Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Псевдоожижение равномерность

    Равномерность распределения газа в псевдоожиженном слое зависит от конструкции газораспределительной решетки, от гранулометрического состава псевдоожижаемого материала и от линейной скорости газа. [c.74]

    Решетки изготовляют из углеродистой или хромо-молибденовой стали. Срок службы хромомолибденовых решеток в условиях абразивного износа больше, чем решеток из углеродистой стали. Решетка служит не только для равномерного распределения потока взвеси по поперечному сечению аппарата, но и является опорой для псевдоожиженного слоя катализатора, а при производстве внутри аппарата монтажных и ремонтных работ она используется как опора для настила. [c.148]


    Катализатор поддерживается в псевдоожиженном состоянии в секциях крекинга сырья, отпарки катализатора и регенерации его. Катализатор выводится из кипящего слоя I (рис, 96) регенератора и поступает через два стояка 2 и клапаны 3 в низ реактора. Уровень слоя 4 катализатора в реакторе поддерживают на достаточной высоте, чтобы обеспечить желательную глубину разложения сырья. Предварительно нагретое сырье, равномерно распределяемое форсунка.ми по нижнему сечению реактора, полностью испаряется и крекируется за счет тепла горячего катализатора. Вместе с сырьем в реактор вводится водяной пар. [c.188]

    Сырье установки смешивается с циркуляционным и свежим водородсодержащим газом, и газосырьевая смесь нагревается последовательно в теплообменнике 6 и змеевиках нагревательной печи 5. Нагретая смесь поступает в низ реакторов 2 и 3 через распределительные решетки, обеспечивающие равномерное распределение жидкости и газа в поперечном сечении реактора. Для создания псевдоожиженного слоя в низ реакторов вводят рециркулят. [c.49]

    Как канальный, так и поршневой режимы нежелательны не только из-за резких колебаний давления, которые при этом происходят, но и потому, что уменьшается степень контакта между газом и твердыми частицами. Чтобы обеспечить равномерное псевдоожижение, по-видимому, необходимо определенное распре деление частиц по размерам. Подбор соответствующего гранулометрического состава слоя в настоящее время возможен только эмпирически. [c.255]

    В табл. 67 представлены некоторые данные о гранулометрическом составе материалов, которые успешно подвергались равномерному и однородному псевдоожижению. Мелкие частицы подвергаются псевдоожижению легче, чем крупные, но уже при размерах менее 30 или 40 мк частицы обычно сцепляются между собой, что ведет к появлению режима канального проскока. [c.255]

    Прохождение газа через кипящий слой не является равномерным. Часть газа проходит в виде больших пузырей. Использование результатов экспериментов, проведенных в неподвижном слое, для псевдоожиженного слоя связано с затруднениями, но возможно, если высота слоя относительно велика, диаметр мал, а поток равномерен. При небольших высотах слоя возникает циркуляция в центре слоя твердые частицы движутся вверх, а около стенок — вниз. Для слоя, диаметр которого достаточно велик, перемешивание может быть значительным. При течении, близком к равномерному, для вычисления числа Пекле можно пользоваться зависимостью вида >2  [c.47]

    Под хорошим псевдоожижением автор главы понимает достаточно равномерное и полное псевдоожижение без застойных зон, но не обязательно однородное. — Прим. ред. [c.42]


    В жидкостных псевдоожиженных слоях твердых частиц одинаковых размеров при увеличении скорость ожижающего агента от U f до Ut обычно происходит равномерное расширение слоя. Если же твердые частицы имеют разные физические свойства, то в слое наблюдается тенденция к сепарации частиц. [c.46]

    На рис. V- представлены две разновидности поршневого псевдоожиженного слоя. В слое типа А, свойства которого рассматриваются в данной главе, газовый пузырь поднимается в среде твердых частиц, опускающихся по обеим его сторонам (рис. Л,А). Коалесцируя выше распределительной решетки, пузыри образуют пробки, поднимающиеся с равномерными интервалами и разделяющие весь слой на чередующиеся участки плотной и разбавленной фаз. Такое поведение псевдоожиженного слоя аналогично поведению системы газ — жидкость, и ниже будет показано, что основные поло жения теории таких систем применимы и к псевдоожиженному слою. [c.170]

    Многие исследователи отмечали, что в псевдоожиженном слое с интенсивным барботажем пузырей или движением поршней наблюдается периодическое движение твердых частиц у стенок аппарата. В начале цикла отмечается равномерное движение частиц вверх, затем оно замедляется и прекращается, после чего частицы начинают двигаться в обратном направлении с возрастающей скоростью до наступления внезапной инверсии движения начинается новый цикл. На рис. У-11 сопоставлены результаты тщательных измерений скоростей твердых частиц в таком цикле [c.183]

    Из регенератора (диаметром 1,22 м) установки каталитического крекинга отбирали пробы газа в различных точках псевдоожиженного слоя катализатора . Входное отверстие пробоотборника было снабжено фильтром для задержки катализатора, а отводная трубка — рубашкой для охлаждения отбираемого газа. Скорость газа в регенераторе во время отбора проб составляла примерно 45 см/с, причем 72,5% частиц катализатора равномерно распределялись по размеру в диапазоне от 40 до 100 мкм. Состав газа во всех точках слоя был примерно одинаковым, что указывает на быстрое перемешивание. Содержание кислорода, измеренное в слое, составляло —0,2 мол.% (в отходящих дымовых газах — 1,1%). Это было объяснено проскоком газа, богатого кислородом, с пузырями, часто минующими пробоотборник. [c.258]

    Циркуляция в слое может быть определена, в частности, методом обратного перемешивания. На рис. УП-ЗО показаны диаметральные профили концентраций газа на различных уровнях в псевдоожиженном слое диаметром 152 мм при равномерном вводе трасера на уровне ж = 0. [c.307]

    В итоге можно отметить, что ори жидкостном псевдоожижении и небольшом различии плотностей твердых частиц и жидкости расширение слоя более или менее равномерно, хотя из-за неравномерного профиля скоростей в слое может возникнуть циркуляция. Характеристики продольного и радиального перемешивания жидкости изменяются всегда, когда в результате увеличения скорости жидкости слой из неподвижного состояния переходит в псевдоожиженное. Однако, как только твердые частицы получают возможность свободно перемещаться, можно ожидать, что при повышении скорости жидкости их скорость будет постепенно [c.325]

    В малых реакторах с псевдоожиженным слоем равномерное распределение газа можно обеспечить путем использования решетки с мелкими порами — пористые или полученные спеканием пластины. Однако в аппаратах промышленного масштаба такие решетки, как правило, неприемлемы, и обычно применяют перфорированные либо колпачковые тарелки или другие газораспределительные устройства. Тип последнего может оказывать существенное влияние на рабочую характеристику реактора Было, в частности, установлено что после замены полученной спеканием решетки на перфорированную тарелку конверсия упала на 30% это соответствует более ранним исследованиям , показавшим, что однородность псевдоожижения меньше при грубом диспергировании газа. В то же время отмечают , что неблагоприятное влияние грубого газораспределения, по всей вероятности, вырождается при высоте слоя более 0,45 м. [c.369]

    Распределение пузырей по поперечному сечению слоя. Экспериментально и теоретически установлено что газовые пузыри в псевдоожиженном сдое распределены не равномерно, даже если газ через распределительную решетку подается абсолютно равномерно по сечению. В частности, в ядре слоя движутся пузыри больших размеров и с большей частотой, нежели у его стенок. Развитие неравномерности обусловлено горизонтальными перемещениями пузырей в результате поперечной коалесценции. [c.534]

    Влияние характера движения газа на унос систематически не изучали. Можно было бы ожидать , что с повышением равномерности газораспределения и однородности псевдоожижения скорость уноса будет выше. Однако некоторые данные, полученные при работе с катализатором крекинга, видимо, говорят о том, что при повышении однородности псевдоожижения (т. е. с уменьшением размера газовых пузырей) скорость уноса понижается. [c.553]


    В непосредственной близости к питателю с псевдоожиженным слоем материал еще движется равномерно распределенным, но в последующих зонах трубы твердые частицы стремятся осесть и начинают образовывать чередующиеся дюны. Можно ожидать, что при таких нарушениях однородности скорости твердых частиц в различных точках поперечного сечения трубы будут значительно отличаться. Фактически оказалось, что скорости частиц изменяются от точки к точке и вдоль трубы (даже за пределами предполагаемого разгонного участка), где они подвергаются попеременному ускорению и замедлению. Вероятны также значительные флуктуации перепада давления. [c.603]

    Материал камеры определяется параметрами процесса и свойствами продукта. Как правило, аппараты с псевдоожиженным слоем изготовляют из углеродистой и кислотостойкой стали, но для высокотемпературных процессов применяют камеры, футерованные огнеупорами. Наиболее ответственные элементы аппарата с псевдоожиженным слоем — газораспределительные устройства, так как от их конструкции в значительной степени зависят характер и размеры образующихся пузырей и застойных зон, т. е. качество псевдоожижения. Распределительные устройства должны обеспечивать равномерное распределение газа по сечению аппарата, иметь небольшое гидравлическое сопротивление, быть простыми, 1[адежными в работе. На практике все эти требования не всегда возможно совместить. [c.178]

    В отличие от горизонтального, при вертикальном транспорте частицы взвешены и распределены в потоке относительно равномерно, по крайней мере, до возникновения поршневого режима. В связи с этим правомерно рассматривать вертикальный транспорт как движение газа через расширившийся зернистый слой с относительной скоростью — Пр. Тогда, как и для неподвижного или однородного псевдоожиженного (порозностью не ниже [c.608]

    Фонтанирование является одной из разновидностей псевдоожижения, позволяющей перемешивать плохо псевдоожижаемые зернистые материалы слишком крупные частицы или одинаковые по размеру. Фонтанирование достигается подачей ожижающего агента через небольшое отверстие в центре основания расширяющегося конического аппарата вместо равномерного его распределения по всему сечению слоя. В рассматриваемом случае гидродинамическая обстановка существенно отличается от существующей в обычном псевдоожиженном слое твердому материалу сообщается направленное циркуляционное движение, он в виде разбавленной фазы поднимается в ядре слоя и в виде плотной фазы опускается в кольцевой периферийной зоне. [c.620]

    Хорошо известно, что режим идеального вытеснения недостаточное условие для пол> чения достоверных данных. Весьма важно, чтобы реактор был изотермичен, так как отклонения от изотермичности могут привести к большему искажению данных по кинетике основных реакций, чем эффекты неоднородностей потока. Для обеспечения изотермичности слоя катализатора используют различные приемы. В частности, одним из эффективных приемов является помещение реактора с катализатором в псевдоожижений слой нагретого песка [30]. В бане с псевдоожиженным слоем теплоносителя устанавливается равномерный тепловой режим, соответственно и в реакторе или системе последовательно соединенных реакторов по всей высоте слоя обеспечивается изотермичность. Температура реактора зау меряется термопарой, прикрепленной к наружной стенке. Указанный способ подвода тепла имеет определенные трудности ввиду необходимости поддержания теплоносителя в псевдоожиженном состоянии длительное время. Однако он является наиболее рациональным, так как отпадает необходимость загрузки в реакторы инертной насадки для фиксации слоя катализатора в зоне равномерного температурного поля, как это делается обычно в реакторах с подводом тепла через стенку от электронагревательной спирали (см. рис. 3.15). В показанном на этом рисунке типе реактора изотермичность обеспечивается в ограниченной зоне ввиду больших теплопотерь через верхний и нижний фланцы. Реактор такого типа обычно используется при проведении экспериментов с большой глубиной превращения в длительных опытах. Недостатком такого типа реактора является ухудшение показателей по селективности катализатора из-за протекающих реакций термодеструк-цни в зоне инертной насадки над входной зоной катализатора. Этот реактор также может быть приспособлен для проведения опытов с малой степенью преврашения, т. е. при высоких значениях объемной скорости подачи сырья [35]. Суть такого приспособления заключается в том, что внутрь пустого реактора помещается [c.91]

    В случае газовых потоков частицы обычно образуют скопления (комки), а газ—пузырьки вместо того, чтобы оставаться равномерно распределенным. Такой псевдоожиженный слой будем называть неоднородным, или кипяищм, слоем. Если имеется стабильный слой и ясно наблюдаемая свободная поверхность, процесс называется стационарным псевдоожижением, или псевдо-ожишнием с плотной фазой. [c.254]

    Быстрое движение частиц об условливает равномерное распределение температуры в слое, в результате чего устраняются локальные перегревы, имеющие место в реа.ктор.ах вытеснения с неподвижным слоем твердых частиц. Это дает существенные преимущества при проведении реакций в адиабатических условиях, когда температура процесса определяется теплотой самой реакции. В реакторе с псевдоожиженным слоем отвод тепла для снижения температуры до заданного уровня осуществить труднее, чем в реакторе с неподвижным слоем, поскольку в нем сложнее создать необходимую поверхность теплообмена без снижения эффективности псевдоожижения. Конечно, могут быть использованы раз.бавленные среды, о.днако, это может привести к снижению скорости реакции. Еще одним недостатком такого реактора является истирание катализатора, в результате которого в газовый поток попадает пыль. [c.20]

    В одной из ранних работ для качественной характеристики физического состояния системы были введены термины однородное и неоднородное псевдоожижение. Пусть при повышении скорости ожижающего агента слой может непрерывно расширяться за счет равномерного увеличения промежутков между частицами до тех пор, пока в аппарате не останется единичная частица в этом случае говорят об однородном псевдоожижении. Если, наоборот, при скоростях, превышающих скорость начала псевдоожижения, о жижающий агент движется через слой в виде пузырей (примерно так же, как газ через слой жидкости), то псевдоожижение называют неоднородным. Различие между неоднородным и однородным псевдоожижением легко продемонстрировать, сравнивая поведение слоя стеклянных шариков размером около 0,5 мм, псевдоожижая их воздухом или водой. В нервом случае псевдоожижение будет неоднородным, во втором — однородным. В общем, различие между однородными и неоднородными системами обусловлено разницей в свойствах капельных жидкостей и газов. Последующие работы показали, однако, что в некоторых особых условиях (например, для систем вода — вольфрамовые частицы ) неоднородное псевдоожижение наблюдается в системах жидкость — твердые частицы и, наоборот, для систем газ — твердые частицы (например, ожижение пластмассовых микросфер сжатой двуокисью углерода ) характерно однородное псевдоожижение. [c.24]

    Распределители ожижающего агента в основании слоя оказывают весьма существенное влияние на его структуру в целом. В идеальном случае распределительные устройства должны иметь пористую структуру, чтобы ожижающнй агент поступал че]рез множество мелких отверстий. Распределительные устройства с малым числом крупных отверстий характеризуются высокими скоростями в отдельных точках основания слоя, что приводит к значительному каналообразованию в слое. Если слой склонен к каналообразованию, то более равномерное псевдоожижение достигается при использовании распределительных устройств с высоким сопротивлением газовому потоку, при котором ожижающий агент почти равномерно вводится в нижнюю часть слоя, независимо от каких-либо нарушений равномерности структуры самого слоя. Для мелкодисперсного слоя перепад давления в распределительном устройстве должен иметь тот же порядок, что и перепад давления в слое. Установлено что наилучшая воспроизводимость скорости начала псевдоожижения достигается при использовании плоских пористых распределительных устройств расширение слоя в этом случае также происходит более равномерно. [c.41]

    В большинстве систем газ — твердые частицы при скоростнс газа, значительно превышающей необходимую для начала псевдоожижения, наблюдается образование газовых пузырей. Рядом авторов было установлено, что весь избыток газа, сверх необходимого для начала псевдоожижения, проходит через слой в виде пузырей, причем непрерывная фаза сохраняет ту же порозность что и в точке начала псевдоожижения . Достоверность такого фактора трудно установить, так как это связано с точным определением скорости начала псевдоожижения. В настоящее время, однако, известно, что в ряде систем газ — твердые частицы равномерное расширение слоя может происходить в достаточно широком интервале скоростей газа " . [c.53]

    Часто бывает необходимо исследовать одиночный изолированный газовый пузырь ила его воздействие на прилегающие к нему области слоя это практически невозможно сделать, регулируя весь поток газа. Для получения одиночных пузырей и их исследования часто используется приведенная ниже методика (иногда с несущественными изменениями). Слой — двухмерный или любой иной формы — поддерживается в псевдоожиженном состоянии равномерно распределенным газовым потоком, скорость которого очень немного превышает такой слой либо совсем не содержит пузырей, либо они малы (и их появление случайно). Через распределительную решетку или иным путем в аппарат вводят трубку, заканчивающуюся в слое, через которую подают порции газа, генерируя таким образом одиночные дузыри. Давление инжектируемого через трубку газа, длительность инжекции, диаметр трубки и другие условия, необходимые для получения стабильного пузыря нужного размера, подбирают эмпирически. [c.131]

    Заметим, что A " и не обязательно постоянны по объему всего слоя из-за коалесценции газовых пробок. Однако из уравнения (V,ll) следует, что ua = onst, следовательно, произведение iVFj также должно быть постоянным, и поскольку коалесценция происходит равномерно, то можно принять, что величины N и Fj постоянны для слоя данной высоты. Увеличение высоты слоя от в начале псевдоожижения до высоты Н происходит за счет объема газовых пробок, поэтому [c.195]

    Де Мария и Лонгфильд на входе газа в псевдоожиженные слои подавали ступенчатый импульс газа-трасера, равномерно распределяя его по всему поперечному сечению аппаратов диаметром 102, 710, 2130, 3960 мм. Последние два аппарата былп снабжены внутренними нагревательными элементами. Авторы обнаружили весьма заметное повышение эффективного коэффициента осевой диффузии с увеличением диаметра так, для слоя диаметром 3960 мм он был примерно в 30 раз выше, чем для слоя диаметром 25,4 мм. [c.260]

    Присутствие в псевдоожиженном слое каких-либо вставок может быть обусловлено необходимостью размещения в нем поверхности теплообмена или обеспечения более благоприятных условий работы слоя (за счет более равномерного распределения пузырей и уменьшения циркуляции либо за счет образования мелких пузырей). Такие вставки в слое подробно рассмотрены-в гл. XIII. [c.309]

    При изучении продольного перемешивания стеклянных шариков, псевдоожиженных в слое сетчатых колец Рашига, установлено что в присутствии последних псевдоожижение становится более однородным, а продольное перемешивание газа уменьшается. С увеличением скорости газового потока число Боденштейна для продольного перемешивания проходит через минимум при порозности в интервале 0,55—0,65. Этот минимум совпадает с переходом от режима с барботажем пузырей к сплошному потоку. Повышение расхода газа приводит к увеличеник> интенсивности движения частиц и относительному росту ограничений этого движения (из-за столкновений с насадкой и другими твердыми частицами после их столкновения с насадкой). В результате распределение ожижающего газа по поперечному сечению слоя ста новится более равномерным. Пузыри уже нельзя наблюдать визуально, хотя псевдоожиженный слой не является однородным, поскольку еще существуют области высокой и низкой [c.309]

    Хэндли и соавт. 22 определяли траектории твердых частиц в однородном псевдоожиженном слое. Однородное псевдоожижение было достигнуто в случае применения распределительного устройства, обеспечивающего равномерный профиль скоростей ожижающего агента на входе в слой. Была установлена возможность инициирования макроциркуляции твердых частиц. Так, прекращение подачи ожижающего агента в центральных зонах распределительной решетки приводило к возникновению циркуляции, направленной вверх около стенок аппарата и вниз по его оси, а прекращение подачи в периферийном кольцевом пространстве, примыкающем к стенкам, вызывало циркуляцию в обратном направлении. Авторы 22 определили также среднюю длину прямолинейных участков траектории частицы (рис. УП-38). Они нашли, что отношение вертикальной и горизонтальной составляющих турбулентной скорости частицы примерно постоянно и близко 2,5. [c.324]

    Благоприятные условия контакта фаз позволяют с успехом использовать псевдоожиженные системы для осуществления различных химических реакций. между газом и твердыми частицами. Псевдоожижающий газ может быть инертным агентом, инт енсифицирующим перемешивание твердых частиц и теплообмен (например, в некоторых процессах обжига термически неустойчивых твердых частиц). В других случаях химически инертными могут быть твердые частицы, выступая в роли только теплоносителя, обеспечивающего равномерное поле температур (в частности, при хлорировании метана, в псевдоожиженном слое песка). Очень часто в реакции участвуют как газ, так и твердые частицы, причем последние иногда в качестве катализатора (примерами могут служить гидрофторирование двуокиси урана, каталитическцй крекинг углеводородов). [c.333]

    Весь газ, сверх необходимого для начала псевдоожижения, лроходит через слой в виде пузырей постоянного размера, равномерно распределенных по всему объему слоя. Тогда из уравнения неразрывности потока следует-  [c.337]

    Весьма важным для установления границ аналогии является характер движения частиц в нсевдоожиженном слое. В термостатированной капельной жидкости ее состояние определяется пульсационным движением молекул. В однородном псевдоожиженном слое механизм диффузии твердых частиц подобен молекулярному . При псевдоожижении газом твердые частицы также совершают нульсационные перемещения , но с увеличением скорости газа начинает доминировать движение не отдельных частиц, а их агрегатов > , что аналогично движению турбулентных вихрей в капельной жидкости. Вихревой механизм переноса в нсевдоожиженном слое обусловлен движением газовых пузырей и граничными эффектами. Вблизи поверхностей и деталей (даже в отсутствие пузырей) нарушается равномерность распределения скоростей ожижающего агента и возникает направленная циркуляция твердого материала, аналогично конвективным токам в нетермостатированном сосуде с капельной жидкостью. Следует подчеркнуть, что граничные эффекты в псевдоожиженном слое выражены резче, чем в капельной жидкости. [c.495]

    В ряде случаев варианты конструктивного оформления деталей, размещаемых в псевдоожиженном слое, ограничены, тем не менее имеются благоприятные возможности для надлежащего выбора размера и расположения теплообменных труб, ориентации и формы разного рода устройств, способствующих более однородному псевдоОжижению. Конструктивные соображения могут, однако, потребовать противоположных решений, так что приходится идти на компромисс. Например, химические реакции и процессы массообмена в псевдоожиженном слое протекают обычно более эффективно при меньших размерах газовых пузырей и равномерном их распределении в объеме слоя, это следует учитывать, конструируя систему перераспределительных перегородок. С другой стороны, перемещение твердых частиц, вызываемое движением газовых пузырей, благоприятно сказывается на теплообмене слой — поверхность и перемешивании зернистого материала, в таких процессах, естественно, система перераспределительных перегородок не должна быть чрезмерно развитой, чтобы не препятствовать интенсивному движению теердых частиц. [c.522]

    С другой стороны, вертикальные стержни, охватываемые поднимающимися пузырями, занимают меньше места -и обеспечивают более развитую поверхность теплообмена. Уменьшая размер пузырей и увеличивая равномерность их респределения в слое, тонкие вертикальные стержни повышают однородность последнего и улучшают контакт между газом и твердыми частицами. Установлено в частности, что при размещении в-слое вертикальных стержней псевдоожижение становится более спокойным, а унос твердых частиц уменьшается. [c.537]

    Влияние диаметра твердых частиц в слое выражается через скорость газа в соответствии с выводами 1 и 2. Данные о влиянии на унос диаметра аппарата весьма противоречивы. Это, возможно, объясняется тем, что диаметр аппарата влияет на качество псевдоожижения и равномерность распределения газа. При достаточно малых диаметрах аппарата не исключено также возникновение поршневого режима с характерным для него увеличениеи уноса. [c.553]

    Оба исследователя наблюдали переход от псевдоожиженного к слабо псевдоожиженному или непсевдоожиженному движущемуся слою и инверсию перепада давления. Движущийся псевдоожиженный слой формировался в верхней части трубы, где градиент давления был для этой цели достаточным. Процесс протекал плавно, в общем с равномерным распределением частиц, опускавшихся по трубе. По-видимому, движение частиц сопровождалось перемешивапием, но не столь бурным, чтобы можно было говорить о турбулентном потоке скорее оно было ближе к ламинарному. Однако, па нижних участках трубы нисходящее движение частиц приобретало скачкообразный характер. Рассчитанная по перепаду давления концентрация твердого материала рр изменялась от 0,7 г/см в верхней части трубы до 0,85 г/см в ее основании. [c.587]

    Характер зависимости сопротивления слоя семян сурепки Д полн от расхода газа показан на рис. ХУП-З (кривая 1). Высокий пик давления перед стабильным фонтанированием не является специфической особенностью фонтанирующего слоя, как обычно считалось ранее он вызван вводом высокоскоростной газовой струи в слой сыпучего материала. Аналогичный пик наблюдается и в случае псевдоожижения в коническол апнарате , но он отсутствует в цилиндрическом, где газ распределен равномерно. [c.624]


Смотреть страницы где упоминается термин Псевдоожижение равномерность: [c.53]    [c.101]    [c.77]    [c.89]    [c.11]    [c.171]    [c.278]    [c.367]    [c.506]    [c.518]   
Основы техники псевдоожижения (1967) -- [ c.118 ]




ПОИСК







© 2024 chem21.info Реклама на сайте