Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Капиллярное смачивание

    Система (9.59) содержит пять эмпирических функций двух переменных /с,., Pj (г = 1, 2, 3 ] = 1, 2). В качестве их аргументов можно выбрать любые две насыщенности из трех, в сумме составляющих единицу. Однако в силу несимметричности уравнений капиллярного равновесия относительно номеров фаз удобно зафиксировать аргументы и придерживаясь правила нумерации фаз, учитывающего их различия по смачиваемости породы пласта. Будем считать, что индекс i = 1 всегда отвечает наиболее смачивающей фазе, г = 2-наименее смачивающей (или несмачивающей) фазе, а г = 3-жидкости с промежуточной смачиваемостью. Кроме того, считаем, что краевые углы смачивания в каждой точке одинаковы. Тогда для системы вода-нефть-газ такой способ упорядочивания фаз будет зависеть от того, какой является пористая среда-гидрофильной (лучше смачиваемой водой) или гидрофобной (лучше смачиваемой нефтью). В гидрофильной среде индексы 1, [c.284]


    Для определения поверхностного натяжения нефтей и нефтепродуктов применяются метод отрыва кольца и капиллярный метод. Первый основан на измерении величины силы, необходимой для отрыва кольца от поверхности раздела двух фаз. Эта сила пропорциональна удвоенной длине окружности кольца. При капиллярном методе (рис. 43) измеряют высоту подъема жидкости в капиллярной трубке. Недостатком его является зависимость высоты подъема жидкости не только от величины поверхностного натяжения, но и от характера смачивания стенок капилляра исследуемой жидкостью. Более точным из разновидностей капиллярного метода является метод висячей капли, основанный на измерении веса капли жидкости, отрывающейся от капилляра. На результаты измерения влияют плотность жидкости и размеры капли и не влияет угол смачивания жидкостью твердой поверхности. Этот метод позволяет определять [c.92]

    I. Метод капиллярного поднятия [57, 58, 105, 106]. Метод основан на измерении высоты поднятия жидкости в цилиндрическом капилляре h при условии полного смачивания его стенок. [c.332]

    Целый ряд исследований указывает на то, что гидрофильность порол можно увеличить, искусственно повышая пластовое давление, температуру и скорость фильтрации. С повышением давления увеличивается поверхностное натяжение на границе нефти с водой, происходит уменьшение избирательного угла смачивания водой поверхности пор и увеличение капиллярного вытеснения. [c.46]

    Рассмотрим теперь, от каких физических причин зависит смачивание или несмачивание поверхности. Для этого следует обратиться к анализу изотерм расклинивающего давления смачивающих пленок воды, показанных на рис. 13.3. Кривыми 1—3 здесь изображены зависимости толщины h водных пленок от расклинивающего давления, или, что то же, от капиллярного давления равновесного с пленкой мениска. Кривая 1 относится к пленкам воды на поверхности кварца. Точками показаны экспериментальные данные, сплошная кривая представляет собой рассчитанную теоретически изотерму, учитывающую действие в пленке трех составляющих расклинивающего давления молекулярной Пт, электростатической Пе и структурной Hs [47]. Ветви изотермы, где dU/dh<.0, отвечают устойчивым состояниям пленки. Пленки воды на кварце в области h между 60 и 10 нм (кривая 1) неустойчивы и не реализуются. При постепенном утончении водных пленок вначале возникает метастабильное состояние толстых (/г>100 нм) -пленок. Время их перехода в термодинамически устойчивое состояние тонких -пленок зависит от близости капиллярного давления к критическому Р и от площади -пленок. Чем площадь больше, тем выше вероятность образования в -пленке зародыша а-фазы. Существование толстых -пленок воды обусловлено силами электростатического отталкивания заряженных поверхностей пленки (Пе>0). Так как в этом случае По/го-ЬА>0, -пленки полностью смачиваются водой. Ниже для этого случая будут сопоставлены экспериментальные значения /г с теоретическими, рассчитанными по уравнению (13.9). [c.216]


    Образование щелочной целлюлозы относится к числу гетерогенных процессов, лимитируемых диффузией. Подвод реагента осуществляется по двум механизмам капиллярным смачиванием (конвективная диффузия) и молекулярной диффузией. Лист целлюлозы и образующие его элементарные волокна содержат большое число тонких капилляров, которые легко смачиваются водными растворами щелочей. Скорость распространения фронта смачивания достигает 0,5—1,5 см/мин [25]. Кинетика капиллярного проникновения щелочи в лист описывается уравнением [25]  [c.41]

    Снижение содержания активных функциональных групп после высушивания торфа приводит, вследствие развития меж-и внутримолекулярных взаимодействий, к тому, что процесс связывания молекул воды с материалом становится избирательным и определяется тем, насколько выгодна связь сорбента е сорбатом по сравнению со связями в самом материале. Особенно существенно сказывается глубокое высушивание торфа на содержании таких форм влаги, как капиллярная, внутриклеточная, осмотическая, иммобилизованная, т. е. влаги, за содержание которой ответственна в основном структура материала . В то же время общее количество физико-химически связанной влаги в торфе при его высушивании в мягких условиях может изменяться незначительно. При этом теплота смачивания дегидратированного торфа в 3—4 раза превышает теплоту кон- [c.66]

    Фактически процесс диффузии при радиоактивном загрязнении значительно сложнее, чем его стационарное протекание, представленное уравнением (11.12). В этом уравнении коэффициент диффузии численно равен скорости переноса массы диффундируемого вещества. Наибольщий коэффициент диффузии имеют газообразные вещества, для которых он достигает 10 м -с . В жидкой среде коэффициент диффузии радиоактивных веществ, находящихся в ионной и молекулярной формах, составляет соответственно 10 и 10 с , а в твердых телах он еще меньше (порядка 10м с ). Значительно меньше коэффициент диффузии радионуклидов в полимерных материалах, таких как поливиниловый спирт (10 -10 м с ). Глубинное загрязнение (например бетона) происходит в результате капиллярного смачивания мелких пор раствором радиоактивного вещества. В мелкие, так называемые мезопоры размером 1,2 нм проникновение радионуклида из воздушной среды происходит в результате капиллярной конденсации. Если после конденсации образуется жидкость, которая смачивает поверхность пор, то в них возникает вогнутый мениск. Давление насыщенного пара над вогнутой поверхностью меньше, чем над плоской. В связи с этим в порах происходит капиллярная конденсация при давлении паров радиоактивной жидкости, значительно меньшем по сравнению с давлением паров над плоской поверхностью. [c.186]

    Итак, любая трактовка адгезионных явлений, основанная на уравнениях Юнга или Дюпре-Юнга, не может считаться достаточно обоснованной. Такой подход справедлив главным образом для простейших модельных систем, поведение которых не осложнено влиянием побочных эффектов. В еще большей мере этот вывод относится к встречающимся в литературе попыткам интерпретации закономерностей образования адгезионных соединений в терминах краевых углов, измеряемые значения которых, как известно, определяются факторами не только термодинамической, но и реологической природы. Действительно, на примере эпоксидно-полиамидных композиций установлено [123], что изменение содержания наполнителя одинаковым образом сказывается на изменении как 0, так и вязкости адгезива. Тогда необходимо различать статические и динамические значения краевого угла в равновесных и неравновесных условиях [124]. Количественная связь между ними устанавливается лишь для простейших случаев капиллярного смачивания [125] уравнением [c.34]

    Томсона. Сжижение газа. Жидкости, их строение. Поверхностное натяжение, смачивание и капиллярные явления. [c.164]

    Капиллярно-конденсационный гистерезис часто обусловлен и кинетическими причинами. Например, он может быть связан с проявлением гистерезиса смачивания. Сухая поверхность с адсорбированным воздухом хуже смачивается водой, и поэтому для [c.136]

    Характер взаимодействия и переноса воды в жидкой фазе существенно зависит от влагосодержания торфа. При малых влажностях наиболее интересны в этом плане процессы смачивания и капиллярного впитывания воды в торф, а при больших— процессы фильтрации и влагообмена. [c.70]

    На рис. УП-2 изображены две равные, почти соприкасающиеся сферические твердые частицы А м Б, между которыми находится связанная поровая влага. В направлении, указанном стрелкой, на влагу действует разность давлений, находящаяся в равновесии с капиллярными силами, направленными в противоположную сторону. В результате этого влага перемещается из своего первоначального положения так, что радиус кривизны мениска 1 становится меньше радиуса а угол смачивания а — меньше угла р. В данном случае величина силы тяжести значительно меньше разности давления и ею можно пренебречь. [c.269]


    Согласно современным представлениям о механизме вытеснения нефти ПАВ, добавляемые в нагнетаемую воду, должны 1 — способствовать смачиванию поверхности поровых каналов вытесняющей водой 2—уменьшать поверхностное натяжение на границе нефть — вода 3 — вытеснять нефть с поверхности породы 4 — диспергировать нефть в потоке воды, т. е. добавление ПАВ уменьшает капиллярное сопротивление движению водонефтяных смесей и переводит связанную с породой нефть в свободное состояние. Это достигается при адсорбции на поверхностях раздела ПАВ, которые резко снижают поверхностное натяжение системы нефть — [c.69]

    По мере отсоса жидкости из капиллярной системы ее приводят в контакт со свежей порцией капиллярной системы отсоса. Процесс считается законченным, когда на свежей порции капиллярной системы нет следов жидкости. Исходя из предположения полного смачивания твердой фазы жидкостью (eos 0=1), на основе уравнения Лапласа о дополнительном давлении под искривленной поверхностью жидкости можно записать  [c.86]

    Здесь 5 — площадь сечения поры к—высота капиллярного падения жидкости д — ускорение свободного падения р — плотность жидкости П — периметр поры а — поверхностное натяжение жидкости 6с — угол смачивания. [c.303]

    Некоторые исследователи высказали предположение, что гидро-фильность улавливаемой пыли играет важную роль в улавливающей способности скрубберов (особенно скрубберов Вентури). Однако было установлено, что добавление больших количеств смачивающего агента в процессе улавливания газовой сажи не дает желаемого эффекта. Исследование влияния смачивания в стандартных условиях для различных пылевидных материалов, которые, как правило, улавливаются в скрубберах, было проведено Вебером [912]. Он измерял скорость капиллярного подъема воды, [c.418]

    Самопроизвольная капиллярная пропитка пористой среды прекращается, если угол избирательного смачивания 0 становится равным или больше 60°. В пористой среде со смешанной (гидрофильной и гидрофобной) смачиваемостью усредненный угол смачивания при движении мениска, очевидно, не менее 60°. [c.40]

    Для идеальных пористых сред кривые капиллярного вытеснения и вымывания должны совпадать. Однако при исследовании реальных сред наблюдается различие в характеристике вымывания и вытеснения, связанное с различием в величинах наступающего и отступающего углов смачивания. Тем не менее для однородных пористых сред при капиллярном впитывании (например, для набивок из одинакового размера стеклянных шариков) всегда достигается полное насыщение смачивающей жидкостью. [c.209]

    На адсорбцию из растворов существенно может влиять изменение температуры. Так как энтальпия смачивания отрицательна, то в соответствии с уравнением Вант-Гоффа сродство адсорбата к адсорбенту должно уменьшаться с повышением температуры, причем в бинарных растворах оно сильнее уменьшается для компонента, у которого больше отрицательная энтальпия смачивания (чистой адсорбции). Таким образом, с повышением температуры происходит выравнивание констант адсорбции компонентов и приближение константы обмена к единице, а величины гиббсовской адсорбции — к нулю. Закономерности адсорбции из растворов существенно меняются при изменении растворимости в зависимости от температуры. С увеличением растворимости уменьшается константа распределения (благодаря усилению взаимодействия с растворителем). Однако если с повышением температуры растворимость растет, то появляется возможность увеличения концентрации в равновесном растворе и соответственно на поверхности адсорбента. Изменение растворимости при изменении температуры может привести к расслаиванию в порах адсорбента — к капиллярному расслаиванию. [c.155]

    При малых перепадах давления с увеличением радиуса капилляров возрастает роль силы тяжести жидкости, а с уменьшением их радиуса роль капиллярных сил, обусловленных смачиванием и кривизной поверхности. Пренебрежение указанными факторами иногда может привести к существенным погрешностям в расчетах определяемых параметров. Особенно сильные отклонения от закона Стокса наблюдаются при течении в микропорах, радиусы которых соизмеримы с радиусом действия поверхностных молекулярных ил. Жидкость в таких порах под действием поверхностных сил приобретает определенную структуру. В связи с этим течение в капилляре не может начаться до тех пор, пока перепад давления не скомпенсирует сопротивление структуры. [c.233]

    При смачивании сухой породы поверхность раздела между водой и воздухом в порах искривляется. Существующий у искривленной поверхности избыток свободной энергии приводит к возникновению капиллярного давления АР, возрастающего с увеличением поверхностного натяжения а на границе вода—воздух и с уменьшением радиуса кривизны поверхности натяжения R (АР = =2a R). Капиллярное давление обеспечивает подпитку водой норовых и трещинных каналов в глине. Вода, проникая по порам внутрь породы, смачивает поверхности новых частиц, образует вокруг них гидратные слои. [c.63]

    К моменту стабилизации расхода воды Q эта ширина также станет постоянной (I = onst). Тогда для определения параметров можно воспользоваться строгим гидромеханическим решением плоской задачи Н. Н. Веригина о фильтрации-воды из борозды [7, 311. Последнее получено посрздством интегрирования уравнения Лапласа при условиях на свободной поверхнозти h — z — Я , = 0,5 и на поверхности капиллярного смачивания грунта по обо стороны от борозды "ф = 0,5( , где h — напор -ф — функция тока. [c.141]

    В системе з.тектролпт — углеводород в присутствии сероводорода развитие коррозии тесно связано с явлениями избирательного смачивания поверхности стали в условиях ее контакта с двумя несмешивающимися жидкостями. В результате контакта металла со средой по мере образования гидрофильного сульг-фида железа происходит продвижение избирательного смачивания. На поверхности металла постепенно образуются пленка электролита и рыхлый нарост продуктов коррозии. В этот нарост под действием капиллярных сил втягивается электролит из водной фазы, что вызывает рост скорости коррозии. С повышением концентрации сероводорода в водной фазе скорость коррозии углеродистой стали постепенно возрастает, причем максимальные значения скорости соответствуют высоким яначениям концентрации сероводорода. Следует учитывать и общее содержание сероводорода и системе, так как его растворимость [c.147]

    Ишкин и Каданер [71] определяли эквивалентный диаметр зернистых слоев различной структуры по капиллярному подъему столбика спирта или воды в предварительно хорошо смоченном слое зерен. Значение гидравлического радиуса находили по уравнению г к = г/а = а os Q/pxgh, аналогичному (II. 54). Угол смачивания О принимали равным нулю. [c.57]

    В зависимости от Рк могут реализоваться различные состояния и, соответственно, толщины смачивающих пленок. Так, при малом капиллярном давлении Рк — на рис. 1.6) в зависимости от степени гидрофильности подложки могут возникать либо толстые (порядка 100 нм) усто 1чивые пленки (изотерма /), либо также достаточно толстые, но метастабильные р-пленки (изотерма 2). При приближении капиллярного давления к критическому они могут прорываться, переходя в значительно более тонкие (около 10 нм) термодинамически устойчивые а-пленки, впервые исследованные в работе [46]. Наконец, при дальнейшем ухудшении смачивания (изотерма 5) находиться в равновесии с мениском могут только тонкие (/г 1 нм) а-пленки. В тонкопористых телах, где капиллярное давление велико (Р г — на рис. 1.6), метастабильное состояние водных пленок может не реализоваться. [c.17]

    В основе современных представлений о гидрофильности дисперсных систем лежит учение о связанной воде [1, 64]. Исследователи уже давно пытались разделить связанную воду на различные типы. Одна из первых попыток классифицировать воду по формам ее связи с дисперсными материалами была предпринята С. Маттсоном в 30-е годы [65]. Он разделял воду на структурно связанную (эту воду сейчас принято называть конституционной), гигроскопическую, при взаимодействии молекул которой с дисперсными материалами выделяется теплота смачивания (такую воду сейчас называют сорбционно связанной или прочносвязанной [661), капиллярную воду и воду осмотического впитывания. Классификации различных типов связанной воды, близкие к приведенной, были предложены также А. В. Думанским [1] и П. А. Ребиндером [67]. [c.31]

    Изложенный способ определения краевого угла неприменим Б двух случаях. Значения 6о нельзя определить в узких щелях, где поля поверхностных сил перекрываются и облдсть постоянной кривизны мениска отсутствует. Расчеты равновесия капиллярной жидкости и пленок требуют здесь применения другого подхода [555]. В особом рассмотрении нуждаются и такие случаи полного смачивания, когда продолжение мениска не пересекает подложку (рис. 13.1, кривая 3) и краевой угол не образуется. [c.212]

    Это уравнение связывает капиллярное давление мениска и радиус его кривизны г = а1Рк с полушириной щели Я и изотермой расклинивающего давления. Оно позволяет, взамен краевого угла, определить другой параметр, который можно использовать для характеристики условий полного смачивания, [c.214]

    Если 0с — угол смачивания между твердым веществом и жидкостью, то составляющая поверхностного натяжения равна a os0o и уравнение (VI.25) изменится. Давление равновесной адсорбция Яа в области капиллярной конденсации превышает соответствующее давление десорбции Яд, так как десорбция в этом случае происходит из целиком заполненных капилляров, и угол смачивания равен нулю. В опыте необходимо провести адсорбци10 до относительного давления, равного единице, и десорбцию, а затем использовать для расчета десорбционную ветвь петли гистерезиса данной изотермы, т. к при этом не нужна поправка на угол смачивания. На рис. 131 изображены изотермы адсорбции и десорбции паров бензола на крупнопористом силикагеле. Каждая точка изотермы адсорбции дает значения адсорбированного количества бензола а и относительного давления пара Р/Рд. Умножая величину а на V, находят объем пор, а подставляя в уравнение Кельвина (VI. 25) соответствующее значение Я/Яо, получают гк. [c.301]

    Если Дрг,с>—Ар[с, граница раздела фаз и точка, н которой кривизна поверхности раздела фа равна нулю, находятся в конце конденсатора, по распределение давления имеет вид, показанный па рис. 2, а. При входе нара в зону конденсации р больше, чем р , следовательно, в этой точке неизбежно возникла бы выпуклая поверхность, как показано на рис, 2, а. Этого не происходит при нормальных условиях смачивания поверхности, и возникает равновесное распределение лавления (рнс, 2, б), В этом случае капиллярная разность давлент урапновен]нваегся перепадом давления на участках испарения и т аиспорта жидкости. При прочих равных условиях и гаком случае циркуляция будет выше, В табл, 1 приведет,] ссылки иа литературу, в которой эти вопросы рассмотрены более подробно. [c.106]

    Количественная оценка упомянутого выше механизма для Ярино-Каменноложского месторождения выглядит следующим образом. Поверхностное натяжение а нефти на границе с пластовой водой составляет 0,03 Н/м, угол смачивания 0 оценен в 152°, средний радиус пор для песчаников со средними коллекторскими свойствами колеблется от первых единиц до первых десятков микрометров. В соответствии с этими величинами капиллярное давление в порах гидрофобной породы яснополянского горизонта составляет 0,005—0,05 МПа (среднее значение 0,025—0,03 МПа). [c.26]

    Гидрофобные участки на поверхности пор и йзменяющийся диаметр поровых каналов обусловливают так называемый капиллярный гистерезис и прерывистый характер капиллярного движения нефти и воды. На гидрофобных участках пор и расщирениях поровых каналов самопроизвольное пленочное и менисковое движение воды прекращается из-за изменения формы менисков и величины контактных углов смачивания. [c.43]

    Уравнение (1.2) выражает приращение энергии Гиббса череч алгебраическую сумму приращений других видов энергии. Пре-вращенпе поверхноспюй энергии в один из представленных видов энергии отвечает определенным поверхностным явлениям. Стрелки указывают на пять возможных превращений поверхностной энерн гни 1) в энергию Гиббса, 2) в теплоту, 3) в механическую энер-ГИЮ, 4) в химическую энергию и 5) в электрическую энергию. Эти превращения сопровождают такие явления, как изменение реакционной способности с изменением дисперсности, адгезия и смачивание, капиллярность, адсорбция, электрические явления. [c.13]

    В соответствии с изложенным в части 2.1. эксперимент по определению адгезии проводился в два этапа. Объекты исследований - растворы поливинилацетата (ПВА) и по-лиметилцеллюлозы (ПМЦ) в дистиллированной воде. Средневязкостная молекулярная масса ПВА и ПМЦ по данным капиллярной вискозиметрии 87550 моль и 147000 моль соответственно. У водных растворов с малыми концентрациями полимера, адгезия (поверхностное натяжение) к стеклу измерялась методом сталагмометрии (метод подсчета капель) при условии, если краевой угол смачивания равен нулю. Для определения поверхностного натяжения методом сталагмометрии необходимо определить число капель воды и число капель исследуемой жидкости [И]. Адгезия определялась по уравнению  [c.13]

    Огромную роль играет коллоидная химия в химической технологии. Практически нет такой отрасли химической технологии, где бы не имели решающего значения поверхностные явления и дисперсные системы. Измельчение сырья и промежуточных продуктов, обогащение, в том числе флотация, сгущение, отстаивание и фильтрация, процессы кондеисации, кристаллизации и вообще образование новых фаз, брикетирование, сиекание, гранулирование—все эти процессы протекают в дисперсных системах, и в них большую роль играют такие явления, как смачивание, капиллярность, адсорбция, седиментация, коагуляция, которые рассматриваются в курсе коллоидной химии. [c.15]

    В заключение следует подчеркнуть, что капиллярные явления имеют место на границе трех фаз твердое тело — жидкость — газ (вторая жидкость), т. е. должен существовать мениск жидкости. Например, если пластины или частицы полностью находятся в жидкости, то они не могут быть подвержены капиллярным явлениям, ио если из системы удалить жидкость настолько, чтобы появилась поверхиость раздела твердое тело — газ, как пластины пли частицы начнут притягиваться (0 < 90°) или отталкиваться (О > 90°). Капиллярным явлением объясняется, иаиример, появление формуемости у речного песка иосле его смачивания, колткова-инс порошков при суиисе и т. д. Гидрофобизация поверхности приводит к обратному резулыату. [c.91]

    Эффективный радиус сферического мениска г , соответствующий данному относительному давлению pips, находят по уравнению Кельвина (III. 63). Так как поры заполняются в результате капиллярной конденсации после полимолекулярной адсорбции на стенках пор, то истинное значение радиуса пор равно сумме радиуса мениска при полном смачивании и толщины адсорбционного слоя /аде  [c.138]

    Последнее соотношение известно как уравнение Жюрена. Таким образом для определения поверхностного натяжения жидкостей этим методом экспериментально находят высоту поднятия /г, радиус капил-ляра г и угол смачивания 0. Метод капиллярного поднятия является одним из наиболее точных (относительная погрешность менее 0,01 %) Метод максимального давления в пузырьке основан на измерении давления, при котором происходит огрыв пузырька газа (воздуха), выдуваемого в жидкость через капилляр. [c.12]


Смотреть страницы где упоминается термин Капиллярное смачивание: [c.141]    [c.286]    [c.466]    [c.221]    [c.69]    [c.110]    [c.135]    [c.375]    [c.386]    [c.245]   
Вискозные волокна (1980) -- [ c.38 , c.39 , c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние гистерезиса угла смачивания на капиллярные явления

Капиллярная

Капиллярное действие при смачивании

Капиллярность

Межмолекулярные силы. Смачивание. Поверхностное натяжение. Капиллярные силы

Смачивание

Смачивание и капиллярное течение

Смачивание как капиллярное явление



© 2024 chem21.info Реклама на сайте