Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионное растрескивание металла сварного шва

    В настоящее время проводятся испытания сварных котлов, подвергнутых термической обработке при температуре 630° С. Такая обработка должна уменьшить опасность коррозионного растрескивания металла [32]. [c.33]

    Схема 3. Классификация условий и факторов, вызывающих коррозионное растрескивание металлов и их сварных соединений [c.104]

    В наибольшей степени коррозии подвержены 1) места с высокой линейной скоростью среды (например, у входного и выходного штуцеров при большой скорости среды происходит разрушение защитных пленок металла) 2) участки с остаточными напряжениями, в которых имеет место коррозионное растрескивание (чаще всего это сварные швы, а также штампованные или точеные детали, с которых не снято напряжение) 3) застойные зоны, в которых может скапливаться жидкость (поэтому в аппаратах необходимо предусматривать сливные отверстия) 4) зоны нагрева (при повышении температуры скорость коррозии резко увеличивается) 5) узлы трения (механический износ при воздействии агрессивной среды усиливается, изменяются также свойства смазки). [c.50]


    Таким образом, отказы трубопроводов и оборудования ОНГКМ в большинстве случаев обусловлены отсутствием эффективного ингибирования в условиях воздействия сероводородсодержащих сред на металлоконструкции из коррозионно нестойких сплавов, содержащих дефекты. Твердые структурные составляющие, неметаллические включения (сульфиды, оксисульфиды и т. п.) и расслоения являются очагами возникновения водородного растрескивания металла. Поверхностные дефекты (риски, волосовины, раскатанные загрязнения) способствуют появлению и развитию сероводородного растрескивания. Очагами сероводородного растрескивания сварных соединений трубопроводов и деталей оборудования являются так- [c.66]

    В коррозионно-активных средах особенно опасно возникновение концентрации напряжений, способствующих коррозионному растрескиванию оборудования. Для большей равномерности распределения напряжений вокруг концентраторов напряжений следует понижать концентрацию напряжений выбором соответствующей геометрической формы проточки, оптимального способа соединения деталей и т. д. В некоторых высокопрочных и нержавеющих сталях наблюдается часто сильное изменение структуры металла в зоне термического влияния на расстоянии 10—15 мм от сварного шва. Эта зона имеет, как правило, пониженную коррозионную стойкость, и в ней часто наблюдается коррозионное растрескивание. Это связано с возникновением остаточных напряжений. Наибольшая концентрация напряжений наблюдается при сварке листов внахлестку в зоне, лежащей между швами. Для снятия внутренних напряжений рекомендуется после сварки проводить термическую обработку. При больших габаритах изделий следует проводить местную термическую обработку зоны сварного соединения. [c.41]

    Коррозионному растрескиванию подвергаются как основной металл труб, так и сварные соединения (газопроводы Парабель-Кузбасс, Средняя Азия-Центр). При этом трещина как бы не замечает наличия сварного соединения (рис. 1.19). Поэтому одной из отличительных черт отказов по причине КР является отсутствие жесткой привязки коррозионных трещин к имеющимся геометрическим концентраторам напряжения (сварные швы, задиры, царапины), что отличает данный вид разрушения от коррозионной малоцикловой усталости, которая зарождается и развивается только в концентраторах напряжения. Более того, в ряде случаев наблюдалось растворение таких концентраторов напряжения, как риски в очаге разрушения (газопроводы [c.29]


    Влияние напряжений на коррозию (механохимическая кор- розия) усиливается в местах различных концентраторов напряжений на поверхности металла (резьбовые и сварные соединения, выточки, дефекты, трещины и пр.), вызывает неравномерность коррозии и ее локализацию, предельным выражением которой служат явления коррозионного растрескивания и коррозионной усталости, характеризующиеся концентрацией коррозионного процесса в вершине коррозионно-механической трещины. Ряд мероприятий могут снизить интенсивность механохимической коррозии и тем самым предотвратить ускоренное развитие коррозионно-механических разрушений. Так, уменьшение скорости коррозии стали до рекомендованной допустимой начальной величины Оо = мм в год с помощью ингибиторов коррозии в условиях Оренбургского газоконденсатного месторождения [30] позволило исключить коррозионно-механические повреждения оборудования, трубопроводов и даже узлов аварийного предупреждения. [c.39]

    Межкристаллитная коррозия (рис. 9) типична для коррозион-но-стойких сталей, проходит между кристаллами и поражает границы зерен. Склонность к коррозии появляется при неправильной термической обработке сталей, которые теряют прочность и вязкость. В первую очередь этот вид коррозии проявляется в виде растрескивания поверхности, а затем и полного распада. С точки зрения разрушения наиболее опасным местом сварных конструкций из аустенитных сталей является зона основного материала, прилегающая к металлу сварного шва. Так называемая ножевая коррозия напоминает по форме надрез ножом в узкой зоне на границе металла шва и основного д  [c.25]

    Коррозия ПОД напряжением возникает при комбинированном воздействии на металл постоянного растягивающего усилия и коррозионной среды н вызывает коррозионное растрескивание. Этому виду коррозии подвергаются высоколегированные хромистые стали и никель в растворах едкого натра. Растягивающие напряжения могут возникать в результате холодной обработки, например при глубокой вытяжке металла, или при сварке в зоне термического влияния на расстоянии нескольких миллиметров от сварного шва. [c.28]

    Для большинства сварных конструкций важным фактором, оказывающим влияние на циклическую коррозионную трещиностойкость, является коэффициент асимметрии цикла Л. В водных средах скорость роста усталостных трещин в широком диапазоне ДKJ существенно увеличивается при высоких значениях К (рис. 13.3.5) в особенности для конструкций из металлов, склонных к коррозионному растрескиванию, т.к. в этом случае развитие разрушения возможно и при К = 1, т.е. при статическом нагружении. [c.489]

    На рис. 13.4.1 показаны дисковые образцы, позволяющие оценить трещиностойкость основного металла (А), различных зон сварного соединения (Б) и конструкционную трещиностойкость сварного штуцерного соединения (В). Образец закрепляют шарнирно по контуру (см. 6.5, рис.6.5.2) и нагружают циклически до появления усталостной трещины в заданной зоне сварного соединения. Затем закрепленный таким же образом образец подвергают испытаниям на коррозионное растрескивание. [c.493]

    Электросварные трубы, контактирующие со средой, вызывающей коррозионное растрескивание металла, независимо от давления и толщины стенки должны быть в термообработанном состоянии, а их сварные швы равнопрочны основному металлу и подвергнуты 100%-ному контролю физическими методами (УЗД или просвечивание). [c.12]

    Обработка металлов. Гладкая поверхность аппаратов в меньшей степени подвержена коррозии, чем шероховатая. Особое значение имеет правильное применение сварки металлов, в результате которой возникают тепловые напряжения, а при остывании — растягивающие напряжения. В зоне сварного шва в металле происходят структурные изменения. Поэтому наибольшее коррозионное растрескивание металлов наблюдается в зоне сварки. Для предупреждения или снижения этого нежелательного процесса рекомендуется аргоно-дуговая сварка. Не рекомендуется сварка деталей с разной толщиной металла, сварка внахлест , точечная сварка, сварка различнных по составу металлов. Механические напряжения внутри металла усиливают коррозию и приводят к образованию трещин, например растрескивание концов труб в теплообменниках. [c.160]

    Условия коррозионного растрескивания металлов и их сварных соединений а) металл, восприимчивый к коррозионному растрескиванию (М) б) спецпфическа коррозионно-активная среда (С) в) напряженное состояние (Я) с наличием растягивающих компонентов напряжения (схема 3). На природу этого разрушения существуют различные точки зрения электрохимическая, ме-ханоэлектрохимическая, пленочная, адсорбционно-электрохимическая, сорбционная и др., подробно рассмотренные в ряде монографий и обзоров [1, 19, 20, 25, 46, 47, 71, 74 и др.]. Основные механизмы растрескивания классифицированы на рис. 33 [71]. Различие существующих гипотез заключается прежде всего в различной оценке влияния напряжений и среды на процесс разрушения, а также причин, вызывающих склонность металла к растрескиванию. [c.103]


    Влияние двухосной повторно-статической нагрузки на коррозионное разрушение сварных соединений. Принципиального различия в механизме коррозионной усталости сварных соединений и основного металла при циклическом нагружении не имеется. Однако кривые усталости а—N, так же как о—t, при коррозионном растрескивании для сварных соединений в связи с ТФХМВ сварки располагаются, как правило, ниже соответствующих кривых для основного металла. [c.132]

    Сварные соединения стали Х18Н12М2Т ие показали коррозионного растрескивания в условиях коррозии под напряжением. Алюминий марки АО показал пониженную коррозионную стойкость (свыше 0,5 мм/год). В среде никелевого сульфата стойкой оказалась сталь Х23Н28МЗДЗТ (скорость коррозии до 0,1 мм1год)- В сварных соединениях этой стали наблюдалось коррозионное растрескивание металла (рис. 5). Не толь- [c.69]

    В условиях выпарки растворов сульфата никеля при температурах, не превышающих 105°, коррозионно стойкой оказалась сталь Х23Н28МЗДЗТ. В сварных соединениях и на торцовых поверхностях образцов наблюдалось коррозионное растрескивание металла. То же самое наблюдалось в среде никелевых маточников при 60° (скорость общей коррозии стали Х23Н28МЗДЗТ соответствовала 0,1 мм/год). [c.74]

    Сварные швы по результатам металлографических исследований, рентгеноконтроля или ультразвуковой дефектоскопии, цветной дефектоскопии бракуются, если выявлены следующие дефекты трещины всех видов и направлений, расположенные в металле шва, по линии сплавления и в околошовной зоне основного металла, в том числе и микротрещины, выявленные при микроисследовании межкристаллитная коррозия (для сталей типа 12Х18Н10Т), коррозия сварных швов с их износом (по толщине) до отбраковочных величин, коррозионное растрескивание. [c.226]

    Характер деформации металла сильно сказывается на его склонности к коррозионному растрескиванию. Так, как правило, глубокая штамповка оказывает более сильное влияние, чем холодная прокатка или гибка. Те виды механической обработки, при которых в верхнем слое металла образуются сжимающие напряжения (проковка, обдувка дробью, обкатка роликами, опе-скоструировапие и др.), уменьшают склонность металла к коррозионному растрескиванию. Эти виды обработки обычно рекомендуются для борьбы с коррозионным растрескиваппем сварных швов. [c.102]

    Коррозионное растрескивание напряженного металла развивается последовательно в несколько стадий начальная — от момента действия агрессивпой среды до возникновения разрушений в виде первичных трещин, и последующие стадии, при которых трещины развиваются так интенсивно, что наступает мгновенное ра фушение металла. Па рис. 78 показана в качестве примера одна из последних стадий развития поверхностных трещин в околошовной сварной зоне, у которо остаточные наиряжеты не были сняты. [c.108]

    В некоторых случаях титан склонен к межкристаллитной коррозии. Так, наблюдалось межкристаллитное разрушение сварных соединений титана в сернокислом растворе (12—187о серной кислоты), насыщенном сернистым газом с примесями мышьяка, двуокиси селена и окиси железа, — металл шва и зона термического влияния сварного соединения подвергались межкристаллитной коррозии. Межкристаллитное растрескивание титана наблюдалось в красной дымящей азотной кислоте, растворах брома в метиловом спирте и в их парах. Имеются сведения о коррозионном растрескивании титана в расплавленном кадмии, в хлорированных углеводородах, а также в воздушной среде при 260° С, когда на поверхности титана имелись сухие кристаллы хлористого натрия. [c.278]

    При очистке газов от кислых компонентов наряду с общей коррозией происходит также коррозионное растрескивание. При этом коррозионному растрескиванию подвержены сравнительно малопрочные стали с пределом текучести ниже критического значения, которые обычно не поддаются растрескиванию. Это несоответствие объясняется более агрессивными условиями, возникающими в парогазовой фазе в связи с образованием на поверхности металла пленки влаги. Из-за малой толщины этой пленки создаются условия более легкого, чем в жидкой фазе, доступа сероводорода (стимулятора наводороживания и растрескивания) к поверхности металла, и в то же время сохраняется электролитический характер среды. Коррозионному растрескиванию подвержены абсорберы, десорберы, теплообменники, подогреватели, трубопроводы. Как правило, коррозионное растрескивание возникает вблизи сварных швов и трещины направлены вдоль сварных швов. Для предотвращения коррозионного растрескивания рекомендуется применять термическую обработку (обжиг) для снятия остаточных напряжений. Наличие хлоридов в сероводородном растворе увеличивает склонность стали к коррозионному растрескиванию. Высокую стойкость к коррозионному растрескиванию проявили стали с 3% молибдена типа Х17Н13МЗТ. [c.176]

    Растрескивание металла трубопроводов вследствие водородного охрупчивания зарождается на участках стали с твердой мартенситной структурой, обычно в местах концентрации остаточных напряжений, возникающих при изготовлении труб. Как правило, коррозионное растрескивание кольцевых швов трубопроводов, транспортирующих сероводородсодержащие среды, связано с непроваром в корне шва или внутренним подрезом. Любая прерывистость в корне шва может явиться причиной коррозионного растрескивания, при этом скорость распространения трещин в процессе эксплуатации газопроводов сернистого газа определяется глубиной и радиусом поверхностного дефекта в вершине сварного соединения [19]. Исследования коррозионных повреждений трубопроводов, изготовленных из стали марки 17Г2С и транспортирующих газ с примесью сероводорода (до 2%), показали, что общим для всех случаев разрушения сварных соединений является зарождение трещин [c.17]

    Происходят по механизму вязкого или хрупкого разрушения. Заметим, что в кислых средах, вызывающих общую коррозию, часто отмечается заметное снижение относительного сужения, хотя равномерное удлинение может быть таким же, как и при испытаниях на воздухе. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразова-ние) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой (рис. 2.7). В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва (рис. 2.6). Часто имеет место сквозное коррозионное поражение в виде язв без участков долома. Коррозионное растрескивание возможно даже при отсутствии макроскопических дефектов или концентраторов напряжений, например, в средах, содержащих влажный сероводород. Разрушение при коррозионном растрескивании, как правило, хрупкое. В сварных соединениях в большинстве случаев коррозионное растрескивание инициируется в местах перехода от металла шва к основному металлу (рис. 2.6,г). Особенностью разрушений при кор-розионно-механическом воздействии является наличие на из гомах продуктов коррозии, большого количества коррозионных поражений, ветвление трещин и др. [c.71]

    При больших габаритах изделий следует проводить местную термическую обработку зоны сварного соединения. При сварке встык деталей, имеющих различную толщину, возникают остаточные напряжения, которые приводят к усилению коррозии. Для уменьшения напряжений желательно уравнивание толщины свариваемых деталей на участке шва. Необходимо избегать наложения швов в высоконапряженных зонах конструкции, так как остаточные сварные напряжения, суммируясь с рабочими напряжениями, вызьшают опасность коррозионного растрескивания. Рекомендуется не деформировать металл около сварных швов, заклепок, отверстий под болты. Механическая обработка швов фрезой, резцом или абразивным кругом обеспечивает плавное сопряжение шва и основного металла и этим способствует уменьшению концентрации напряжений в соединении и повышению его коррозионно-механической прочности. Особенно эффективна механическая обработка стыковых соединений, предел выносливости которых после обработки шва растет на 40—60 %, а иногда достигает уровня предела вьшосливости основного металла. Стыковые соединения по сравнению с другими видами сварных соединений характеризуются минимальной концентрацией напряжений и наибольшей усталостной прочностью. Повышения усталостной проч- [c.197]

    Результаты исследований показали, что длительное влияние статических напряжений и среды не вызывает существенных изменений механических свойств и коррозионного растрескивания, В то же время циклическими испытаниями установлено, что у образцов сварных соединений значение условного предела выносливости значительно меньше, а интенсивность снижения коррозионноусталостной прочности больше, чем у основного металла. Металлографические исследования свидетельствовали о том, что разрыхления и трещины возникают главным образом по границам зон термического влияния. Это обусловлено тем, что циклическая нагрузка интенсифицирует коррозию под напряжением по сравнению со статической, в большей степени приводя к неоднородности физикомеханических и электрохимических свойств в металле сварного соединения. Трещины распространяются преимущественно внутрикристаллитно, что говорит [c.236]

    В основном трещины коррозионного растрескивания возникают в швах сварных конструкций, а также в конструкциях, подвергнутых деформации (штамповка, развальцовка, гибка). Есть все основания с штать, что основной причиной коррозионного растрескивания сварных конструкций являются высокие внутренние растягивающие остаточные напряжения, возникающие при сварке. Местный нагрев в процессе сварки вызывает пластическую деформацию металла, что в конечном счете приводит к возникновению в зоне шва остаточных растягивающих напряжений. Кроме того, зона шва характеризуется более отрицательным значением электродного потенциала. Это способствует локализации на ней коррозионных процессов, приводящих к зарождению трещин растрескивания. [c.45]

    Наиболее опасными видами коррозии алюминиевых сплавов являются межкристаллитная коррозия и коррозионное растрескивание. Более высокой стойкостью обладают сплавы, не содержащие в своем составе медь. Промышленный алюминий марок АД и АД1, сплавы с марганцем АМц, сплавы с магнием АМг2, АМгЗ обладают высокой коррозионной стойкостью и могут применяться в морских и тропических условиях. Методы производства полуфабрикатов не оказывают влияния на их коррозионную стойкость. Сварные соединения из этих сплавов по коррозионным свойствам близки к основному металлу. [c.74]

    Коррозионная стойкость более легированных магнием сплавов АМг5, АМгб зависит от методов производства полуфабрикатов и условий эксплуатации. Длительные нагревы при температуре 60— 70 °С могут вызвать появление склонности к межкристаллитной коррозии и коррозионному растрескиванию. Коррозионная стойкость обеспечивается строгим контролем технологии производства полуфабрикатов. Сварные соединения этих сплавов равноценны по стойкости основному металлу. Однако нагрев материала выше 100°С после сварки делает сварные соединения склонными к межкристаллитной коррозии. [c.74]

    Когда сплав Ni— u 400 сваривали по методу TIG присадочным металлом 60, сварные швы подвергались интенсивной питтинговой коррозии как в воде, так и в донных отложениях после экспозиции в течение 402 сут на глубине 760 м. Однако они корродировали равномерно после 181 сут экспозиции на поверхности. Стыковые швы сплава Ni—Си 400, сделанные ручной электросваркой в атмосфере инертных газов с использованием электрода 190, были подвержены небольшой питтинговой коррозии в морской воде и донных отложениях после 189 сут экспозиции на глубине 1800 м и язвенной коррозии сварного шва после 540 сут экспозиции на поверхности. Круговые сварные швы диаметром 7,6 см с неснятым напряжением, сделанные в образцах сплава Ni— u 400 ручной электросваркой в атмосфере инертных газов с использованием электрода 190, корродировали равномерно в морской воде и донных отложениях после 189 аут экспозиции на глубине 1800 м. Круговые сварные швы с неснятым напряжением применялись для определения воздействия сварочных напряжений на коррозионное растрескивание сплавов. Когда сплав Ni— u 400 сваривался ручной электросваркой в атмосфере инертных газов с использованием электродов 130 и 180, сварные швы корродировали равномерно после 181 сут экспозиции на поверхности и 402 сут экспозиции на глубине 760 м. После 402 сут экспозиции на глубине 760 м не наблюдалось предпочтительной коррозии сварного шва, когда сплав Ni—Си 400 сваривался методом TIG с использованием электрода 167. Однако сварной шов подвергался избирательному коррозионному воздействию и был покрыт налетом меди после 403 сут экспозиции на глубине 1830 м [7]. [c.305]

    Проведен анализ аварийности и причин отказов сварных соединений и основного металла труб нефте- и нефтепродуктопроводов. Установлено, что основными причинами отказов являются несовершенства проектных решений, заводской брак труб, брак строительно-монтажных работ, общая и язвенная коррозия, коррозионное растрескивание и коррозионная усталость металла нефтепроводов, нарушения правил эксплуатации, включающие ошибки обслу- [c.7]

    Для низкоуглеродистых сталей в отожженном или нормализованном состояниях важнейшими структурными параметрами, определяющими их склонность к коррозионному растрескиванию, являются размер зерна и последствия фазовых превращений в сварном шве и око-лошовной зоне. Влияние размера зерен на склонность сталей к коррозионному растрескиванию приведено на рис. 4.1.11. Из приведенных данных видно, что сшгжение размеров зерен приводит к повышению уровня напряжений, при которых сталь становится чувствительной к коррозионному растрескиванию. Это связано, в первую очередь, с числом сегрегированных в границах зерен примесных атомов — фосфора, цветных металлов, серы, углерода. В табл. 1.4.18. приведены данные, позволяющие проанализировать эту взаимосвязь. Как видно из представленной таблицы, наблюдается пропорциональная зависимость между размерами зерен и суммарным содержанием сегрегированных атомов на их границах. Такая особенность может быть объяснена тем, что при уменьшении размеров зерен суммарная площадь их гра- [c.69]

    Алюминиевые сплавы подвержены местной коррозии. При аэрировании раствора резко возрастает скорость коррозии медн. Имеются сведения о взрывном характере взаимодействия мо-нелЬ Металла с азотнокислым аммонием. Для изготовления технологического оборудования при нормальной температуре могут использоваться зтлероди-стые стали, серый н хромистый чугун ы. Железо и стали при температурах >60° С под напряжением подвержены сильному коррозионному растрескиванию в концентрированных растворах соли. Путем термической обработки сварной аппаратуры снимают напряжения. возникшие при сварке, такая обработка уменьшает склонность сталей к крррозионному рас трескивайню, [c.810]


Смотреть страницы где упоминается термин Коррозионное растрескивание металла сварного шва: [c.205]    [c.205]    [c.90]    [c.22]    [c.71]    [c.281]    [c.31]    [c.55]    [c.30]    [c.36]    [c.38]    [c.167]    [c.9]    [c.12]    [c.402]    [c.18]   
Структура коррозия металлов и сплавов (1989) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионное растрескивание под

Металлы коррозионное металлов

Металлы растрескивание

Сварные швы



© 2025 chem21.info Реклама на сайте