]

    Литературный материал, собранный мисс Вандерворт, ограничился рефератами Хемикел Абстракте за период с 1940 по 1956 г. Ею собраны данные по вопросам кинетики, механизма реакций, аппаратуры лабораторных и опытных установок, заводского оборудования, а также по катализаторам окисления в паровой фазе и по каталитическим процессам. В предметном указателе Хемикал Абстракте просматривались следующие заголовки окисление, кислород, воздух, аммиак, азотная кислота, окись азота, окись углерода, двуокись серы, серная кислота, трехокись серы, ацетилен, соединения ацетилена, бензол, этилен, окись этилена, антрацен, нафталин, ксилолы, водород, синильная кислота, амины, циклоалканы, толуол, тиолы, соединения меркаптана, альдегид, кетоны, спирты, катализ и катализаторы. В обзор включены статьи, опубликованные в 1957 г. [c.204]

    Для сопоставления с приводимыми в качестве примера каталитическими реакциями перечислим некоторые важные органические соединения, которые получаются без применения катализаторов уксусная и другие кислоты, синтезируемые окислением углеводородов ацетилен, этилен и другие олефины, получаемые термическим крекингом хлоропарафины, этаноламины, нитропарафины окись этилена и пропилена, синтезируемые хлоргидри-новым методом фенол, получаемый сульфированием и из монохлорбензола мочевина.  [c.324]

    Лефорт первым установил, что этилен можно каталитически окислить в окись этилена [114]. В прежних работах по окислению этилена наблюдали только образование воды, углекислоты и альдегидов [115]. [c.396]

    Охват экзо- и эндотермических реакций гетерогенно-гомогенным механизмом был бы неполным без учета и каталитических реакций, требующих применения специальных активных контактов. К их числу относится так называемый мягкий катализ, позволяющий высокоселективно превращать этилен в окись этилена и метанол — в формальдегид при помощи серебряных контактов, нафталин — в фталевый ангидрид в присутствии нятиокиси ванадия и т. д. Механизм таких мягких каталитических реакций изучался в нашей лаборатории методом раздельного калориметрирования, т. е. в благоприятных для готерогенно-гомоген-ного катализа условиях катализаторы наносились топким слоем на поверхность стенок сосудов. В качестве покрытий применялись платина, серебро, пятиокись ванадия, бораты, силикаты, фосфаты и другие катализаторы. Объектами неполного окисления были метан, этилен, бутан-пронановая фракция нефтяных газов и метанол [11—13, 20—23, 41—45]. [c.374]


Смотреть страницы где упоминается термин Окись этилена каталитическим окислением этилена: [c.398]    [c.398]    [c.277]    [c.163]   
Окись этилена (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитическое окислени

Окисление этилена

Этилен окись



© 2025 chem21.info Реклама на сайте