Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий кислородом

    Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий и сооружений для предохранения их от коррозии, называются защитными покрытиями. Если наряду с защитой от коррозии покрытие служит также для декоративных целей, его называют защитно-декоративным. Выбор вида покрытия зависит от условий, в которых используется металл. Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.). По характеру поведения металлических покрытий при коррозии их можно разделить на катодные и анодные. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. В качестве примеров катодных покрытий на стали можно привести Си, N1, Ag. При повреждении покрытия (или наличии пор) возникает коррозионный элемент, в котором основной материал в поре служит анодом и растворяется, а материал покрытия — катодом, на котором выделяется водород или поглощается кислород (рис. 74). Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждений покрытия. Анодные покрытия имеют более отрицательный [c.218]


    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]

    Во многих случаях, когда приходится иметь дело с переработкой материалов, образующих весьма легковоспламеняющиеся пыли, создание инертной среды в аппаратуре становится почти единственным надежным средством обеспечения взрывобезопасности технологического процесса. Например, некоторые металлические порошки марки ПАМ взрываются при содержании кислорода в смеси с азотом 5,5% (об.) и концентрации взвеси порошка 400— 100 г/м . При содержании 800 г/м эти порошки взрываются в атмосфере, содержащей 3,4—4,0% (об.) кислорода. Порошок сплава алюминия с магнием, медью и кадмием взрывается при содер- [c.282]

    Окислением кислородом воздуха в газовой фазе из аценафтена получают нафталевый ангидрид с выходом 75—80% [168]. Хотя последний и может явиться сырьем для получения пластификаторов и алкидных смол, но стерические препятствия и наличие стабильного шестичленного ангидридного цикла серьезно затрудняют образование сложных эфиров. Более целесообразно получать из нафталевого ангидрида 2,6-нафталиндикарбоновую кислоту при нагревании его с карбонатом калия в присутствии солей кадмия и цинка в атмосфере диоксида углерода при 430—460 °С и 2,6—3,1 МПа [135]. [c.109]


    Кислород взаимодействует с кадмием отрицательной пластины и не может вызвать опасного повышения давления в аккумуляторе. Вместе с тем окисление кадмия кислородом исключает возможность выделения на нем водорода даже при перезаряде аккумулятора. [c.100]

    Для облегчения процесса окисления кадмия кислородом аккумулятор должен содержать минимальное количество электролита и иметь тонкий тканевый газопроницаемый сепаратор. Скорость образования кислорода не должна быть слишком большой, т. е. заряд герметичного аккумулятора должен производиться небольшим током. [c.100]

    Первые два соединения в ничтожно малых количествах получаются как промежуточные продукты при окислении кадмия кислородом. Они никакого значения не имеют и поэтому из кислородных соединений мы рассмотрим только dO — оксид кадмия (II). [c.421]

    Иодистый водород Йодная ртуть Кадмий Кислород [c.279]

    Оптимальной температурой прокаливания сернистого кадмия является 550—600°. При более высокой температуре, а именно при 650—700 начинается окисление сернистого кадмия кислородом [c.390]

    Прокаливание шихты производят в муфельных или вращающихся печах. В первом случае шихту загружают в тигли, плотно утрамбовывают, покрывают сверху крышками или изолирующим слоем из бланфикса, мела или других аналогичных веществ и ставят в печь для прокаливания в течение 2—3 час. Изолирование шихты при прокаливании от соприкосновения с воздухом предупреждает выгорание серы и окисление сернистого кадмия кислородом воздуха. I Обычно применяют неглазурованные пористые шамотные тигли, иногда—тигли из нержавеющей стали. После прокаливания тигли вынимают из печи, дают им остыть, затем снимают крышки или изолирующую массу и выгружают пигмент. < Иногда прокаливание производят в небольших вращающихся электропечах. Шихту в этом случае предварительно таблетируют, чтобы она не прилипала к стенкам печи и не образовывала наростов, а также чтобы избежать быстрого выгорания серы и окисления сернистого кадмия. Размер таблеток небольшой —при- [c.396]

    Системы уран — кадмий — кислород и уран — цинк — кислород [c.149]

    При pH раствора от 6 до 2,41 устанавливался потенциал около 0,2 в. Как только никель приходил в соприкосновение с раствором, имеющим pH = 2,31 и ниже, значение устанавливающегося потенциала падало до -Ь0,02 в. Изменение потенциала икеля, происходящее при pH = 2,31, вызвано тем, что пленка кислородных соединений, образующаяся при высоких значениях pH, нарушается при переходе к значениям pH ниже 2,31. Что говорит за то, что пленка, образующаяся на никеле и вызывающая его пассивность, состоит не только из атомов адсорбированного кислорода, но и из химических соединений — окислов и гидроокисей никеля. При измерении потенциалов амальгам никеля губчатого никеля в растворах, изолированных от кислорода воздуха, были получены значения обратимого нормального потенциала —0,25 в при 20° С. Этот потенциал электроотрицательнее потенциалов многих тяжелых металлов и электроположительнее железа, кадмия, цинка, марганца и др. (см. табл. 4 и рис. 4). [c.298]

    Цинк н кадмий устойчивы на воздухе благодаря покрывающей их оксидной пленке (пленка на поверхности 2п содержит также основной карбонат). Ртуть при комнатной температуре не взаимодействует с кислородом, при нагревании до / 300°С она образует оксид Н 0, который при более сильном нагревании разлагается на Нй и Ог. [c.595]

    Коррозионные потенциалы амальгам в растворах солей соответствующих металлов почти достигают значений обратимого потенциала легирующего компонента благодаря очень низкой скорости коррозии и отсутствию заметной анодной поляризации. Например, коррозионный потенциал амальгамы кадмия в растворе С(1504 ближе к термодинамическому для реакции Сс1 - Сс " - - 2ё, чем для чистого кадмия в этом же растворе. Стационарная скорость коррозии чистого кадмия значительно выше, чем его амальгамы, что ведет к еще большим отклонениям измеряемого коррозионного потенциала от соответствующего термодинамического значения. Вообще говоря, стационарный потенциал любого металла, более активного, чем водород (например, железа, никеля, цинка, кадмия) в водных растворах, содержащих собственные ионы, отклоняется от истинного термодинамического значения на величину, зависящую от преобладающей скорости коррозии, которая сопровождается разрядом Н+ [17]. Измеренные значения положительнее истинных. Это справедливо также и для менее активных металлов (например медь, ртуть), которые корродируют в присутствии растворенного кислорода. [c.64]

    К началу 1941 г. мощность электростанций в СССР возросла в И раз, а выработка электрической энергии — в 25 раз. Это-и явилось основной предпосылкой для создания в СССР мощной электрохимической промышленности. За эти годы возник ряд новых крупных электрохимических производств алюминия, магния, натрия и некоторых других легких и редких металлов, цинка, кадмия марганца, а также водорода, кислорода, перекисных соединений и т. д., получили развитие процессы рафинирования свинца, никеля, серебра и других металлов, были значительно усовершенствованы существовавшие в дореволюционной России процессы рафинирования меди, получения хлора, производство свинцовых аккумуляторов. [c.10]


    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Поэтому окисление кадмия может идти только в присутствии кислорода  [c.91]

    Саморазряд положительного электрода с заметной скоростью проходит в первый период после заряда вследствие разложения двуокиси никеля. Выделяющийся при этом кислород может окислять кадмий. [c.91]

    Долгое время в промышленности был распространен электролитический метод получения железо-кадмиевой губки. В настоящее время активную массу получают более простым, термическим, способом. Кадмий расплавляют в реторте при 700—800 °С, образующиеся пары металла направляют в окислительно-осадительные камеры. Здесь кадмий окисляется кислородом воздуха, и охлажденный высокодисперсный порошок окиси кадмия собирается в бункере. Частицы окиси, увлеченные воздухом из камеры, улавливаются в рукавном матерчатом фильтре. [c.98]

    Герметичные и малогабаритные аккумуляторы. Заряд обычных никель-кадмиевых аккумуляторов нельзя проводить в закрытом состоянии, так как выделение газа в конце заряда при повышении давления может привести к разрушению сосуда. Во избежание этого в герметичных аккумуляторах используют положительные электроды с меньшим запасом емкости,. чем отрицательные. Тогда выделение кислорода на положительном электроде начинается раньше, чем наступит полное восстановление гидроокиси кадмия. [c.100]

    Пускают полярограф, снимают полярограмму в интервале потенциалов О—1000 мВ. Получают на ленте самописца кривую, отражающую совместное восстановление кислорода н кадмия. Убеждаются в невозможности расшифровать подобную полярограмму. [c.296]

    Сравнительно малую скорость растворения цинка и кадмия в разбавленных растворах серной кислоты. Для ускорения процесса растворения используются различные способы окисления их (обжиг, окисление влажных кеков кислородом воздуха, добавка МпОг при растворении). [c.495]

    Сухое озоление заключается в прокаливании образца при 500-550 °С в муфельной печи до постоянной массы. Однако при этом весьма велика вероятность потерь ряда компонентов летучих соединений некоторых галогенидов, фосфора, мышьяка, серы, ртути, кадмия и др. Некоторые элементы образуют при прокаливании стойкие оксиды, не растворяющиеся затем в кислотах. Известны органические соединения, разлагающиеся при прокаливании не до конца, - в таких случаях применяют другие способы минерализации сжигание в токе кислорода, окисление в бомбе и т.д. [c.51]

    Однако есть и существенные отличия. Во-первых, растворимость МаНСсЮа в 10 раз больще растворимости МаНРеОг. Поэтому электроды труднее пассивируются и значительно лучше работают при пониженных температурах. Во-вторых, потенциал кадмиевого электрода в растворах щелочи положительней потенциала выделения водорода и перенапряжение для выделения водорода на кадмии значительно. Поэтому саморазряд кадмиевого электрода невелик и в основном происходит из-за окисления кадмия кислородом по реакции [c.390]

    Кислородные соединения. Оксиды цинка ZnO и кадмия dO можно получить при непосредственном взаимодействии металлов с кислородом, тогда как HgO получают только косвенным путем  [c.423]

    Отношение металлов к электрохимической коррозии определяется величинами их стандартных (нормальных) электродных потенциалов. По этому признаку все металлы можно разделить на следующие четыре группы 1) повышенной активности (повышенной термодинамической нестабильности) —от щелочных металлов до кадмия (стандартный электродный потенциал = =—0,4 В). Эти металлы корродируют даже в нейтральных водных средах, не содержащих кислорода и окислителей. Они могут окисляться ионами водорода, находящимися в воде н в нейтральных водных средах 2) средней активности (термодинамически нестабильные), от кадмия до водорода ( =0,0 В). Данные металлы устойчивы в нейтральных средах при отсутствии кислорода, но в кислых средах подвергаются коррозии и в отсутствие кислорода  [c.192]

    Осталось упомянуть еще о трех различных видах нейтральных полимерных плоскостей из атомов с октаэдрической конфигурацией. Исследование структуры d(OOG H2NH2)2-Н2О [180] показало, что ионы глицината играют роль клешни в плоскости вокруг атома кадмия и что эти плоские единицы затем соединяются друг с другом в бесконечную плоскость с помощью сетей из координационных и водородных связей. Свободные атомы кислорода двух соседних карбоксильных групп координируются с атомом кадмия, давая каждому кадмию координационное число 6. Разность между расстояниями кадмий — кислород в плоской единице 2,3 А и от кадмия до соседних свободных атомов кислорода 2,5 А лежит в области, в которой порядок связи очень чувствителен к длине связи. Невозможно сравнивать типы связи, поскольку нет достаточно точных данных о длинах связи. [c.373]

    Наиболее примечательными свойствами цинка, Zn, кадмия, Сс1, и ртути, Hg, является их слабое сходство с остальными металлами. Все эти металлы мягкие и имеют низкие температуры плавления и кипения. Ртуть-единственный металл, представляющий собой при комнатной температуре жидкость. Цинк и кадмий напоминают по химическим свойствам щелочно-земе льные металлы. Ртуть более инертна и похожа. на Си, А и Аи. Ддя всех трех элементов, 2п, Сс1 и Н , характерно состояние окисления -Ь 2. Ртуть также имеет состояние окисления + 1 в таких соединениях, как Н 2С12. Но ртуть(1) всегда обнаруживается в виде димерного иона причем рентгеноструктурные и магнитные исследования показывают, что два атома Hg связаны друг с другом ковалентной связью. Таким образом, ртуть имеет в Hg2 l2 степень окисления -I- 1 лищь в том же формальном смысле, в каком кислород имеет степень окисления — 1 в пероксиде водорода Н—О О—Н. [c.449]

    Ультразвук в одних случаях затрудняет наступление пассивности металлов (при анодном растворении железа, меди, кадмия, стали Х18Н9) в результате десорбции кислорода и диспергирования защитных пленок, а в других случаях (А1 и Ni в NaaS04, Fe в NaOH + СГ) облегчает пассивацию, по-видимому, из-за удаления с поверхности металла активаторов. [c.369]

    Металлы группы цинка взаимодействуют с элементарными окислителями, особенно активно с галогенами, дал<е при обычной температуре. В результате взаимодействия с кислородом при обычной темиературе на поверхности цинка и кадмия образуется тончайшая оксидная пленка, которая защищает эти металлы ог дальнейшего окисления. При нагревании цинк и кадмий образуют с кислородом оксиды ZnO и dO. Ртуть довольно легко окисляется кислородом при нагревании до невысокой температуры, однако образующийся оксид HgO, будучи термически непрочным, при высокой температуре легко разлагается, Цушк и к.ддмий при нагревании образуют с серой сульфиды ZnS и dS, а ртуть при растирании с серой образует сульфид HgS даже ири обычной температуре. С азотом, водородом и углеродом металлы группы цинка в обычных условиях ие взаимодействуют. [c.330]

    Оксиды п гидроксиды. Окснды цпнка, кадмия и ртутн, как уже указано выше, получа ются при непосредственном взаимодействии этих металлов с кислородом, а также при термическом разложс НИИ соответствующих гидроксидов, нитратов, карбонатов. Свойства окспдов цппка, кадмия и ртути приведены в табл. 38. [c.331]

    Иод. . Иридий Игтербий Иттрий. Кадмий Калий. Калифопннй Кальций Кислород Кобальт Кремний Криптон Ксенон. Кюрий. Лантан. Литий. Лютеций Магний. Марганец Медь. . Менделевий Молибден Мышьяк Натрий, Неодим Неон. . Нептуний Никель, Ниобий. Нобелий Олово. Осмий. Палладий Платина Плутоний Полоний. Празеодим Прометий [c.18]

    В работе Пруттона, взгляды и выводы которого в общем согласуются с только что изложенными, рассмотрены некоторые детали механизма коррозии кадмия и свинца [2]. Им подтверждено, в частности, что свинец и кадмий реагируют с кислотами только в присутствии окислителей—молекулярного кислорода или перекисей. Подтверждено также образование тонкой пленки окиси в отсутствии кислот и ее растворимость в кислотах. [c.316]

    Начинают продувать инертный газ, устанавливают скорость его прохождения 1—3 пуз./с время продувания в 30 мин. Пузырьки газа перемешивают раствор и создают над ним пониженное парциальное давление кислорода, который диффундирует из раствора в объем пузырьков через поверхность, причем концентрация его за указанный срок снижается до полярографически неощутимых значений. Вновь снимают полярограм-му. Получают волну кадмия, искаженную максимумом. Вводя с [c.296]

    Для количественного определения содержания кадмия в исследуемом растворе с помощью пипетки переносят в другой электролизер с налитой иа дно ртутью 2,0 мл исследуемого раствора с неизвестной концентрацией кадмия и столько же раствора KNOз (2,0 моль/л), добавляют 2—3 капли столярного клея. Удаляют кислород продуванием инертного газа. Снимают полярограмму, начиная с 400 мВ, так как волна кадмия возиикает примерно при 600 мВ. Это сокращает время снятия по-лярограммы. Затем добавляют к этому раствору равный объем раствора Сс1(ЫОз)2 с известной массовой концентрацией (мг/мл). Вновь удаляют кислород и снимают полярограмму. [c.297]

    При восстановлении до низших степеней валентности следует иметь в виду действие кислорода воздуха. Закисное железо, пятивалентный молибден, четырехвалентные ванадий и уран довольно устойчивы на воздухе. В этих случаях можно не принимать мер для предотвраш,ения действия воздуха. При восстановлении урана цинком или кадмием частично образуется трехвалентный уран при встряхивании на воздухе последний превращается в четырехвалентный уран таким образом, доступ воздуха здесь даже необходим. [c.370]

    В лаборатории института Гипроникель разработан способ электролитического получения никеля чистоты 99,9999% с применением нерастворимого анода. Из раствора N 012, приготовленного растворением карбонильно го никеля, удаляют примеси железа, кобальта, меди и других более электроположительных металлов с помощью электролитической очистки. Окончательную очистку от меди производят дитизоном, а доочистку от железа — купфероном. Экстрактором служат чистые ССЦ или С2Н5О. Электролиз ведут в растворе 150 г/л N1 в виде ЫЮЬ при температуре 70°, п ютности тока 1300 а/м . Катодом служит титан, анодом — чистейший графит. Полученный осадок нагревают в течение нескольких часов в вакууме при 1400°, при этом никель теряет водород, кислород, углерод, а также цинк, олово, кадмий, оставшиеся после электролитической очистки. [c.585]

    С увеличением атомной массы в ряду Zn, d, Hg активность металлов уменьшается и ртуть в электрохимиче-с1<ом ряду напряжений металлов стоит после водорода. Атомы цинка и кадмия — хорошие восстановители, атомы ртути восстановительные свойства проявляют в очень малой степени. Поэтому ртуть не окисляется ионами водорода кислот, а также кислородом воздуха в обучных t условиях. [c.105]

    Производные цинка и в еще большей мере — производные кадмия по реакционной способности уступают магнийорганическим соединениям. Они не реагируют с углекислым газом, однако легко разлагаются кислородом воздуха (цинкпроизводные — самовоспламеняются) и нуклеофильными реагентами с подвижным атомом водорода. [c.345]

    Координация кислорода. Это явление довольно распространено в химии цинка. При переходе к кадмию и ртути тенденция к коордйнации кислорода уменьшается. Например, максимальное число координированных ОН-групп в гидроксо-комплексах 2п (II) равно 4, тогда как для Нд (I) — только 2. Однако как видно из данных, приведенных в табл, 53, константы нестойкости соответствующих соединений, ниже, чем у Сс1 (II), и Н (II). [c.197]


Смотреть страницы где упоминается термин Кадмий кислородом: [c.55]    [c.294]    [c.125]    [c.901]    [c.286]    [c.295]    [c.357]    [c.374]    [c.357]   
Новые окс-методы в аналитической химии (1968) -- [ c.285 ]




ПОИСК







© 2025 chem21.info Реклама на сайте